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A Table of notations

Symbol Name Description
Features and feature updates

ψXi
Implicit function of Xi For example, the solution to an optimisation prob-

lem, differential equation or root finding problem
depending on Xi.

ψ
(t+1)
Xi

Feature for input Xi As in equation 1. The result of applying t iterations
of a numerical procedure that compute the implicit
function ψXi .

g(t) Feature update rule As in equation 1
ψψ Feature space Features are an element of this space.

Kernels and kernel updates (component-wise)
Ψij ℓDEKer evaluated at Xi and

Xj

As in equation 2.

Ψ(t+1)
ij DEKer evaluated at Xi and

Xj

As in equation 2.

Gij DEKer update rule
(component-wise)

As in Theorem 4.

ΨΨ DEKer evaluation space Evaluations of the DEKer are an element of this
space.

Kernels and kernel updates (matrix)
Ψ ℓDEKer matrix evaluated at

(X1, X2)
Ψ ∈ S2

+ and the ijth element of Ψ is Ψij .

Ψ(t+1) DEKer matrix evaluated at
(X1, X2)

Ψ(t+1) ∈ S2
+ and the ijth element of Ψ(t+1) is Ψ(t+1)

ij .

G DEKer update rule (matrix
version)

As in equation 3.

S2
+ Convex cone of PSD matrices S2

+ = {M ∈ R2×2 | M ⪰ 0}.
Inputs and data

X Input space A space X ⊆ Rl to which input belongs.
Xi Input vector An element of X.
X Input matrix An N× l matrix, where each row represents a single

element of X.
Γ Random mapping Γ : X → Y is a random mapping which translates

input X to data Y belonging to the support Y of an
exponential family.

Y = Γ(X) Data The result of applying Γ to input X
γi(X) Random mapping coordinate

evaluation
The ith coordinate of Γ(X).

Exponential families
Y Exponential family support As in § 2.3. The space over which the exponential

family distribution has non-zero mass. We take Y ⊆
R.

T Sufficient statistic As in § 2.3.
η Canonical parameter As in § 2.3. The canonical parameter belongs to an

open set H ⊆ R.
A Log partition function The function that returns logarithm of the normalis-

ing constant of the exponential family as a function
of its canonical parameter. A : H → R. As in § 2.3.

s−1 Inverse link function The function that maps a parameter of the expo-
nential family to the expectation parameter of the
exponential family. As in equation 8.
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R Canonical nonlinearity As in Proposition 2. R : R → H maps the result of
a linear transformation to a canonical parameter of
the exponential family.

Activation functions
ζ, ζ1, ζ2 General activation function A generic activation function of a neural network.
ρ factor activation The derivative of the canonical nonlinearity. That

is, ρ(a) = R′(a).
σ chain activation The derivative of the composition of the log parti-

tion function and the canonical nonlinearity. That
is, σ(a) = (A ◦R)′(a)

u Heaviside step function A special case of ζ. u(a) takes the value of 0 if a < 0,
1 if a > 0, and 0.5 if a = 0.

ReLU Rectified linear unit A special case of ζ. ReLU(a) = u(a)a.
erf Error function erf(a) = 2√

π

∫ a

0 e
−z2

dz. As in § 3.3.

Table 3: Summary of notation used throughout this paper.
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B What is the relationship between s−1, R, σ and ρ?

Nonlinearly parameterised exponential families are densities Any member of a given expo-
nential family is a density (mass) function. That is, for every ν ∈ H,∫

p(y | ν) dy = 1 and p(y | ν) ≥ 0. (22)

Given a nonlinearity R : R → H, it is immediate that any member of a given nonlinearly parameterised
exponential family is a density. That is, for any a ∈ R, defining ν0 = R(a) ∈ H, from equation 22 we
have ∫

p
(
y | R(a)

)
dy =

∫
p(y | ν0︸︷︷︸

∈H

) dy = 1 and p
(
y | R(a)

)
= p(y | ν0︸︷︷︸

∈H

) ≥ 0.

Identities relating s−1, R, σ, and ρ The canonical link function is one which expresses the canonical
parameter η in terms of the expectation parameter E[T (Y ) | η]. When R is the identity, we have that
A′(η) = E[T (Y ) | η] and so the canonical link function is (A′)−1. That A′(η) = E[T (Y ) | η] follows
from the fact that A is a cumulant generating function for the sufficient statistic (Wainwright et al.,
2008, Proposition 3.1).

A (not necessarily canonical) link function is one which expresses a (not necessarily canonical) parameter
a in terms of the expectation parameter E[T (Y )]. We now discuss how given an exponential family and
a link function can be related to a choice of R.

In the general setting, since A is a cumulant generating function, the inverse link function s−1 satisfies

A′(R(a)
)

= s−1(a) (23)

Noting that A′ is invertible because A is strictly convex, equation 23 implies that for a desired link
function s, we must choose

R(a) =
(
(A′)−1 ◦ s−1)(a)

= (A′)−1(η), η = s−1(a) (24)

Since ρ(a) = R′(a), we have that

ρ(a) = dR

dη

dη

da

=
(
(A′)−1)′(

s−1(a)
)

(s−1)′(a)

= (s−1)′(a)
A′′ ◦ (A′)−1 ◦ s−1(a) (by the inverse function theorem). (25)

Since σ(a) = (A ◦R)′(a) and ρ(a) = R′(a), we have that

σ(a) = A′(R(a)
)︸ ︷︷ ︸

s−1(a)

ρ(a)

= s−1(a) (s−1)′(a)
A′′ ◦ (A′)−1 ◦ s−1(a) . (26)

As expected, when s a canonical link function (which is to say that s−1(a) = A′(a)), equation 24 implies
that R is the identity, ρ takes a constant value of 1 and σ is A′).

Some examples are given in Table 1.
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C Detailed neural network kernel description

Let W(1) ∈ Rd×n be the weights of a fully connected hidden layer with activation function σ. Suppose
each entry of W(1) is i.i.d. with distribution N (0, 1). Given an input ϕ1 ∈ Rn×1 (we take the convention
that vectors are column vectors), the signal in the hidden layer is h(1)

1 ≜ σ(W(1)ϕ1). Given any two
input features ϕ1 and ϕ2, a normalised inner product of the features in the hidden layer is

1
d
h

(1)
1

⊤
h

(1)
2 = 1

d
σ(W(1)ϕ1)⊤σ(W(1)ϕ2) = 1

d

d∑
i=1

σ(W⊤
i ϕ1)σ(W⊤

i ϕ2), (27)

where W⊤
i is the ith row of W(1). Note that since each row of W(1) is i.i.d., equation 27 is an average

of i.i.d. random variables. A strong law of large numbers says that the average of a sequence of i.i.d.
random variables converges almost surely to the expectation if the expectation is finite. We therefore
have that equation 27 converges almost surely to

kσ(ϕ1, ϕ2) ≜ EW

[
σ(W⊤ϕ1)σ(W⊤ϕ2)

]
, (28)

as d → ∞. Here W⊤ ∈ R1×n is a vector with i.i.d. entries drawn from N (0, 1). We call kσ a single
hidden layer neural network kernel (NNK) with activation function σ.

Note that W⊤ is a row vector, and therefore W⊤ϕ1 is a scalar. This means that while equation 28 is
written as an expectation over n-variate random vector W , it is actually only an expectation over the
bivariate random vector (χ, χ′) =

(
W⊤ϕ1,W

⊤ϕ2
)
. Since Gaussian random vectors are closed under

affine transformations, (χ, χ′) is a Gaussian random vector. The mean of each component is zero. The
2-by-2 covariance matrix Σ(1) has entries

Σ(1)
12 = E

[
(W⊤ϕ1)(W⊤ϕ2)

]
= E

[
n∑

p=1

n∑
q=1

Wpϕ1pWqϕq

]
=

n∑
p=1

n∑
q=1

E
[
Wpϕ1pWqϕ

′
q

]
=

n∑
p=1

E
[
W 2

p

]
ϕ1pϕ2p,

where the last equality is due to the fact that Wp and Wq are independent when p ̸= q, and ϕ1p and
ϕ2q are not random variables. Since EW 2

p = 1, the right most term is ϕ⊤
1 ϕ2. We may repeat a similar

procedure for Σ11 and Σ22, giving us an expression for the covariance

Σ(1) ≜

(
Σ(1)

11 Σ(1)
12

Σ(1)
12 Σ(1)

22

)
=
(
ϕ⊤

1 ϕ1 ϕ⊤
1 ϕ2

ϕ⊤
2 ϕ1 ϕ⊤

2 ϕ2

)
. (29)

It is instructive to rewrite equation 28 in two other forms. The first form explicitly shows the expectation
with respect to the bivariate Gaussian which has covariance given by equation 29,

kσ(ϕ1, ϕ2) = E(χ,χ′)⊤∼N (0,Σ(1))
[
σ
(
χ
)
σ
(
χ′)], (30)

For the second form, we use notation to remind us that the kernel kσ actually depends only on three
scalar values. From equation 29, we observe that kσ(ϕ1, ϕ2) depends on ϕ1 and ϕ2 only through the
pairwise inner products Σ(1)

12 = ϕ⊤
1 ϕ2. Observe that by symmetry Σ(1)

12 = Σ(1)
21 . In other words, there

exists a function κσ such that

kσ(ϕ1, ϕ2) = κσ(Σ(1)
11 ,Σ

(1)
22 ,Σ

(1)
12 ). (31)

In summary, there are three equivalent ways to write an NNK, kσ(ϕ1, ϕ2):

• As an expectation over random vectors W corresponding to neural network weights equation 28,

• As an expectation over a bivariate Gaussian with covariance Σ(1) equation 29,

• As a function of three arguments, explicitly showing the three parameters in the covariance of
the bivariate Gaussian equation 31.
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Closed-form expressions of kσ for different σ are available (Williams, 1997; Le Roux & Bengio, 2007;
Cho & Saul, 2009; Tsuchida et al., 2018; Pearce et al., 2019; Tsuchida, 2020; Meronen et al., 2020;
Tsuchida et al., 2021; Han et al., 2022). For example, when σ is the ReLU function, the resulting kernel
is known as the arc-cosine kernel of order 1 and is given by (Cho & Saul, 2009)

kReLU(ϕ1, ϕ2) = ∥ϕ1∥∥ϕ2∥
2π

(
sin θ − (π − θ) cos θ

)
, where cos θ = ϕ⊤ϕ2

∥ϕ1∥∥ϕ2∥
.

26



Published in Transactions on Machine Learning Research (07/2023)

D Tools for concentration inequalities

The main purpose of this appendix is to introduce Bernstein’s inequality and associated tools to apply
to our problem at hand. We first need to introduce sub-Gaussian and sub-exponential random variables,
and discuss special cases of how we may construct such random variables.
Definition 8. A centered random variable Y is sub-Gaussian if there exists an S > 0 such that

E exp
(
Y 2/S2) ≤ 2.

The sub-Gaussian norm of Y ,

s ≜ inf
{
v > 0 : E exp

(
Y 2/v2

)
≤ 2
}
,

is the smallest S.

Bounded random variables are sub-Gaussian, and as an immediate consequence, so are constant random
variables.
Lemma 9 ( Vershynin (2018) Example 2.5.8). A bounded random variable Y is sub-Gaussian with
sub-Gaussian norm s satisfying

s ≤ (log 2)−1∥Y ∥∞,

where ∥Y ∥∞ is the essential supremum of Y .

Lipschitz functions of Gaussian random variables are also sub-Gaussian.
Lemma 10 ( Vershynin (2018) Theorem 5.2.2). Let Y be a Gaussian random variable with variance
a2. Let f : R → R be L-Lipschitz. Then f(Y ) − Ef(Y ) is sub-Gaussian with sub-Gaussian norm s0
satisfying

s0 ≤ C|a|L,

for some absolute constant C > 0. Furthermore, by the triangle inequality and Lemma 9 f(Y ) is
sub-Gaussian and the sub-Gaussian norm s of f(Y ) satisfies

s ≤ C|a|L+ (log 2)−1∣∣Ef(Y )
∣∣.

A class of random variables which includes sub-Gaussian random variables is the class of sub-exponential
random variables.
Definition 11. A random variable Y is sub-exponential if there exists an A > 0 such that

E exp
(
|Y |/A

)
≤ 2

The sub-exponential norm of Y ,

a ≜ inf
{
v > 0 : E exp

((
|Y |
)
/v
)

≤ 2
}
,

is the smallest A.

Centering a sub-exponential random variable results in another sub-exponential random variable.
Lemma 12 (Vershynin (2018) Exercise 2.7.10). If Y is sub-exponential with sub-exponential norm a0
then Y − EY is also sub-exponential, with sub-exponential norm a satisfying

a ≤ Ca0

for some absolute constant C > 0.

A useful fact is that a product of sub-Gaussian random variables is sub-exponential.
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Lemma 13 (Vershynin (2018) Lemma 2.7.7). Let Y1 and Y2 be sub-Gaussian random variables with sub-
Gaussian norms s1 and s2 respectively. Then their product Y1Y2 is sub-exponential with sub-exponential
norm a satisfying a ≤ s1s2.

Finally, sub-exponential random variables obey a useful quantitative form of a law or large numbers,
which is a form of a Bernstein inequality.
Theorem 14 (Bernstein’s inequality, Corollary 2.8.3 of Vershynin (2018)). Let Y1, . . . , Yd be a collection
of random variables and write µi = EYi for i = 1, . . . , d. Suppose Y1 − µi, . . . , Yd − µd are independent
sub-exponential random variables with sub-exponential norms a1, . . . ad. Then, for every r ≥ 0,

P
(∣∣1
d

d∑
i=1

(Yi − µi)
∣∣ ≥ r

)
≤ 2 exp

(
− cdM

)
,

where M = min
{

r2

maxi a2
i
, r

maxi ai

}
and c > 0 is an absolute constant.
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E Analysis

The stochastic gradient ∂
∂ϕL

(
ϕ;X,V

)
evaluated at an arbitrary point ϕ ∈ψψ for input X and random

V is after scaling the sum of the gradient of the negative log prior and the stochastic gradient of the
negative log likelihood,

∂

∂ϕ
L
(
ϕ;X,V

)
=

√
m

d
λϕ︸ ︷︷ ︸

Gradient of negative log prior

− 1
d

V⊤(T (Γ(X)
)

⊙ ρ(Vϕ) − σ(Vϕ)
)

︸ ︷︷ ︸
Stochastic gradient of log likelihood

. (20)

In order to prove Theorem 4, we will need to prove a series of lemmas. The intuition behind these
lemmas is as follows. Assumption 2 means that if the limit were allowed to be applied, the gradient of
the negative log prior term in equation 20 multiplied by the step size would look like ϕ. This means
that the update of SGD would just be the stochastic gradient of the log likelihood. We then examine
the inner product of the stochastic gradient of the log likelihood, which would be the kernel update rule.
The series of Lemmas is then as follows. We first convert the inner product of the stochastic gradient
of the log likelihood to an approximate form that is easier to deal with (Lemma 15). We then confirm
that the kernel update only involves the inner product of the stochastic gradients of the log likelihood
(Lemma 16). Finally, we show that the inner products of the approximate form converges to a closed
form update rule G (Lemma 17). Assembling these lemmas together yields Theorem 4.

To this end, define the kernel

kd(X1, X2;ϕ1, ϕ2) ≜ 1
dmλ2

(
T
(
Γ(X1)

)
⊙ ρ
(
Vϕ1

)
− σ(Vϕ1)

)⊤VV⊤(T (Γ(X2)
)

⊙ ρ
(
Vϕ2

)
− σ(Vϕ2)

)
,

which is a scaled inner product of the gradient of the negative log likelihood evaluated at inputs X1
and X2 and arbitrary points ϕ1 and ϕ2. The factor 1

m VV⊤ ∈ Rd×d is approximately the identity matrix
for large m under Assumption 1, leading to an easier to deal with approximation k̃d(X1, X2;ϕ1, ϕ2) for
kd(X1, X2;ϕ1, ϕ2),

k̃d(X1, X2;ϕ1, ϕ2) ≜ 1
dλ2

(
T
(
Γ(X1)

)
⊙ ρ
(
Vϕ1

)
− σ(Vϕ1)

)⊤(
T
(
Γ(X2)

)
⊙ ρ
(
Vϕ2

)
− σ(Vϕ2)

)
.

Lemma 15 says that this approximation is exact in the infinite d limit, and quantifies the quality of this
approximation when d is finite.
Lemma 15. Let ϕ1 ∈ Rm and ϕ2 ∈ Rm be arbitrary and suppose Assumption 3 holds.

(15A) Under Assumption 1, kd(X1, X2;ϕ1, ϕ2) converges in probability to k̃d(X1, X2;ϕ1, ϕ2).

(15B) Under Assumption 5, there exist constants Q > 0 and c > 0 such that for all δ > 0 and ϵ2 > 0,

P
(∣∣kd(X1, X2;ϕ1, ϕ2) − k̃d(X1, X2;ϕ1, ϕ2)

∣∣ ≥ (K + ϵ2)
λ2

(
2ϵ1 + ϵ21

))
≤ 2 exp

(
− cdM

)
+ e−mδ2/2,

where ϵ1 =
√

d
m + δ and M = min

{
ϵ2

2
Q2 ,

ϵ2
Q

}
.

Proof. We use the shorthand Γ1 = Γ(X1) and Γ2 = Γ(X2). We have∣∣kd(X1, X2;ϕ1, ϕ2) − k̃d(X1, X2;ϕ1, ϕ2)
∣∣

= 1
dλ2

∣∣(T (Γ1) ⊙ ρ
(
Vϕ1

)
− σ(Vϕ1)

)⊤( 1
m

VV⊤ − I
)(
T (Γ2) ⊙ ρ

(
Vϕ2

)
− σ(Vϕ2)

)∣∣
≤ 1
dλ2

∥∥∥T (Γ1) ⊙ ρ
(
Vϕ1

)
− σ(Vϕ1)

∥∥∥∥∥∥ 1
m

VV⊤ − I
∥∥∥∥∥∥T (Γ2) ⊙ ρ

(
Vϕ2

)
− σ(Vϕ2)

∥∥∥
≤ 1
dλ2 max

ϕ1,ϕ2

{∥∥∥T (Γ1) ⊙ ρ
(
Vϕ1

)
− σ(Vϕ1)

∥∥∥2
,
∥∥∥T (Γ2) ⊙ ρ

(
Vϕ2

)
− σ(Vϕ2)

∥∥∥2}∥∥∥ 1
m

VV⊤ − I
∥∥∥

= 1
λ2 max

ϕ̂∈{ϕ1,ϕ2}

(
Kϕ̂ − E[Kϕ̂]

)∥∥∥ 1
m

VV⊤ − I
∥∥∥+ E[Kϕ̂]

∥∥∥ 1
m

VV⊤ − I
∥∥∥, (32)
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where Kϕ̂ = 1
d

∑d
i=1

(
T
(
γi(X1)

)
⊙ ρ
(
V ⊤

i ϕ̂
)

− σ(V ⊤
i ϕ̂)

)2
and V ⊤

i is the ith row of V. The quantity
E[Kϕ̂] is finite by Assumption 3.

Using a standard result (Wainwright, 2019, Example 6.2), we have that

P

(∥∥∥I − 1
m

VV⊤
∥∥∥ ≥ 2ϵ1 + ϵ21

)
≤ e−mδ2/2, ϵ1 =

√
d

m
+ δ. (33)

Combining equation 32 and equation 33 and taking d → ∞ under Assumption 1, we have (15A).

We may apply a Bernstein concentration inequality to Kϕ̂ − E[Kϕ̂] as follows. The variables
T
(
γi(X1)

)
ρ
(
V ⊤

i ψ
)

− σ(V ⊤
i ψ) for each i are mutually independent. The quantities V ⊤

i ψ̂ are zero-
mean Gaussian (since Gaussian random variables are closed under linear combinations). By Assump-
tion 5, each variable in the sum contains sub-Gaussian elements since bounded random variables are
sub-Gaussian (Lemma 9), and Lipschitz functions of Gaussian random variables are sub-Gaussian
(Lemma 10). The square of sub-Gaussian random variables is sub-exponential (Lemma 13). Sub-
exponential random variables that are centered by subtracting their mean are also sub-exponential
(Lemma 12). Therefore, by Bernstein’s Theorem (Theorem 14), there exist constants c,Q > 0 (depend-
ing on ρ, σ, X1 and X2) such that for every ϵ2 ≥ 0,

P
(

max
ϕ̂∈{ϕ1,ϕ2}

∣∣Kϕ̂ − EKϕ̂

∣∣ ≥ ϵ2

)
≤ 2 exp

(
− cdM

)
, (34)

where M = min
{

ϵ2
2

Q2 ,
ϵ2
Q

}
.

Finally, combining equation 32, equation 33 and equation 34 via a union bound, we have

P
(∣∣kd(X1, X2;ϕ1, ϕ2) − k̃d(X1, X2;ϕ1, ϕ2)

∣∣ ≤ (K + ϵ2)
λ2

(
2ϵ1 + ϵ21

))
≥ 1 − 2 exp

(
− cdM

)
− e−mδ2/2.

We now confirm that the kernel update rule only involves the inner product of the stochastic gradient
of the log likelihood, and not the gradient of the log prior.
Lemma 16. Suppose Assumptions 1, 2 (a) and 3 hold. Then applying SGD to objective equation 17,

Ψ(t+1)
ij = lim

d→∞
kd(Xi, Xj ;ψ(t)

Xi
, ψ

(t)
Xj

) = plim
d→∞

k̃d(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

)

Proof. Combining the SGD update equation 15 and the stochastic gradient equation 20, we have that
for input X, the t+ 1th iterate of SGD satisfies

ψ
(t+1)
X = ψ

(t)
X

(
1 − α(t)

√
m

d
λ
)

+ α(t) 1
d

V(t)⊤(
T
(
Γ(X)

)
⊙ ρ(V(t)ψ

(t)
X ) − σ(V(t)ψ

(t)
X )
)

ψ
(t+1)
X − ψ

(t)
X

(
1 − α(t)

√
m

d
λ
)

= α(t) 1
d

V(t)⊤(
T
(
Γ(X)

)
⊙ ρ(V(t)ψ

(t)
X ) − σ(V(t)ψ

(t)
X )
)

(35)

Evaluating equation 35 at input Xi and Xj , and taking inner products, we find

(
ψ

(t+1)
Xi

− ψ
(t)
Xi

(
1 − α(t)

√
m

d
λ
))⊤(

ψ
(t+1)
Xj

− ψ
(t)
Xj

(
1 − α(t)

√
m

d
λ
))

= α(t)2 1
d2

(
T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

) − σ(V(t)ψ
(t)
Xi

)
)⊤V(t)V(t)⊤(

T
(
Γ(Xj)

)
⊙ ρ(V(t)ψ

(t)
Xj

) − σ(V(t)ψ
(t)
Xj

)
)
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Invoking Assumption 2, we see that the left hand side satisfies

lim
d→∞

(
ψ

(t+1)
Xi

− ψ
(t)
Xi

(
1 − α(t)

√
m

d
λ
))⊤(

ψ
(t+1)
Xj

− ψ
(t)
Xj

(
1 − α(t)

√
m

d
λ
))

= lim
d→∞

ψ
(t+1)
Xi

⊤
ψ

(t+1)
Xj

+ ψ
(t)
Xi

⊤
ψ

(t)
Xj

(
1 − α(t)

√
m

d
λ
)2

︸ ︷︷ ︸
→0

−
(
1 − α(t)

√
m

d
λ
)

︸ ︷︷ ︸
→0

(
∥ψ(t+1)

Xi
∥∥ψ(t)

Xj
∥a1 + ∥ψ(t)

Xi
∥∥ψ(t+1)

Xj
∥a2

)

= Ψ(t+1)
ij

where a1 and a2 are cosine angles belonging to [−1, 1]. On the other hand, under Assumption 2 the
right hand side satisfies

lim
d→∞

α(t)2 1
d2

(
T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

) − σ(V(t)ψ
(t)
Xi

)
)⊤V(t)V(t)⊤(

T
(
Γ(Xj)

)
⊙ ρ(V(t)ψ

(t)
Xj

) − σ(V(t)ψ
(t)
Xj

)
)

= lim
d→∞

1
dmλ2

(
T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

) − σ(V(t)ψ
(t)
Xi

)
)⊤V(t)V(t)⊤(

T
(
Γ(Xj)

)
⊙ ρ(V(t)ψ

(t)
Xj

) − σ(V(t)ψ
(t)
Xj

)
)

= lim
d→∞

kd(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

).

By Lemma 15, this limit is well defined and is given by plim
d→∞

k̃d(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

).

Finally, we show that the approximate form of inner products k̃d converges to a closed form update rule
G.
Lemma 17. Suppose Assumptions 1, 3 and 4 hold. Then

plim
d→∞

k̃d(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

) = G(Ψ(t)
ii ,Ψ

(t)
jj ,Ψ

(t)
ij ;Xi, Xj),

where

G(Ψ(t)
ii ,Ψ

(t)
jj ,Ψ

(t)
ij ;Xi, Xj)

= 1
λ2

(
Cijκρ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

)
− κσ,ρ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

)
µi − κρ,σ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

)
µj + κσ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

))
.

Proof. We have

plim
d→∞

k̃d(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

)

= plim
d→∞

1
dλ2

(
T
(
Γ(Xi)

)
⊙ ρ
(
V(t)ψ

(t)
Xi

)
− σ(V(t)ψ

(t)
Xi

)
)⊤(

T
(
Γ(Xj)

)
⊙ ρ
(
V(t)ψ

(t)
Xj

)
− σ(V(t)ψ

(t)
Xj

)
)

Expanding the quadratic, we find

Ψ(t+1)
ij = plim

d→∞

1
dλ2

(
T
(
Γ(Xi)

)
⊙ ρ
(
V(t)ψ

(t)
Xi

)
− σ(V(t)ψ

(t)
Xi

)
)⊤(

T
(
Γ(Xj)

)
⊙ ρ
(
V(t)ψ

(t)
Xj

)
− σ(V(t)ψ

(t)
Xj

)
)

= plim
d→∞

1
dλ2

((
T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

)
)⊤(

T
(
Γ(Xj)

)
⊙ ρ(V(t)ψ

(t)
Xj

)
)
−(

T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

)
)⊤
σ(V(t)ψ

(t)
Xj

)−(
T
(
Γ(Xj)

)
⊙ ρ(V(t)ψ

(t)
Xj

)
)⊤
σ(V(t)ψ

(t)
Xi

)+

σ(V(t)ψ
(t)
Xi

)⊤σ(V(t)ψ
(t)
Xj

)
)
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The collection of d pairs
{(

V(t)ψ
(t)
Xi
,V(t)ψ

(t)
Xj

)
p

}d

p=1 is mutually independent and Gaussian given ψ
(t)
Xi

and ψ
(t)
Xj

. Letting V ⊤ ∈ Rm be equal in distribution to a row of V(t), a law of large numbers says that

Ψ(t+1)
ij = 1

λ2

(
c(Xi, Xj)EV ⊤

[
lim

d→∞
ρ(V ⊤ψ

(t)
Xi

)ρ(V ⊤ψ
(t)
Xj

)
]
−

µ(Xi)EV ⊤

[
lim

d→∞
ρ(V ⊤ψ

(t)
Xi

)σ(V ⊤ψ
(t)
Xj

)
]
−

µ(Xj)EV ⊤

[
lim

d→∞
ρ(V ⊤ψ

(t)
Xj

)σ(V ⊤ψ
(t)
Xi

)
]
+

EV ⊤

[
lim

d→∞
σ(V ⊤ψ

(t)
Xi

)σ(V ⊤ψ
(t)
Xj

)
])
.

Now observe that conditional on ψ
(t)
Xi

and ψ
(t)
Xj

, the random vector (χ, χ′)⊤ = lim
d→∞

(
V ⊤ψ

(t)
Xi
, V ⊤ψ

(t)
Xj

)⊤

is bivariate Gaussian with mean 0 and covariance matrix(
Ψ(t)

ii Ψ(t)
ij

Ψ(t)
ij Ψ(t)

jj

)
.

Therefore, the terms on the right hand side involve evaluations of the functions κρ,ρ, κρ,σ, κσ,ρ and
κσσ.

Chaining Lemmas 16 and 17, we obtain our main theorem.
Theorem 4. Suppose Assumptions 1, 2 (a), 3, and 4 hold. Let Cij = c(Xi, Xj) and µi = µ(Xi) be
as defined in Assumption 4. Then applying SGD to objective equation 17, the update rule G equation 3
exists and can be decomposed into G equation 5 satisfying

G(Φii,Φjj ,Φij ;Xi, Xj)

= 1
λ2

(
Cijκρ

(
Φii,Φjj ,Φij

)
− κσ,ρ

(
Φii,Φjj ,Φij

)
µi − κρ,σ

(
Φii,Φjj ,Φij

)
µj + κσ

(
Φii,Φjj ,Φij

))
.

Here κσ, κρ, κσ,ρ and κρ,σ are as defined by equation 11, equation 19 and Proposition 2.

Proof. By Lemma 16, under Assumptions 1, 2 (a) and 3, we have

Ψ(t+1)
12 = lim

d→∞
kd(X1, X2;ψ(t)

X1
, ψ

(t)
X2

) = plim
d→∞

k̃d(X1, X2;ψ(t)
X1
, ψ

(t)
X2

).

By Lemma 17, under Assumptions 1, 3 and 4 we have

plim
d→∞

k̃d(X1, X2;ψ(t)
X1
, ψ

(t)
X2

) = G(Ψ(t)
ii ,Ψ

(t)
jj ,Ψ

(t)
ij ;Xi, Xj).

The effect of the finite approximation is not described in Theorem 4. In order to describe the effect
of finite approximations, we combine the previously proven Lemma 15B with the following Lemma 18,
assembling them in Theorem 7.

We now turn to analysing the sensitivity of the ffDEKer when initialised around the ℓDEKer. For
this, we combine Lemma 15 with the following lemma.
Lemma 18. Suppose Assumptions 1,2 (a), 3, 4 and 5 hold. Then for all ϵ > 0 there exists some Q > 0
(depending on ρ, σ, Xi, and Xj) such that

P
(∣∣k̃d(X1, X2; r, r′) − Ψ12

∣∣ ≥ ϵ
)

≤ 2 exp
(

− dcM
)
,

where M = min
{

ϵ2

Q2 ,
ϵ
Q

}
and c > 0 is some absolute constant.
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Proof. We first write k̃d as a sum. Letting V ⊤
i ∈ Rm denote the ith row of V and γi(X) denote the ith

coordinate of Γ(X),

k̃d(X1, X2; r, r′) = 1
dλ2

d∑
i=1

(
T
(
γi(X1)

)
ρ
(
V ⊤

i r
)

− σ(V ⊤
i r)

)(
T
(
γi(X2)

)
ρ
(
V ⊤

i r′)− σ(V ⊤
i r′)

)
.

In this form, we observe that Ek̃d(X1, X2; r, r′) = G(Ψ11,Ψ22,Ψ12;X1, X2) = Ψ12. We therefore seek
to concentrate k̃d(X1, X2; r, r′) about its mean.

The bivariate pairs
(
T
(
γi(X1)

)
ρ
(
V ⊤

i r
)
−σ(V ⊤

i r), T
(
γi(X2)

)
ρ
(
V ⊤

i r′)−σ(V ⊤
i r′)

)
are independent from

every other pair. The quantities V ⊤
i r and V ⊤

i r′ are zero-mean Gaussian (since Gaussian random vari-
ables are closed under linear combinations). Each pair contains sub-Gaussian elements since bounded
random variables are sub-Gaussian (Lemma 9), and Lipschitz functions of Gaussian random variables
are sub-Gaussian (Lemma 10). The product of two sub-Gaussian random variables is sub-exponential
(Lemma 13). Sub-exponential random variables that are centered by subtracting their mean are also
sub-exponential (Lemma 12). Therefore, by Bernstein’s Theorem (Theorem 14), there exist constants
c,Q > 0 (depending on ρ, σ, Xi, and Xj) such that for every ϵ ≥ 0,

P
(∣∣k̃d(X1, X2; r, r′) − Ψ12

∣∣ ≥ ϵ
)

≤ 2 exp
(

− cdM
)
,

where M = min
{

ϵ2

Q2 ,
ϵ
Q

}
.

Theorem 7. Suppose Assumptions 1, 2 (b), 3, 4 and 5 hold. Let initial guesses be ψ
(0)
X1

= r1 and
ψ

(0)
X2

= r2 as in Definition 6. Then there exist constants Q2, Q3, c2, c3 > 0 such that for all δ > 0, ϵ2 > 0
and ε2,

P
(∣∣Ψ(1)

12 − Ψ12
∣∣ ≤ ε1 + ε2

)
≥ 1 − δ1 − δ2,

where

ε1 = K + ϵ2
λ2 (2ϵ1 + ϵ21), δ1 = 2 exp

(
− c2dM2

)
+ exp

(
−mδ2/2

)
and δ2 = 2 exp

(
− dc3M3

)
and ϵ1 =

√
d
m + δ, M2 = min

{
ϵ2

2
Q2

2
, ϵ2

Q2

}
and M3 = min

{
ε2

2
Q2

3
, ε2

Q3

}
and c3 > 0 is some absolute constant.

Proof. Under Assumption 2 (b), plugging the stochastic gradient equation 20 into the SGD update
rule equation 35, we have

Ψ(t+1)
ij = 1

λ2dm

(
T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xi

) − σ(V(t)ψ
(t)
Xi

)
)⊤V(t)V(t)⊤(

T
(
Γ(Xi)

)
⊙ ρ(V(t)ψ

(t)
Xj

) − σ(V(t)ψ
(t)
Xj

)
)

= kd(Xi, Xj ;ψ(t)
Xi
, ψ

(t)
Xj

)

Ψ(1)
ij = kd(Xi, Xj ;ψ(0)

Xi
, ψ

(0)
Xj

).

By Lemma 15, we may approximate kd(Xi, Xj ;ψ(0)
Xi
, ψ

(0)
Xj

) by k̃d(Xi, Xj ;ψ(0)
Xi
, ψ

(0)
Xj

) with high probability.
By Lemma 18, we may approximate k̃d(Xi, Xj ;ψ(0)

Xi
, ψ

(0)
Xj

) by Ψij with high probability. The proof then
follows by applying a triangle inequality and a union bound.

In more detail, the triangle inequality says∣∣Ψ(1)
12 − Ψ12

∣∣ ≤
∣∣kd(Xi, Xj ;ψ(0)

Xi
, ψ

(0)
Xj

) − k̃d(Xi, Xj ;ψ(0)
Xi
, ψ

(0)
Xj

)
∣∣+
∣∣k̃d(Xi, Xj ;ψ(0)

Xi
, ψ

(0)
Xj

) − Ψij

∣∣. (36)
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Let δ > 0 and ϵ2 > 0 be arbitrary. Define ϵ1 =
√

d
m + δ. Define ε1 = K+ϵ2

λ2 (2ϵ1 + ϵ21). Let A1 denote the
event that

∣∣kd(Xi, Xj ;ψ(0)
Xi
, ψ

(0)
Xj

) − k̃d(Xi, Xj ;ψ(0)
Xi
, ψ

(0)
Xj

)
∣∣ ≥ ε1. Then by Lemma 15 there exists some

constants Q2 > 0 and c2 > 0 such that
P(A1) ≤ δ1, (37)

where δ1 = 2 exp
(

− c2dM2

)
+ exp

(
−mδ2/2

)
and M2 = min

{ ϵ2
2

Q2
2
, ϵ2

Q2

}
.

Let ε2 > 0 be arbitrary. Let A2 denote the event that
∣∣k̃d(Xi, Xj ;ψ(0)

Xi
, ψ

(0)
Xj

) − Ψij

∣∣ ≥ ε2. Then by
Lemma 18, there exists some Q3 > 0 such that

P(A2) ≤ δ2, (38)

where δ2 = 2 exp
(

− dc3M3
)
, M3 = min

{ ε2
2

Q2
3
, ε2

Q3

}
and c3 > 0 is an absolute constant.

Combining equation 37 and equation 38 by a union bound, we obtain

P(A1 ∪A2) ≤ δ1 + δ2

P(A∁
1 ∩A∁

2) ≥ 1 − δ1 − δ2

Finally, if A∁
1 ∩A∁

2 then by equation 36,
∣∣Ψ(1)

12 − Ψ12
∣∣ ≤ ε1 + ε2.
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F Random finite forms for the explicit kernel c and mean function µ

Suppose the sufficient statistic T is the identity.

Linear kernel. Let Γ(X1) = QX, where each entry of Q ∈ Rd×l is sampled i.i.d. from N (0, v2).
Then we obtain the linear kernel,

c(X1, X2) = v2 lim
d→∞

1
d
X⊤

1 Q⊤QX2

= v2X⊤
1 X2.

In this case, µ(X1) = 0. since 1
d

∑d
i=1 E[Q⊤

i X1] = 1
dE[Qi]⊤X1 = 0, where Q⊤

i is the ith row of Q.

Squared exponential kernel. We may obtain stationary nonlinear kernels via a random Fourier
feature type construction (Rahimi & Recht, 2007). Suppose d is even and Q ∈ Rd/2×l is sampled i.i.d.
from N (0, 1). Define

Γ(X1) = A⊙
(

cos(QX1)
sin(QX1)

)
∈ Rd×1,

where elements of A = (a1, . . . , ad/2, b1, . . . , bd/2)⊤ ∈ Rd×1 are sampled i.i.d. from N (µv, v
2). Then

E[a2
i ] = v2 + µ2

v and

c(X1, X2) = lim
d→∞

1
d

d/2∑
i=1

a2
i cos(Q⊤

i X1) cos(Q⊤
i X2) + 1

d

d/2∑
j=1

b2
j sin(Q⊤

j X1) sin(Q⊤
j X2)

= v2 + µ2
v

2 E
[

cos(Q⊤X1) cos(Q⊤X2) + sin(Q⊤X1) sin(Q⊤X2)
]
, Q ∼ N (0, I)

= v2 + µ2
v

2 E
[

cos
(
Q⊤(X1 −X2)

)]
= v2 + µ2

v

2 exp
(

− 1
2∥X1 −X2∥2

2
)
.

An extension to arbitrary stationary kernels follows using Bochner’s theorem to define the probability
measure of Q via a Fourier transform (Rahimi & Recht, 2007). An extension to arbitrary covariance
structures can be obtained by introducing a dependency structure among elements of rows of Q.

The reason that A is introduced is to allow the mean to converge to zero, so that µ(X) = 0 can be
realised. That is,

µ(X1) = lim
d→∞

1
d

d/2∑
i=1

ai cos(Q⊤
i X1) + 1

d

d/2∑
j=1

bj sin(Q⊤
j X1)

= µv

2 E
[

cos(Q⊤X1)
]

= µv

2 exp
(

− 1
2∥X1∥2)

is zero whenever µv = 0.

F.1 A model we found to be practically useful

Let Γ(X1) = A · ReLU(QX1), where elements of A are sampled i.i.d. from N (µv, v
2). Then c is the

arc-cosine kernel of degree 1 (Cho & Saul, 2009) (see equation 47),

c(X1, X2) = (v2 + µ2
v)∥X1∥∥X2∥

2π
(

sin θ + (π − θ) cos θ
)
, θ = arccos X⊤

1 X2

∥X1∥∥X2∥
.
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The mean function is given by

µ(X1) = µvE
[

ReLU(∥X1∥Z)
]
, Z ∼ N (0, 1)

= µv

2 ∥X1∥
√

2
π
. (39)

Again we may take µv = 0 to realise µ(X) = 0. However, in order to construct a model that is
statistically not mis-specified, when using σ = ReLU and ρ = u it is useful to consider the case
where µv is non-zero (say 1). Otherwise, the model tries to describe symmetric observations Γ(X1) =
A · ReLU(QX1) that are equally likely negative or positive as a Gaussian distribution with a skewed
non-negative mean. In order to handle non-zero µv, we require evaluating additional cross-terms, given
by

κσ,ρ

(
Ψ11,Ψ22,Ψ12

)
= E(χ,χ′)⊤∼N (0,Ψ)

[
ReLU

(
χ
)

u
(
χ′)]

= E(χ,χ′)⊤∼N (0,Ψ)
[
χu(χ) u

(
χ′)]

= Ψ11E
[
δ(χ) u(χ′)

]
+ Ψ12E

[
u(χ)δ(χ′)

]
(multivariate Stein’s lemma)

=
(

Ψ11E
[
δ(
√

Ψ11Z1) u
(√

Ψ22(Z1 cos θ + Z2 sin θ)
)]

+ Ψ12E
[

u
(√

Ψ11(Z2 cos θ + Z1 sin θ)
)
δ(
√

Ψ22Z2)
])
, (40)

where (Z1, Z2)⊤ ∼ N (0, I) and cos θ = Ψ12√
Ψ22Ψ11

. We have that

E
[
δ(
√

Ψ11Z1) u
(√

Ψ22(Z1 cos θ + Z2 sin θ)
)]

= 1
2π

∫
exp

(
− 1

2(z2
1 + z2

2)
)
δ(
√

Ψ11z1) u
(√

Ψ22(z1 cos θ + z2 sin θ)
)
dz1 dz2

= 1
2π

√
Ψ11

∫
exp

(
− 1

2z
2
2
)

u
(√

Ψ22z2 sin θ
)
dz2

= 1√
2π

√
Ψ11

∫ 1√
2π

exp
(

− 1
2z

2
2
)

u
(
z2
)
dz2

= 1
2
√

2π
√

Ψ11
. (41)

Combining equation 39, equation 40 and equation 41, we have

µ(X1)κσ,ρ

(
Ψ11,Ψ22,Ψ12

)
= µv

√
Σ11

4π

(√
Ψ11 + Ψ12√

Ψ22

)
. (42)

The terms involving κρ and κσ are arc-cosine kernels and are given in equation 46 and equation 47.
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G Examples

G.1 Error function example

We consider a special case where inputs are mapped to a Gaussian with a conditional expectation
between −1 and 1 through the random mapping Γ. We then use a Gaussian likelihood with a choice of
R that maps to values between −1 and 1. Equivalently, we use an inverse link function that maps to
values between −1 and 1.

Let p the pdf of a univariate standard Gaussian. Suppose input X is mapped to data Y = erf(WX/
√

2)+
Q for some linear mapping W ∈ Rd×l and noise Q ∼ N (0, I) each with elements drawn i.i.d. from a
standard Gaussian. An appropriate model is then to let A = η2/2 and R(a) = erf(a/

√
2). Then

ρ(a) = 2p(a) and σ(a) = 2p(a) erf(a/
√

2).

We now invoke the general Theorem 4. In the following, we compute the individual terms in the update
rule. Recall from equation 11, that for a particular activation function ζ, a neural network kernel (NNK)
is computed by taking the bivariate Gaussian expectation,

κζ

(
Φ11,Φ22,Φ12

)
= E(χ1,χ2)⊤∼N (0,Φ)

[
ζ
(
χ1
)
ζ
(
χ2
)]
, Φ ≜

(
ϕ⊤

1 ϕ1 ϕ⊤
1 ϕ2

ϕ⊤
2 ϕ1 ϕ⊤

2 ϕ2

)
.

It is helpful to write covariance matrices in terms of variances ϕ⊤
1 ϕ1 = Φ11, ϕ⊤

2 ϕ2 = Φ22 and covariances
ϕ⊤

1 ϕ2 =
√

Φ11Φ22 cos θ, where θ is the angle between ϕ1 and ϕ2. That is,

Φ =
(

Φ11
√

Φ11Φ22 cos θ√
Φ11Φ22 cos θ Φ22

)
.

The resulting determinant and inverse then satisfy

det Φ = Φ11Φ22 sin2 θ

Φ−1 = 1
Φ11Φ22 sin2 θ

(
Φ22 −

√
Φ11Φ22 cos θ

−
√

Φ11Φ22 cos θ Φ11

)
.

The NNK for factor activations A more general result is given in Tsuchida (2020, Proposition
20). For completeness, we reproduce the result here. For activation function ρ(a) = 2p(a), we expand
the 2D integral corresponding to the expectation for the NNK κρ,

κρ(Φ11,Φ22,Φ12) = 4
2π

∫
exp

(
− 1

2(a2
1 + a2

2)
) 1

2π
√

Φ11Φ22 sin θ
exp

(
− 1

2(a1, a2)Φ−1(a1, a2)⊤) da1 da2

= 2
π

∫ 1
2π

√
Φ11Φ22 sin θ

exp
(

− 1
2(a1, a2)(Φ−1 + I)(a1, a2)⊤) da1 da2. (43)

We now complete the square inside the argument of exp, so that we may express the integrand of equa-
tion 43 as a product of a bivariate Gaussian pdf and a constant.

Letting F−1 = Φ−1 + I, we compute F as

F−1 = 1
Φ11Φ22 sin2 θ

(
Φ22
(
1 + Φ11 sin2 θ

)
−

√
Φ11Φ22 cos θ

−
√

Φ11Φ22 cos θ Φ11
(
1 + Φ22 sin2 θ

))
det F−1 = 1 + det Φ−1 + TraceΦ−1

= 1 + Φ11 + Φ22 + Φ11Φ22 sin2 θ

Φ11Φ22 sin2 θ

F = 1
1 + Φ11 + Φ22 + Φ11Φ22 sin2 θ

(
Φ11
(
1 + Φ22 sin2 θ

) √
Φ11Φ22 cos θ√

Φ11Φ22 cos θ Φ22
(
1 + Φ11 sin2 θ

)) .
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We then rewrite equation 43 as

κρ(Φ11,Φ22,Φ12) = 2
√

det F
π

√
Φ11Φ22 sin θ

∫ 1
2π

√
det F

exp
(

− 1
2(a1, a2)F−1(a1, a2)⊤) da1 da2︸ ︷︷ ︸

=1

= 2
π
√

1 + Φ11 + Φ22 + Φ11Φ22 sin2 θ

= 2
π
√

(1 + Φ11)(1 + Φ22) − Φ2
12

The NNK for chain activations This result follows by a similar completing the square type deriva-
tion, but instead of the resulting integrand being a bivariate Gaussian density, the resulting integrand is
a product of a bivariate Gaussian density with probit activations. The result then follows from Williams
(1997). Concretely, the NNK κσ satisfies

κσ(Φ11,Φ22,Φ12) = 4
2π

∫ erf(a1/
√

2) erf(a2/
√

2)
2π

√
Φ11Φ22 sin θ

exp
(

− 1
2(a1, a2)(Φ−1 + I)(a1, a2)⊤) da1 da2.

Completing the square, we have

κσ(Φ11,Φ22,Φ12) = 2
√

det F
π

√
Φ11Φ22 sin θ

∫ erf(a1/
√

2) erf(a2/
√

2)
2π

√
det F

exp
(

− 1
2(a1, a2)F−1(a1, a2)⊤) da1 da2︸ ︷︷ ︸

=κerf(·/
√

2)(F11,F22,F12)

= 2
π
√

(1 + Φ11)(1 + Φ22) − Φ2
12

(
2
π

sin−1 F12√(
1 + F11

)(
1 + F22

)
)

where the last line follows from equation (11) of Williams (1997).

The explicit kernel c By a law of large numbers, we have that the explicit kernel is an NNK,

c(X1, X2) = E
[

erf(Z1/
√

2) erf(Z2/
√

2)
]

+ 1 (Z1, Z2) ∼ N
(

0,
(
X⊤

1 X1 X⊤
1 X2

X⊤
2 X1 X⊤

2 X2

))
,

= 2
π

sin−1 X⊤
1 X2√(

1 +X⊤
1 X1

)(
1 +X⊤

2 X2
) + 1,

again invoking the result of Williams (1997).

The explicit mean µ By a law of large numbers, the average 1
d 1⊤ erf(WX/

√
2) converges to zero as

d → ∞. We therefore have that µ(X) = 0.

G.2 Other examples

We now investigate some other important examples. In each example, the central question is whether
or not a unique fixed point exists. By Theorem 1, G admits a unique fixed point if it is a contraction.
It is a contraction whenever its Jacobian determinant is less than 1. The Jacobian is lower triangular,
since 0 = ∂G

∂Φ22
= ∂G

∂Φ12
= ∂G

∂Φ12
= ∂G

∂Φ11
, so in order to compute the Jacobian determinant, it suffices to

compute the diagonal entries. These can be computed with the following identity.
Theorem 19 (Theorem 6 of Tsuchida et al. (2021). See also Theorem 3 of Han et al. (2022).).
Suppose the absolute value of ζ : R → R is bounded by a polynomial. Let ζ̇ denote the distributional
(Schwartz) derivative of ζ. Then ∂kζ(Φ11,Φ22,Φ12)

∂Φ12
= kζ̇(Φ11,Φ22,Φ12) and ∂kζ(Φ11,Φ11,Φ11)

∂Φ11
= E[(Z2 −

1)ζ2(√Φ11Z
)
]/
(
2Φ11

)
, where Z ∼ N (0, 1).
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Theorem 19 allows one to compute the kernel kσ′ , where σ′ is the derivative of σ, by differentiating
the kernel kσ. This is easier than computing kσ′ from scratch. There are two immediate uses for such
a result. Firstly, the quantity kσ′ is needed to compute the neural tangent kernel. Secondly, and the
reason the theorem is useful in our current context, is that it lets us have sufficient conditions for the
update G to be a contraction.

G.2.1 Gaussian A(η) = η2/2, identity R(a) = a, general C, zero µ

This important special case yields an ℓDEKer that may be computed in closed form. Setting σ(z) = z,
Theorem 4 and Corollary 5 say that the DEKer converges to an ℓDEKer with a closed-form,

Ψ(t+1)
ij = 1

λ2

(
Cij + Ψ(t)

ij

)
and Ψij = 1

λ2

(
Cij + Ψij

)
=⇒ Ψij = Cij

λ2 − 1 ,

whenever λ > 1, since λ > 1 implies G is a contraction. In this particular case, the ℓDEKer is simply
a rescaling of the kernel c.

G.2.2 General A, identity R(a) = a, general C, zero µ

In the general setting of § 3.3, Theorem 4 and Corollary 5 yield fixed point equations for the ℓDEKer
that do not in general admit a closed-form,

Ψ(t+1)
ij = 1

λ2

(
Cij + kσ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

))
and Ψij = 1

λ2

(
Cij + kσ

(
Ψii,Ψjj ,Ψij

))
.

By Theorem 19, the ℓDEKer is the fixed point of a contraction whenever κσ̇/λ
2 < 1, for which it is

sufficient that A′′ is less than λ. Statistically speaking, since A acts as a cumulant generating function,
this is equivalent to the largest variance of the exponential family being less than λ.

G.2.3 General A, general R, zero C, zero µ

A pathological but informative example is obtained when the PSD kernel c and the cross terms µ are
chosen to be the constant zero function. In this case, from Theorem 4 and Corollary 5 we obtain

Ψ(t+1)
ij = 1

λ2κσ

(
Ψ(t)

ii ,Ψ
(t)
jj ,Ψ

(t)
ij

)
and Ψij = 1

λ2κσ

(
Ψii,Ψjj ,Ψij

)
.

The ℓDEKer is the fixed point of a contraction whenever κσ̇/λ
2 < 1, by Theorem 19.

Note that the (infinite τ) ℓDEKer does not depend on the input X1, X2, but the (finite τ) DEKer
depends on the initial guess. For a given initial guess of Ψ(1)

11 = ∥X1∥2,Ψ(1)
22 = ∥X2∥2,Ψ(1)

12 = X⊤
1 X2,

solving for the ℓDEKer using τ iterations of naive fixed point iteration is exactly the same as a τ -
layer NNK equation 12. Therefore, the DEKer is an NNK if for an arbitrary activation σ there exist
corresponding configurations of A and R.

G.2.4 Gaussian A(η) = η2/2, ReLU R(a) = au(a), general C, zero µ

Let u denote the Heaviside step function, which takes values 0, 1/2 and 1 when evaluated at < 0, 0 and
> 0 respectively. The rectified linear unit may be written ReLU(a) = a u(a). Choosing A(η) = η2/2,
ReLU R(a) = au(a), we find that ρ is the Heaviside step function and σ is the ReLU. The corresponding
kernels kρ and kσ are known as the arc-cosine kernels of order 0 and 1, and have closed-form expressions
(see Appendix I),

κu
(
Σ11,Σ22,Σ12

)
= 1

2π (π − θ),

κReLU
(
Σ11,Σ22,Σ12

)
=

√
Σ11Σ22

2π
(

sin θ + (π − θ) cos θ
)
,

where θ = arccos Σ12√
Σ11Σ22

.
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Fixed points for Ψ11 and Ψ22 can be computed in closed-form provided λ2 < 1/2,

Ψ(t+1)
ii = 1

2λ2

(
Cii + Ψ(t)

ii

)
and Ψii = 1

2λ2

(
Cii + Ψii

)
=⇒ Ψii = Cii

2λ2 − 1 .

However, Ψ12 cannot be computed in closed-form. We leave the analysis for determining whether
G results in a contraction for future work. Nevertheless, we may still compute using the result in
Theorem 4 without violating any assumptions.

Interestingly, in this setting, ρ = σ̇ almost everywhere and the DEKer iterates very closely resemble
NTK iterates. There are three differences in calculating the DEKer and the NTK. Firstly, the DEKer
uses c where the NTK uses Θ(t). Secondly, the DEKer uses Ψ(t) as an input to Σ(t+1) and Σ̇(t+1),
whereas the NTK uses Σ(t). Finally, the DEKer may be initialised at any guess Ψ(1), whereas the
NTK must be initialised at X⊤

1 X2.

G.2.5 Gaussian A(η) = η2/2, ReLU R(a) = a u(a), arc-cosine c and corresponding µ

We now describe a setting that we found practically useful in our experiments (see § 4.2.). We use
the setting described in § G.2.4, but without the assumption that µ(X) = 0. For the features Γ(X) of
the kernel c(X1, X2), we choose Γ(X) = µv ReLU(QX), where µv ∈ R is a hyperparameter and Q is a
d× l matrix with entries drawn independently from the standard Gaussian distribution, resulting in an
arc-cosine kernel for c. The mean function µ and the cross terms κσ,ρ admit closed-form expressions, as
given in Appendix F.1. The resulting DEKer can represent deep arc-cosine kernels when µv is zero,
and resembles (but is not the same as) an NTK with extra cross-terms otherwise.
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H Other considerations

H.1 Why the expected negative log posterior?

We may frame our optimisation objective in terms of exponential family PCA (Collins et al., 2001;
Mohamed et al., 2008). Given a dataset {Ys}N

s=1 of N examples, exponential family PCA models
observation Ys ∈ Yd as following a factored exponential family with canonical parameter Vϕs, for some
basis V and latent ϕs ∈ Rm. The resulting graphical model is shown in Figure 3a. A maximum a
posteriori estimate is

ϕ∗
s ≜ arg min − log p

(
ϕs | Ys

)
= arg min − log

∫
p
(
Ys | V, ϕs)p(V)p(ϕs) dV, (44)

in which the basis V is marginalised before the evaluation of the logarithm.

Our objective equation 17 differs from equation 44 in two respects. Firstly, we generalise the canonical
parameter Vϕs so that a nonlinearly parameterised canonical parameter R(Vϕs) is used. Secondly and
more critically, the order of the logarithm and the expectation is swapped. This may be understood by
examining a variational lower bound (VLB) of the posterior. Note that the VLB has been used for MAP
estimation in similar contexts (Kingma & Welling, 2014), and can be seen as a regularised or penalised
variant of the ELBO. Let Φ = (ϕ1, . . . , ϕN ). For any density q(V) which ostensibly approximates
p(V | Y,Φ), the log model evidence decomposes into a sum of a KL divergence and an ELBO,

log p(Y | Φ) = KL
(
q(V)∥p(V | Y,Φ)

)
+ EV∼q log p(V,Y | Φ)

q(V) , so that

−EV∼q log p(Φ | V,Y) = KL
(
q(V)∥p(V | Y,Φ)

)
− log p(Φ | Y) + EV∼q log p(V,Y) − EV∼q log q(V).

By minimising the left hand side with respect to Φ, we are maximising the log model evidence minus
the KL divergence. By selecting hyperparameters π of the variational density q over V, we alter our
approximate posterior.

Note a clashing nomenclature between EM-algorithm and variational inference — where the
marginalised variable V is called a latent variable — against an unsupervised dimensionality reduc-
tion setting — where the low dimensional representation ϕs is called a latent variable.

H.2 Scaling and parameterisation of weight distributions

It is widely appreciated that the prior over W in the Bayesian setting (MacKay, 1998, §11.1) and the
initialisation of W in the gradient-flow setting play an role in directing the limiting behaviour of the
neural network (Sohl-Dickstein et al., 2020). On the one hand, convenient parameterisations and choices
of prior and initial distributions lead to tractable large width limits. On the other hand, while limiting
models can outperform their finite width counterparts in small data regimes (Arora et al., 2020), GPs in
general are most often outperformed by deep learning models for many problems of interest. This might
suggest that the tractable limits are the “wrong” ones to analyse if one seeks to explain the success
stories of deep learning (Chizat et al., 2019; Woodworth et al., 2020). Other works consider more general
heavy-tailed (Der & Lee, 2005; Peluchetti et al., 2020; Favaro et al., 2021; 2022) or differently scaled
priors, but it is not yet clear whether these models can more accurately emulate deep learning models.

In our work in particular, the scaling of the prior with precision
√
md (less than the m that might often

be expected, since d < m) in equation 17 was crucial for finding a tractable limit. Independently of
whether this limiting regime represents any meaningful feature representation, our analysis is valuable
because (1) DEKers are better than or competitive with other neural network kernel models in the
settings that we tried, (2) we are the first to place deep neural network related kernels in a more
fundamental footing of statistical estimation and optimisation, and (3) our analysis describes a limiting
invariant of SGD.
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YsV ϕs

s = 1, . . . , N

(a)

YsV ϕsπ

s = 1, . . . , N

(b)

Figure 3: (a) Exponential family PCA, which may be viewed as an unsupervised problem, in which
observed data Ys is a realisation from an exponential family with canonical parameter Vϕs for some basis
V and latent ϕs. (b) Nonlinearly parameterised exponential family PCA, in which Ys is a realisation
from an exponential family with canonical parameter R(Vϕs). We additionally choose Ys = Γ(Xs), and
employ a variational approximation (indicated by the dashed lines) for the distribution p(V | Y,Φ) ≈
q(V | π), and take an infinite width limit.

H.3 Implicit differentiation

From Corollary 5, we have that the ℓDEKer Ψ satisfies Ψ = G(Ψ). Suppose Ψ depends on v-dimensional
hyperparameter ζ ∈ Rv, such as the weight and bias variance (see Footnotes 2 and 3), or a hyperpa-
rameter of R. If G is continuously differentiable, the implicit function theorem says

dΨ
dζ︸︷︷︸

3×v

= ∂G(Ψ)
∂ζ︸ ︷︷ ︸
3×v

+ ∂G(Ψ)
∂Ψ︸ ︷︷ ︸
3×3

dΨ
dζ︸︷︷︸

3×v

=⇒
(

I − ∂G(Ψ)
∂Ψ

)dΨ
dζ

= ∂G(Ψ)
∂ζ

,

which may be solved for dΨ
dζ using a backslash operator. This derivative may be used for gradient-based

hyperparameter selection. For example, if the ℓDEKer were to be used as the covariance function of a
Gaussian process, one could perform type II maximum marginal likelihood to compute point estimates
for ζ. This implicit differentiation mirrors the finite-width counterpart, the DEQ (Bai et al., 2019). We
leave its empirical investigation for future work.
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I Arc-cosine kernels via derivatives

While the Dirac distribution is not a function and therefore cannot be used as an activation function
in finite-width networks, it does arise as the derivative of NNKs with Heaviside activations, by The-
orem 19. With an abuse of notation that extends the usual operation of integrating against a Dirca
delta distribution, we may understand an expectation involving Dirac delta distributions as a limiting
expectation involving nascent delta functions. We may evaluate the corresponding NNK as follows.

κδ

(
Σ11,Σ22,Σ12

)
= E

[
δ(χ)δ(χ′)

]
= E

[
δ
(√

Σ11Z1
)
δ
(√

Σ22(Z1ρ+ Z2
√

1 − ρ2)
)]
, (Z1, Z2)⊤ ∼ N (0, I), ρ = Σ12/

√
Σ11/Σ22

= 1√
Σ11

1√
2π

∫
δ
(√

Σ22z2
√

1 − ρ2
)
p(z2)dz2, p is pdf of standard Gaussian

= 1√
Σ11Σ22(1 − ρ2)

1
2π

= 1
2π
√

Σ11Σ22 − Σ2
12
. (45)

Note the singularity whenever the Gaussian distribution is degenerate, i.e. Σ11 = Σ22 = Σ12, which is
an instance of the more general undefinedness of a product of Dirac delta distributions.

The NNK corresponding with Heaviside activations u was first evaluated using a geometric argument
by Sheppard (1899), and is given by

κu
(
Σ11,Σ22,Σ12

)
= E[u(χ) u(χ′)]

= 1
2π (π − θ), θ = arccos Σ12√

Σ11Σ22
. (46)

The NNK equation 46 was generalised to activations of the form u(z)zp for positive integers p by Cho
& Saul (2009). Of particular relevance is the case p = 1, in which case the activation function is ReLU
and

κReLU
(
Σ11,Σ22,Σ12

)
= E[ReLU(χ) ReLU(χ′)]

=
√

Σ11Σ22

2π
(

sin θ + (π − θ) cos θ
)
. (47)

Note that equation 45– equation 47 represent a sequence of derivatives, since the Dirac delta distribution,
Heaviside function and ReLU represent a sequence of distributional derivatives. More concretely, by
Theorem 19,

∂2κReLU

∂Σ12
2 = ∂κu

∂Σ12
= κδ,

as can be otherwise verified.
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J Experiments

J.1 Measuring finite-width effects

We consider elements of an input space X which are 100 evenly spaced points over [−5, 5]2. This results
in an input matrix of size 100 × 2. We compute two 100 × 100 kernel matrices with ijth element:
Ψij (calculated to high tolerance using a fixed point solver) and k

(t)
d (Xi, Xj) (calculated using SGD).

Finite features Γ are chosen to be Γ = TX, where T ∈ Rd×m is a zero-mean Gaussian random matrix.
This results in a linear kernel c(X1, X2) = X⊤

1 X2. We set t = 400, λ = 6 and use a step length of
α(t) = 1

λ

√
d/m. We vary d between 5 and 500 in steps of 5 and choose m = d3/2. We also provide the

CKA between the (finite-d, finite-τ) ffDEKer and a squared exponential kernel A exp
(
−∥X1−X2∥2

2/2
)

for control, where the scaling parameter A is the largest value in the (infinite-d, infinite-τ) ℓDEKer
matrix.

J.2 Inference using the DEKer

The hyperparameter grid over which GridSearchCV operates is given in table 4.

Hyperparameter Present in Values
Data scale (see footnote 2) NTK, NNK, DEKer, SEK {0.5, 1, 2, 4}

KRR regularisation strength NTK, NNK, DEKer, SEK {0.05, 0.1, 0.5}
Input augmented bias (see footnote 3) NTK, NNK, DEKer {−1.0,−0.1, 0.0, 0.1, 1.0}

Number of iterations / layers T NTK, NNK {2, 3, 4, 5}
Number of iterations / layers T DEKer {2, 3, 4, 5,∞}
Inner regularisation strength λ DEKer {1, 2, 4}

Cross-term strength µv DEKer {0, 0.1, 0.5, 1, 2}
Lengthscale SEK {0.5, 1, 2, 4, 8, 16}

Table 4: Search space for GridSearchCV. We use Anderson acceleration to compute the DEKer when
T = ∞ and there are less than 500 points in the dataset.
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