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A EXAMPLES

This section gives additional examples of Low-rank Multi-task Bilinear class and demonstrates the
sample complexity of multi-task learning in these examples.

Low Occupancy Complexity Low occupancy complexity model is proposed in|Du et al.| (2021)).
We consider the low occupancy complexity model with known feature 35, as defined in the following.

Definition A.1 (Low Occupancy Complexity). An MDP M and hypothesis class H has low occu-
pancy complexity with respect to an unknown feature mapping ¢y, : S x A > R? if there exists a
known S, : H +— R% h € [H] such that for all f € H and (s, ap,) € S x A we have that:

d™ (sn,an) = (Bu(f), on(sn, an)).

Here d™/ denotes the occupancy measure under policy 7.

It is known that low occupancy complexity model is Bilinear class with
Xn(9) = Bn(9)
Wi(g) = > on(s,0)(Qng(s,a) — r(s,a) = By p, (fs.0)[Vis1,9(s)].
s€S,acA
The estimation policies can be chosen as e (f) = 7y and the discrepancy measure is the Bellman
error:

l¢(on,9) = Qn,g(sh,an) — 0 — Vag1,9(Sht1)-

We consider Low rank Multi-task Bilinear class where each MDP M, is low occupancy complexity
model, i.e.

™ (snyan) = (Bn,n(f), Smp(Smhy @),

and there exist B, € R%** and features Ump @ S X A — R? such that ®m.h = Brvmn. The
hypothesis set is chosen as G = H1 ® - - - @ H . Notice that

Wi n(g) = Bh( > vn(s,0)(Qng(s,a) = 1(s,a) = Egrp, ([s,a) [Vh+1,g(8')])-

s€S,ac A

Then we use the fixed feature map X, , = B, ». Denoting Vy, p, as a feature class to capture vy, p,

and B = N (R¥* ¢) where N'(R?*¥ ) denotes the e-covering of R4*¥ we set the feature class
induced by @) he[f]Vm,n in Which vy, 5 defines the map vy, p, G — RF in the following way:

Um,h(g) = Z Vm,h(sa CL) (Qm,h,g (8, CL) - 7"(5, CL) - ES’NPm,h(~|S,a) [Vm,h+1,g (Sl)]-
s€ESm,aEA,

Therefore W, ;, = B v, ;. We thus have the following result.

Corollary A.2. Consider Low-rank Multi-task Bilinear class where each MDP M, is low occupancy
complexity model with

A (snyan) = (B (f), G n(Smhy @),

and there exist By, € R3*k and features vy, © S X A — R? such that Om.h = BnVm, n. Denote
Vim,n as a feature class to capture vy, j, and set the feature class V induced by @ e (n,ne[m) Vim,h-
Under Assumption there exists an algorithm that with probability at least 1 — ¢ finds a set of
policies {Ty, } mea such that

M . M
> Vin(s1) = Y Vin(sy) <e
m=1 m=1
with
0 (HﬁMzd(Mk + dklog(1/€) + log(|V|Q|/6)))
€2
trajectories.
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Remark A.3. Using Bilin-UCB to learn each task individually, it takes
o <H6M3d2 log<g|/6>>>

€2

trajectories to learn a set of policies {7, },,e[as) Such that

M . M
ST Vin(s1) = Y Vin(s1) <.
m=1 m=1

Therefore, if the cardinality of the feature set V is not greater than ¢©(™?) Algorithm [1|achieves
sample complexity improvement comparing to single-task learning.

FLAMBE Feature selection |Agarwal et al.|(2020) setting is an extension of linear MDP where the
features are all unknown.

Definition A.4 (Feature Selection). An MDP M is feature selection model if there exist unknown
functions i} : S — R? and unknown features ¢} : S x A ~ R? such that for all h € [H] and
(s,a,8) eSxAXS

Pp(s'ls,a) = (uh(s'), 6" (s,a)).

Using the function class ® to capture ¢* and function class H = H; ® - - - ® H g to capture the target
Q-function Q* where specifically

Hy = {w' ¢(s,a) : |w]; < Cw, ¢ € d},
it is known that the feature selection model is an instance of Bilinear class with
Xh (g) = E?rf [¢* (shflv ah*l)}

Wh(g) = Z/ﬁi(«% a)(Vag(s) = 7(s,mg(5)) = Egopy (-1symy () [Vit1,9(s)])-
SeES

The estimation policy is uniform over the action set 75, = Unif(.4) and the discrepancy measure is
defined as

ly(on,g) = W(Qh,g(sh,ah) —7h — Vig1,9(Sh41))-

We consider Low rank Multi-task Bilinear class where each MDP M, is feature selection model
with Py, = (15, (5'), 9" (s,a)) (¢* is shared among tasks) and there exists Bj : S — R**¥

and v, + 8§ — R* such that P = Bpvy, - We can therefore use the hypothesis class

G =H ®---® Hp where H,, is defined similarly to capture the Q-function Q*. In addition,
consider function class @ to capture ¢*, B to capture B}, and V to capture v, ,. Notice that every

Vm.n € V defines the map v, 5, : g — R” in the following way:

Um,h(g) = Z Vm,h(57 a) (Vh,g(s) - 7‘(8, ﬂ-g(s)) - ES’NPh(-|s,7rg(s))[‘/h—i-l,g(S/)D-
SESH,a€A,

Therefore we have W, j, = Bj, vy, 1. Notice that each (¢, By,) nelH],me[Mm] Will define the expecta-
tion EY (via Pr(s'|s,a) = (un(s"), ¢(s,a)) with iy, , = BpVim, ). Finally, we set X induced by
® ® B ® V where the feature X, ,(g) can be computed for each g € G as follows:

Xm.n(g) = E;nm,f [P(sh—1, an—1)].

We thus have the following result.

Corollary A.5. Consider Low-rank Multi-task Bilinear class where each MDP M, is feature
selection model with Pp, j, = (py, ('), #*(s,a)) (¢* is shared among tasks) and there exists

B : 8 — Rk and U @S R¥ such that P = By, - Consider function class ® to
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capture ¢*, B to capture By, and V to capture Vpn p- Under Assumption there exists an algorithm
that with probability at least 1 — ¢ finds a set of policies { T, }mea such that

POGHINED EHE

using

HOM2d(MFk + log(|B 5
0< (MFE + 6g(l ®[VIIgl/ )))

trajectories.

B PROOF OF THEOREM [5.3]

Proof. Fix A\ = R%. We have

M
Z Vm7 Z V m, q(to)
m=1

M
< Z m.1,g (1) ZV’”“O)
m=1
M H
< D> B ) w(9") = Biig o (97, X n (9“1, 7
m=1h=1

where the first step is from Lemma[C.2)and the second step is from Lemma[C.3]
Fix h € [H]. We use Holder’s inequality,

ZI By (9" )y, w(9") = B (9" )0 n(97), X i (91))]

m=1
2,y 1/2
(Z IBji(g"")vs, 1 (91")) — By (g" ) 1 (g )|E<ro)> . (2_:1 |X72,h(9(t°))||?2g9}>l)_1> :

m,h

By the confidence set in Line [3|and Lemma[C.T} we have

M

> 1B (g "), 1 (g1)) = Bir(g%) v 1 (g *)H;ao;

m=1 m

ot M (to) (to) (t0) (to) (to) 2

to to to e to 0 r

<23 3 (B ) = B e ), X860 )

=1 m=1

to—1 M

+2) > <<BZ(9(t“))vin,,h(g(t°)) = Bii(9")05, 1 (9"): X (97)

( (to))
— (B’

m,h m,h

2
(to0) @)y, ONp
(0", (") = B (gl (g1, X2, “(”0
<A4R?.

By Lemma|[C.4] we have

2
Z 151 (9"l (00)) 1 <2
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Therefore, we combine the above to get

Zi ()05 n(9)) = Bi(g" Wi n(07), X3 (91))] < 16R.

m=1

Plugging this into Eq. (7)) completes the proof.

O
C SUPPORTING LEMMA
The following Lemma is the key concentration result on (vig?h, B;Lg ), X f;f,)h)'
Lemma C.1. With probability at least 1 — 6, the following holds for all h € [H) and g € G
t—1 M
> 5 ((Bi(a)inala) = Bil)oha): X507
7=1m=1
2
(B @02 0) - B @@, X)) < R
where for each g € G, (vﬂJ L B%g)q, Xl(g])w 1.1 §) are defined by
(vgg])wh,Bég),Xl(f’&h,ﬁ) = arg min
’ V1:M,h €V, Br€BR, X1: M ,n EXR,GEG
t—1 M 2
5 3 (B o (5:0:5'9)] = (Bl0)06) = Bu@0n @) Xl ™)) |0 € [H]
T=1m=1 ’

Proof. Fix h € [H], g € G, andt € [T]. Let amyp = (Qmptys--rQmpi—1) € RTLand
am,h = (am,h,la sy a7n7ll7t_1)T € R*~! where

Qe = (BE (@)1 (9) = Bi(g" )0 (97, X5 (9))
G = (B (9)00,(9) — By ()00, (), X2, (9))

mh m,

andlet & = (Emnts-- s Emni—1) € RI! where

gm,h,-r = E(s,a,s/)N,DSl—)h [lm,h,g(") (S, a, 5/’ g)] — ]an:,l,\,ﬂm7g(7) [lm,h,g(") (S, a, 5” g)]

We know that &, 1,15 - - -, &m,h,t—1 18 a stochastic process adapted to filtration {7, i;ll and & p,r
is conditionally o-sub-Gaussian with variance 0? < H? - ng ! We have the basic inequality

M M
> lemn = @mnl* <D &0 n(nn — Gmn)- (8)
m=1 m=1
Notice that the matrix (B} (9)v7 1,(9) — B (9")vi ,(97), -, By (9)viar 4 (9) — Bji(9%)viarn(97)) €
R4*M has rank at most 2k. We can rewrite it as By, - (U1,hy -+, Un,p) Where By, € Rdx2k
is an orthonormal matrix with and v, € R2F, Similarly we rewrite the matrix
(B2 @i (0) — BY@v@, - B (00ih(0) - BY @ei2h@) €  RZM as
By, - (V1h, - »0nrp) Where B), € R4k is an orthonormal matrix with and o, Um.n € R?*. Then we
have
(X n(g™))T (X (gM))T
Qb — O = : - Bp, - U, p — : "z - U -
* -1 T _
(X5 (g"7D)) (X9 (g )T
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T o~
Let ﬁm h = ( 'rrL h> UrTrL h) € R4k and

(Xr*n,h(g(l)))T (X,Sf,)h(g(l)))T
Unh = : - By, — : By | e R(t—1)x4k’
(X7, (g T (Xg))h(g(t—l)))r

then o p — Q. = U b Bmon- Let Ay = Um nUm,n + A - I, then Cauchy-Schwarz inequality
implies

M
Z| th7

m=1
SJ

M
< 1€, ) (E:wmmmh) ©)
m=1

M 2 .
For > 1 |Bmnll%,, . notice that

M M M
(Z ||ﬁm,h| ?\m,h> Z ||a7rL,iL - 64\7n,h||2 +A- Z ||ﬁ'm,h||2
m=1 m=1 m=1

M

< llemn = Gmall* + AMACw . (10)
m=1

Fix vg?h, B,(lg)7 an )h,g, then {U,, 5, }._} is a stochastic process adapted to filtration {H, }'~

Therefore, by Lemma 2 in[Hu et al.| (2021)), we know that the following holds with probability at least

1—01

IN

Am,n

M
Z gl,h(am,h — Qm,h)
m=1

M
det(Ap, p) det(A- 1
> lemiUmalios, <o Zlog( ( h>52< ) )
m=1 1

< H?-ng' - (Mk -log(Cx /) + log(1/81)).

Taking union bound for all v%), ,, B\, X\, .G € (V4. By, Xj, G), we have that with probability

atleast 1 — &g
M
leﬁthmhllA— < H? -ngt - (Mk -log(Cx /X) + log(|[V||BI|X]|G] /6)).  (11)

m=1

Combining Eq. (TT), Eq. (T0), Eq. (9), and Eq. (8], we come to the following with probability at least
1—dy

M
> llemn =@,
m=1

M
< [ H2 05t - (Mk - 1og(Cx /) + log([V||B]|X1161/9)) <Z||amh—amh||2+4mww>.

m=1

2H?(Mk-log(Cx /) +log(IV[|BI|X]1G1/9))
MnoCw

Solving the above inequality and setting A =
atleast 1 — dg,

M
> llemn —
m=1

_ 2H*(Mk - log(Sx) + log(MIBIXIGL) 4o | HOME log(Sx) + log(YIBIXIGLyy 1y N Oy
< o +
o SH(ME -log(MnoCw Cx) + log(|VI|B||X]|9]/0))

, with probability

no

no
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Finally, taking union bound for all h € [H|, g € G, and t € [T] completes the proof.
O

The following Lemma establishes optimism of g(*) by showing that the true model g* always lies in
the confidence set.

Lemma C.2. With probability at least 1 — 6, g* satisfies the constraints in Line[3} Therefore,
M
D Vim0 (51) Z Vi
m=1

Proof. Applying Lemma [C.T|for g = ¢g*, we know that outside the failure event £,

M
2
Z > (B2 (0)i2o) = B @il @) Xi2h(a)

t—1 M
< 33 ((Bi0)v510) — Bi Wi (0. Xinn 07 — (B (010 Dn(0) ~ BY @@, XD, (0
< R%

This means that g* belongs to the confidence set G(), V¢ € [T in Line
O

The following result decouples Z 1 Vin1,g(s1) — Z%zl V"% (s1) into sum of Bellman errors.

This is a simple extension of Lemma 5 5 inDu et al.|(2021)).

Lemma C.3. Forany g € G we have

M M
2 Vmaa(o) = 2 Vi
m=1 m=1
M H
< Z Z' ) Bh( ) mh(g*)7 :;z,h(g»‘
m=1h=1
Finally, we show the coverage of E =3 X ()X (g )T + AL

Lemma C4. Let Eii)h ZT 1 X7 (g(T )( (g(T )"+ AL There exists to € [T such that

Z 15 (g") ||22(t0}))_1 <2

Proof. We use the following Elliptic Potential Lemma.

Lemma C.5 (Elliptic Potential Lemma, |Abbasi-Yadkori et al| (2011)). Let E(t) =
Zj—:l X5 (g (X5 (g)T + M. Then we have

T (T)
1 det(X,, ) TC?
RONE <. mh) g X
> log(1+ X (g Mg, y-+) < 75 +log et (M) < d-log(l+ =)

Set T = 8HMdlog(1 + MCX ), then

M TC?
, log(1 4 X (g2, — .M -d-log(1 XY < log 2.
i 3 log(1+ X3 0 iy, ) < 7 o(l+—5g") <log

m,h
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2

(500)) -1 < 1, which implies

For this to where the above holds, max,,c[ar | X (g%))||

M M
D I 6 < 2 D 1080+ 1 (0l ) <2

m=1
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