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A EXAMPLES

This section gives additional examples of Low-rank Multi-task Bilinear class and demonstrates the
sample complexity of multi-task learning in these examples.

Low Occupancy Complexity Low occupancy complexity model is proposed in Du et al. (2021).
We consider the low occupancy complexity model with known feature βh, as defined in the following.
Definition A.1 (Low Occupancy Complexity). An MDPM and hypothesis classH has low occu-
pancy complexity with respect to an unknown feature mapping φh : S × A 7→ Rd if there exists a
known βh : H 7→ Rd, h ∈ [H] such that for all f ∈ H and (sh, ah) ∈ S ×A we have that:

dπf (sh, ah) = 〈βh(f), φh(sh, ah)〉.
Here dπf denotes the occupancy measure under policy πf .

It is known that low occupancy complexity model is Bilinear class with

Xh(g) = βh(g)

Wh(g) =
∑

s∈S,a∈A
φh(s, a)(Qh,g(s, a)− r(s, a)− Es′∼Ph(·|s,a)[Vh+1,g(s

′)].

The estimation policies can be chosen as πest(f) = πf and the discrepancy measure is the Bellman
error:

lf (oh, g) = Qh,g(sh, ah)− rh − Vh+1,g(sh+1).

We consider Low rank Multi-task Bilinear class where each MDPMm is low occupancy complexity
model, i.e.

d
πm,f
m (sh, ah) = 〈βm,h(f), φm,h(sm,h, am,h)〉,

and there exist Bh ∈ Rd×k and features νm,h : S × A 7→ Rd such that φm,h = Bhνm,h. The
hypothesis set is chosen as G = H1 ⊗ · · · ⊗ HM . Notice that

Wm,h(g) = Bh

( ∑
s∈S,a∈A

νh(s, a)(Qh,g(s, a)− r(s, a)− Es′∼Ph(·|s,a)[Vh+1,g(s
′)]

)
.

Then we use the fixed feature map Xm,h = βm,h. Denoting Vm,h as a feature class to capture νm,h
and B = N (Rd×k, ε) where N (Rd×k, ε) denotes the ε-covering of Rd×k, we set the feature class V
induced by ⊗m∈[M ],h∈[H]Vm,h in which νm,h defines the map vm,h : G 7→ Rk in the following way:

vm,h(g) =
∑

s∈Sm,a∈Am

νm,h(s, a)(Qm,h,g(s, a)− r(s, a)− Es′∼Pm,h(·|s,a)[Vm,h+1,g(s
′)].

Therefore Wm,h = Bhvm,h. We thus have the following result.
Corollary A.2. Consider Low-rank Multi-task Bilinear class where each MDPMm is low occupancy
complexity model with

d
πm,f
m (sh, ah) = 〈βm,h(f), φm,h(sm,h, am,h)〉,

and there exist Bh ∈ Rd×k and features νm,h : S × A 7→ Rd such that φm,h = Bhνm,h. Denote
Vm,h as a feature class to capture νm,h and set the feature class V induced by ⊗m∈[M ],h∈[H]Vm,h.
Under Assumption 5.2, there exists an algorithm that with probability at least 1 − δ finds a set of
policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε

with

O

(
H6M2d(Mk + dk log(1/ε) + log(|V||G|/δ))

ε2

)
trajectories.
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Remark A.3. Using Bilin-UCB to learn each task individually, it takes

O

(
H6M3d2 log(|G|/δ))

ε2

)
trajectories to learn a set of policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε.

Therefore, if the cardinality of the feature set V is not greater than eO(Md), Algorithm 1 achieves
sample complexity improvement comparing to single-task learning.

FLAMBE Feature selection Agarwal et al. (2020) setting is an extension of linear MDP where the
features are all unknown.

Definition A.4 (Feature Selection). An MDPM is feature selection model if there exist unknown
functions µ∗h : S 7→ Rd and unknown features φ∗h : S × A 7→ Rd such that for all h ∈ [H] and
(s, a, s′) ∈ S ×A× S

Ph(s′|s, a) = 〈µ∗h(s′), φ∗(s, a)〉.

Using the function class Φ to capture φ∗ and function classH = H1⊗ · · ·⊗HH to capture the target
Q-function Q∗ where specifically

Hh = {w>φ(s, a) : ‖w‖1 ≤ CW , φ ∈ Φ},

it is known that the feature selection model is an instance of Bilinear class with

Xh(g) = Eπf [φ∗(sh−1, ah−1)]

Wh(g) =
∑
s∈S

µ∗h(s, a)
(
Vh,g(s)− r(s, πg(s))− Es′∼Ph(·|s,πg(s))[Vh+1,g(s

′)]
)
.

The estimation policy is uniform over the action set πest = Unif(A) and the discrepancy measure is
defined as

lf (oh, g) =
1(ah = πg(sh))

1/A

(
Qh,g(sh, ah)− rh − Vh+1,g(sh+1)

)
.

We consider Low rank Multi-task Bilinear class where each MDP Mm is feature selection model
with Pm,h = 〈µ∗m,h(s′), φ∗(s, a)〉 (φ∗ is shared among tasks) and there exists B∗h : S 7→ Rd×k

and ν∗m,h : S 7→ Rk such that µ∗m,h = B∗hν
∗
m,h. We can therefore use the hypothesis class

G = H1 ⊗ · · · ⊗ HM where Hm is defined similarly to capture the Q-function Q∗. In addition,
consider function class Φ to capture φ∗, B to capture B∗h, and V to capture ν∗m,h. Notice that every
νm,h ∈ V defines the map vm,h : g 7→ Rk in the following way:

vm,h(g) =
∑

s∈Sm,a∈Am

νm,h(s, a)
(
Vh,g(s)− r(s, πg(s))− Es′∼Ph(·|s,πg(s))[Vh+1,g(s

′)]
)
.

Therefore we have Wm,h = Bhvm,h. Notice that each (φ,Bh)h∈[H],m∈[M ] will define the expecta-
tion Emπm,g (via Ph(s′|s, a) = 〈µh(s′), φ(s, a)〉 with µm,h = Bhνm,h). Finally, we set X induced by
Φ⊗ B ⊗ V where the feature Xm,h(g) can be computed for each g ∈ G as follows:

Xm,h(g) = Emπm,f [φ(sh−1, ah−1)].

We thus have the following result.

Corollary A.5. Consider Low-rank Multi-task Bilinear class where each MDP Mm is feature
selection model with Pm,h = 〈µ∗m,h(s′), φ∗(s, a)〉 (φ∗ is shared among tasks) and there exists
B∗h : S 7→ Rd×k and ν∗m,h : S 7→ Rk such that µ∗m,h = B∗hν

∗
m,h. Consider function class Φ to
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capture φ∗, B to capture B∗h, and V to capture ν∗m,h. Under Assumption 5.2, there exists an algorithm
that with probability at least 1− δ finds a set of policies {πm}m∈[M ] such that

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V πmm,1(s1) ≤ ε

using

O

(
H6M2d(Mk + log(|B||Φ||V||G|/δ))

ε2

)
trajectories.

B PROOF OF THEOREM 5.3

Proof. Fix λ = R2. We have

M∑
m=1

V
π∗m
m,1(s1)−

M∑
m=1

V
π
m,g(t0)

m,1 (s1)

≤
M∑
m=1

Vm,1,g(t)(s1)−
M∑
m=1

V
π
m,g(t0)

m,1 (s1)

≤
M∑
m=1

H∑
h=1

|〈B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(t0))〉|, (7)

where the first step is from Lemma C.2 and the second step is from Lemma C.3.

Fix h ∈ [H]. We use Hölder’s inequality,

M∑
m=1

|〈B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(t0))〉|

≤

(
M∑
m=1

‖B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗)‖2
Σ

(t0)

m,h

)1/2

·

(
M∑
m=1

‖X∗m,h(g(t0))‖2
(Σ

(t0)

m,h)−1

)1/2

.

By the confidence set in Line 3 and Lemma C.1, we have

M∑
m=1

‖B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗)‖2
Σ

(t0)

m,h

≤ 2

t0−1∑
τ=1

M∑
m=1

(
〈B(g(t0))

h (g(t0))v
(g(t0))
m,h (g(t0))−B(g(t0))

h (g̃(t0))v
(g(t0))
m,h (g̃(t0)), X

(g(t0))
m,h (g(τ))〉

)2

+ 2

t0−1∑
τ=1

M∑
m=1

(
〈B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉

− 〈B(g(t0))
h (g(t0))v

(g(t0))
m,h (g(t0))−B(g(t))

h (g̃(t0))v
(g(t0))
m,h (g̃(t0)), X

(g(t))
m,h (g(τ))〉

)2

≤ 4R2.

By Lemma C.4, we have

M∑
m=1

‖X∗m,h(g(t0))‖2
(Σ

(t0)

m,h)−1
≤ 2.
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Therefore, we combine the above to get

M∑
m=1

|〈B∗h(g(t0))v∗m,h(g(t0))−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(t0))〉| ≤ 16R.

Plugging this into Eq. (7) completes the proof.

C SUPPORTING LEMMA

The following Lemma is the key concentration result on (v
(g)
m,h, B

(g)
h , X

(g)
m,h).

Lemma C.1. With probability at least 1− δ, the following holds for all h ∈ [H] and g ∈ G
t−1∑
τ=1

M∑
m=1

(
〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉

− 〈B(g)
h (g)v

(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

)2

≤ R2,

where for each g ∈ G, (v
(g)
1:M,1:H , B

(g)
1:H , X

(g)
1:M,1:H , g̃) are defined by

(v
(g)
1:M,h, B

(g)
h , X

(g)
1:M,h, g̃) = arg min

v1:M,h∈Vh,Bh∈Bh,X1:M,h∈Xh,g̃∈G

t−1∑
τ=1

M∑
m=1

(
E

(s,a,s′)∼D(τ)
m,h

[lm,h,g(τ)(s, a, s
′, g)]− 〈Bh(g)vm,h(g)−Bh(g̃)vm,h(g̃), Xm,h(g(τ))〉

)2}
,∀h ∈ [H].

Proof. Fix h ∈ [H], g ∈ G, and t ∈ [T ]. Let αm,h = (αm,h,1, . . . , αm,h,t−1)> ∈ Rt−1 and
α̂m,h = (α̂m,h,1, . . . , α̂m,h,t−1)> ∈ Rt−1 where

αm,h,τ = 〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉

α̂m,h,τ = 〈B(g)
h (g)v

(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

and let ξm,h = (ξm,h,1, . . . , ξm,h,t−1)> ∈ Rt−1 where

ξm,h,τ = E
(s,a,s′)∼D(τ)

m,h

[lm,h,g(τ)(s, a, s
′, g)]− Ea0:h∼πm,g(τ) [lm,h,g(τ)(s, a, s

′, g)].

We know that ξm,h,1, . . . , ξm,h,t−1 is a stochastic process adapted to filtration {Hτ}t−1
τ=1 and ξm,h,τ

is conditionally σ-sub-Gaussian with variance σ2 ≤ H2 · n−1
0 . We have the basic inequality

M∑
m=1

‖αm,h − α̂m,h‖2 ≤
M∑
m=1

ξ>m,h(αm,h − α̂m,h). (8)

Notice that the matrix
(
B∗h(g)v∗1,h(g)−B∗h(g∗)v∗1,h(g∗), · · · , B∗h(g)v∗M,h(g)−B∗h(g∗)v∗M,h(g∗)

)
∈

Rd×M has rank at most 2k. We can rewrite it as B̃h · (ṽ1,h, · · · , ṽM,h) where B̃h ∈ Rd×2k

is an orthonormal matrix with and ṽm,h ∈ R2k. Similarly we rewrite the matrix(
B

(g)
h (g)v

(g)
1,h(g)−B(g)

h (g̃)v
(g)
1,h(g̃), · · · , B(g)

h (g)v
(g)
M,h(g)−B(g)

h (g̃)v
(g)
M,h(g̃)

)
∈ Rd×M as

B̂h · (v̂1,h, · · · , v̂M,h) where B̂h ∈ Rd×2k is an orthonormal matrix with and v̂m,h ∈ R2k. Then we
have

αm,h − α̂m,h =

 (X∗m,h(g(1)))>

...
(X∗m,h(g(t−1)))>

 · B̃h · ṽm,h −


(X
(g)
m,h(g(1)))>

...
(X

(g)
m,h(g(t−1)))>

 · B̂h · v̂m,h.
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Let βm,h = (ṽ>m,h, v̂
>
m,h)> ∈ R4k and

Um,h =


 (X∗m,h(g(1)))>

...
(X∗m,h(g(t−1)))>

 · B̃h,−


(X
(g)
m,h(g(1)))>

...
(X

(g)
m,h(g(t−1)))>

 · B̂h
 ∈ R(t−1)×4k,

then αm,h − α̂m,h = Um,hβm,h. Let Λm,h = U>m,hUm,h + λ · I , then Cauchy-Schwarz inequality
implies

M∑
m=1

ξ>m,h(αm,h − α̂m,h) ≤
M∑
m=1

‖ξ>m,hUm,h‖Λ−1
m,h
‖βm,h‖Λm,h

≤

√√√√( M∑
m=1

‖ξ>m,hUm,h‖2Λ−1
m,h

)
·

(
M∑
m=1

‖βm,h‖2Λm,h

)
. (9)

For
∑M
m=1 ‖βm,h‖2Λm,h , notice that(

M∑
m=1

‖βm,h‖2Λm,h

)
=

M∑
m=1

‖αm,h − α̂m,h‖2 + λ ·
M∑
m=1

‖βm,h‖2

≤
M∑
m=1

‖αm,h − α̂m,h‖2 + 4MλCW . (10)

Fix v(g)
m,h, B

(g)
h , X

(g)
m,h, g̃, then {Um,h,τ}t−1

τ=1 is a stochastic process adapted to filtration {Hτ}t−1
τ=1.

Therefore, by Lemma 2 in Hu et al. (2021), we know that the following holds with probability at least
1− δ1

M∑
m=1

‖ξ>m,hUm,h‖2Λ−1
m,h

≤ σ2 ·
M∑
m=1

log

(
det(Λm,h) det(λ · I)−1

δ2

)
≤ H2 · n−1

0 · (Mk · log(CX/λ) + log(1/δ1)).

Taking union bound for all v(g)
1:M,h, B

(g)
h , X

(g)
1:M,h, g̃ ∈ (Vh,Bh,Xh,G), we have that with probability

at least 1− δ0
M∑
m=1

‖ξ>m,hUm,h‖2Λ−1
m,h

≤ H2 · n−1
0 · (Mk · log(CX/λ) + log(|V||B||X ||G|/δ0)). (11)

Combining Eq. (11), Eq. (10), Eq. (9), and Eq. (8), we come to the following with probability at least
1− δ0

M∑
m=1

‖αm,h − α̂m,h‖2

≤

√√√√H2 · n−1
0 · (Mk · log(CX/λ) + log(|V||B||X ||G|/δ)) ·

(
M∑
m=1

‖αm,h − α̂m,h‖2 + 4mλCW

)
.

Solving the above inequality and setting λ = 2H2(Mk·log(CX/λ)+log(|V||B||X ||G|/δ))
Mn0CW

, with probability
at least 1− δ0,

M∑
m=1

‖αm,h − α̂m,h‖2

≤
2H2(Mk · log(CXλ ) + log( |V||B||X ||G|δ ))

n0
+ 4

√
H(Mk · log(CXλ ) + log( |V||B||X ||G|δ ))mλCW

n0

≤ 8H2(Mk · log(Mn0CWCX) + log(|V||B||X ||G|/δ0))

n0
.
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Finally, taking union bound for all h ∈ [H], g ∈ G, and t ∈ [T ] completes the proof.

The following Lemma establishes optimism of g(t) by showing that the true model g∗ always lies in
the confidence set.

Lemma C.2. With probability at least 1− δ, g∗ satisfies the constraints in Line 3. Therefore,

M∑
m=1

Vm,1,g(t)(s1) ≥
M∑
m=1

V
π∗m
m,1(s1)

Proof. Applying Lemma C.1 for g = g∗, we know that outside the failure event E ,

t−1∑
τ=1

M∑
m=1

(
〈B(g)

h (g)v
(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

)2

≤
t−1∑
τ=1

M∑
m=1

(
〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g(τ))〉 − 〈B(g)

h (g)v
(g)
m,h(g)−B(g)

h (g̃)v
(g)
m,h(g̃), X

(g)
m,h(g(τ))〉

)2

≤ R2.

This means that g∗ belongs to the confidence set G(t),∀t ∈ [T ] in Line 3.

The following result decouples
∑M
m=1 Vm,1,g(s1)−

∑M
m=1 V

πm,g
m,1 (s1) into sum of Bellman errors.

This is a simple extension of Lemma 5.5 in Du et al. (2021).

Lemma C.3. For any g ∈ G we have

M∑
m=1

Vm,1,g(s1)−
M∑
m=1

V
πm,g
m,1 (s1)

≤
M∑
m=1

H∑
h=1

|〈B∗h(g)v∗m,h(g)−B∗h(g∗)v∗m,h(g∗), X∗m,h(g)〉|.

Finally, we show the coverage of Σ
(t)
m,h =

∑t
τ=1X

∗
h(g(τ))(X∗h(g(τ)))> + λI .

Lemma C.4. Let Σ
(t)
m,h =

∑t
τ=1X

∗
h(g(τ))(X∗h(g(τ)))> + λI . There exists t0 ∈ [T ] such that

M∑
m=1

‖X∗h(g(t0))‖2
(Σ

(t0)

m,h)−1
≤ 2.

Proof. We use the following Elliptic Potential Lemma.

Lemma C.5 (Elliptic Potential Lemma, Abbasi-Yadkori et al. (2011)). Let Σ
(t)
m,h =∑t

τ=1X
∗
h(g(τ))(X∗h(g(τ)))> + λI . Then we have

T∑
t=1

log(1 + ‖X∗h(g(t))‖2
(Σ

(t)
m,h)−1

) ≤ 1

T
· log

det(Σ
(T )
m,h)

det(λI)
≤ d · log(1 +

TC2
X

λd
)

Set T = 8HMd log(1 +
MC2

X

λ ), then

min
t∈[T ]

M∑
m=1

log(1 + ‖X∗h(g(t))‖2
(Σ

(t)
m,h)−1

) ≤ 1

T
·M · d · log(1 +

TC2
X

λd
) ≤ log 2.
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For this t0 where the above holds, maxm∈[M ] ‖X∗h(g(t0))‖2
(Σ

(t0)

m,h)−1
≤ 1, which implies

M∑
m=1

‖X∗h(g(t0))‖2
(Σ

(t0)

m,h)−1
≤ 2

M∑
m=1

log(1 + ‖X∗h(g(t0))‖2
(Σ

(t0)

m,h)−1
) ≤ 2.
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