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ETHICS STATEMENT

Our work can positively impact the society by improving the robustness and security of AI systems.
We have not involved human subjects or data set releases; instead, we carefully follow the provided
licenses of existing data and models for developing and evaluating our method.

REPRODUCIBILITY STATEMENT

For theoretical analysis, all necessary assumptions are listed in B.1 and the complete proofs are
included in B.2. The experimental setting and datasets are provided in section 5. The pseudo-code
for DensePure is in C.1 and the fast sampling procedures are provided in C.2.
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APPENDIX

Here is the appendix.

A NOTATIONS

p data distribution

P(A) probability of event A

Ck set of functions with continuous k-th derivatives

w(t) standard Wiener Process

w(t) reverse-time standard Wiener Process

h(x, t) drift coefficient in SDE

g(t) diffusion coefficient in SDE

αt scaling coefficient at time t

σ2
t variance of added Gaussian noise at time t

{xt}t∈[0,1] diffusion process generated by SDE

{x̂t}t∈[0,1] reverse process generated by reverse-SDE

pt distribution of xt and x̂t

{x1,x2, . . . ,xN} diffusion process generated by DDPM

{βi}Ni=1 pre-defined noise scales in DDPM

ϵa adversarial attack

xa adversarial sample

xa,t scaled adversarial sample

f(·) classifier

g(·) smoothed classifier

P (x̂0 = x|x̂t = xa,t) density of conditional distribution generated by reverse-
SDE based on xa,t

P(xa; t) purification model with highest density point

G(x0) data region with the same label as x0

Df
P(G(x0); t) robust region for G(x0) associated with base classifier f

and purification model P
rfP(x0; t) robust radius for the point associated with base classifier f

and purification model P
Dsub(x0; t) convex robust sub-region

sθ(x, t) score function

{xθ
t }t∈[0,1] reverse process generated by score-based diffusion model

P
(
xθ
0 = x|xθ

t = xa,t

)
density of conditional distribution generated by score-
based diffusion model based on xa,t

λ(τ) weighting scheme of training loss for score-based diffusion
model

JSM(θ, t;λ(·)) truncated training loss for score-based diffusion model

µt,νt path measure for {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t] respectively
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B MORE DETAILS ABOUT THEORETICAL ANALYSIS

B.1 ASSUMPTIONS

(i) The data distribution p ∈ C2 and Ex∼p[||x||22] <∞.

(ii) ∀t ∈ [0, T ] : h(·, t) ∈ C1,∃C > 0,∀x ∈ Rn, t ∈ [0, T ] : ||h(x, t)||2 ⩽ C (1 + ||x||2).
(iii) ∃C > 0,∀x,y ∈ Rn : ||h(x, t)− h(y, t)||2 ⩽ C∥x− y∥2.

(iv) g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

(v) ∀t ∈ [0, T ] : sθ(·, t) ∈ C1,∃C > 0,∀x ∈ Rn, t ∈ [0, T ] : ||sθ(x, t)||2 ⩽ C (1 + ||x||2).
(vi) ∃C > 0,∀x,y ∈ Rn : ||sθ(x, t)− sθ(y, t)||2 ⩽ C∥x− y∥2.

B.2 THEOREMS AND PROOFS

Theorem 3.1. Under conditions B.1, solving equation reverse-SDE starting from time t and point
xa,t =

√
αtxa will generate a reversed random variable x̂0 with conditional distribution

P (x̂0 = x|x̂t = xa,t) ∝ p(x) ·
1√

(2πσ2
t )

n e
−||x−xa||22

2σ2
t

where σ2
t = 1−αt

αt
is the variance of the Gaussian noise added at timestamp t in the diffusion

process SDE.

Proof. Under the assumption, we know {xt}t∈[0,1] and {x̂t}t∈[0,1] follow the same distribution,
which means

P (x̂0 = x|x̂t = xa,t) =
P(x̂0 = x, x̂t = xa,t)

P(x̂t = xa,t)

=
P(x0 = x,xt = xa,t)

P(xt = xa,t)

= P (x0 = x)
P(xt = xa,t|x0 = x)

P(xt = xa,t)

∝ P (x0 = x)
1√

(2πσ2
t )

n e
−||x−xa||22

2σ2
t

= p(x) · 1√
(2πσ2

t )
n e

−||x−xa||22
2σ2

t

where the third equation is due to the chain rule of probability and the last equation is a result of the
diffusion process.

Theorem 3.3. Under conditions B.1 and classifier f , let x0 be the sample with ground-truth label
and xa be the adversarial sample, then (i) the purified sample P(xa; t) will have the ground-truth
label if xa falls into the following convex set,

Dsub (x0; t) :=
⋂

{x′
0:f(x

′
0 )̸=f(x0)}

{
xa : (xa − x0)

⊤(x′
0 − x0) < σ2

t log

(
p(x0)

p(x′
0)

)
+
||x′

0 − x0||22
2

}
,

and further, (ii) the purified sample P(xa; t) will have the ground-truth label if and only if xa falls
into the following set, D (G(x0); t) :=

⋃
x̃0:f(x̃0)=f(x0)

Dsub (x̃0; t). In other words, D (G(x0); t)

is the robust region for data region G(x0) under P(·; t) and f .

Proof. We start with part (i).
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The main idea is to prove that a point x′
0 such that f(x′

0) ̸= f(x0) should have lower density than
x0 in the conditional distribution in Theorem 3.1 so that P(xa; t) cannot be x′

0. In other words, we
should have

P (x̂0 = x0|x̂t = xa,t) > P (x̂0 = x′
0 | x̂t = xxxa,t) .

By Theorem 3.1, this is equivalent to

p(x0) ·
1√

(2πσ2
t )

n e
−||x0−xa||22

2σ2
t > p(x′

0) ·
1√

(2πσ2
t )

n e
−||x′

0−xa||22
2σ2

t

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
||x0 − xa||22 − ||x′

0 − xa||22
)

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
||x0 − xa||22 − ||x′

0 − x0 + x0 − xa||22
)

⇔ log

(
p(x0)

p(x′
0)

)
>

1

2σ2
t

(
2(xa − x0)

⊤(x′
0 − x0)− ∥x′

0 − x0∥22
)
.

Re-organizing the above inequality, we obtain

(xa − x0)
⊤(x′

0 − x0) < σ2
t log

(
p(x0)

p(x′
0)

)
+

1

2
||x′

0 − x0||22.

Note that the order of xa is at most one in every term of the above inequality, so the inequality
actually defines a half-space in Rn for every (x0,x

′
0) pair. Further, we have to satisfy the inequality

for every x′
0 such that f(x′

0) ̸= f(x0), therefore, by intersecting over all such half-spaces, we
obtain a convex Dsub (x0; t).

Then we prove part (ii).

On the one hand, if xa ∈ D (G(x0); t), then there exists one x̃0 such that f(x̃0) = f(x0) and
xa ∈ Dsub (x̃0; t). By part (i), x̃0 has higher probability than all other points with different la-
bels from x0 in the conditional distribution P (x̂0 = x|x̂t = xa,t) characterized by Theorem 3.1.
Therefore, P(xa; t) should have the same label as x0. On the other hand, if xa /∈ D (G(x0); t),
then there is a point x̃1 with different label from x0 such that for any x̃0 with the same label as x0,
P (x̂0 = x̃1|x̂t = xa,t) > P (x̂0 = x̃0|x̂t = xa,t). In other words, P(xa; t) would have different
label from x0.

Theorem 3.4. Under score-based diffusion model Song et al. (2021b) and conditions B.1, we can
bound

DKL(P(x̂0 = x | x̂t = xa,t)∥P(xθ
0 = x | xθ

t = xa,t)) = JSM(θ, t;λ(·))

where {x̂τ}τ∈[0,t] and {xθ
τ}τ∈[0,t] are stochastic processes generated by reverse-SDE and score-

based diffusion model respectively,

JSM(θ, t;λ(·)) := 1

2

∫ t

0

Epτ (x)

[
λ(τ) ∥∇x log pτ (x)− sθ(x, τ)∥22

]
dτ,

sθ(x, τ) is the score function to approximate∇x log pτ (x), and λ : R→ R is any weighting scheme
used in the training score-based diffusion models.

Proof. Similar to proof of (Song et al., 2021a, Theorem 1), let µt and νt be the path measure for
reverse processes {x̂τ}τ∈[0,t] and {xθ

τ}τ∈[0,t] respectively based on the scaled adversarial sample
xa,t. Under conditions B.1, the KL-divergence can be computed via the Girsanov theorem Oksendal
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(2013):

DKL
(
P(x̂0 = x | x̂t = xa,t)∥P(xθ

0 = x | xθ
t = xa,t)

)
= − Eµt

[
log

dνt

dµt

]
(i)
= Eµt

[∫ t

0

g(τ) (∇x log pτ (x)− sθ(x, τ)) dwτ +
1

2

∫ t

0

g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22 dτ

]
= Eµt

[
1

2

∫ t

0

g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22 dτ

]
=

1

2

∫ τ

0

Epτ (x)

[
g(τ)2 ∥∇x log pτ (x)− sθ(x, τ)∥22

]
dτ

= JSM
(
θ, t; g(·)2

)
where (i) is due to Girsanov Theorem and (ii) is due to the martingale property of Itô integrals.

C MORE DETAILS ABOUT DENSEPURE

C.1 PSEUDO-CODE

We provide the pseudo code of DensePure in Algo. 1 and Alg. 2

Algorithm 1 DensePure pseudo-code with the highest density point
1: Initialization: choose off-the-shelf diffusion model and classifier f , choose ψ = t,
2: Input sample xa = x0 + ϵa
3: Compute x̂0 = P(xa;ψ)
4: ŷ = f(x̂0)

Algorithm 2 DensePure pseudo-code with majority vote
1: Initialization: choose off-the-shelf diffusion model and classifier f , choose σ
2: Compute αn = 1

1+σ2 , n = argmins

{∣∣∣αs − 1
1+σ2

∣∣∣ | s ∈ {1, 2, · · · , N}}
3: Generate input sample xrs = x0 + ϵ, ϵ ∼ N (0, σ2I)
4: Choose schedule Sb, get x̂i

0 ← rev(
√
αnxrs)i, i = 1, 2, . . . ,K with Fast Sampling

5: ŷ = MV({f(x̂1
0), . . . , f(x̂

K
0 )}) = argmaxc

∑K
i=1 111{f(x̂i

0) = c}

C.2 DETAILS ABOUT FAST SAMPLING

Applying single-step operation n times is a time-consuming process. In order to reduce the time
complexity, we follow the method used in (Nichol & Dhariwal, 2021) and sample a subsequence
Sb with b values (i.e., Sb = {n, ⌊n− n

b
⌋, · · · , 1}︸ ︷︷ ︸

b

, where Sb
j is the j-th element in Sb and Sb

j =

⌊n − jn
b ⌋,∀j < b and Sb

b = 1) from the original schedule S (i.e., S = {n, n− 1, · · · , 1}︸ ︷︷ ︸
n

, where

Sj = j is the j-th element in S).

Within this context, we adapt the original α schedule αS = {α1, · · · , αi, · · · , αn} used for single-
step to the new schedule αSb

= {αSb
1
, · · · , αSb

j
, · · · , αSb

b
} (i.e., αSb

i = αSb
i
= αS⌊n− in

b
⌋

is the

i-th element in αSb

). We calculate the corresponding βSb

= {βSb

1 , βSb

2 , · · · , βSb

i , · · · , βSb

b } and

β̃Sb

= {β̃Sb

1 , β̃Sb

2 , · · · , β̃Sb

i , · · · , β̃Sb

b } schedules, where βSb
i

= βSb

i = 1 − αSb

i

αSb
i−1

, β̃Sb
i

=

β̃Sb

i =
1−αSb

i−1

1−αSb
i

βSb
i
. With these new schedules, we can use b times reverse steps to calculate
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Certified Accuracy at ϵ(%)
Methods Noise 0.0 0.25 0.5 0.75 1.0

σ = 0.25 88.0 73.8 56.2 41.6 0.0
Carlini (Carlini et al., 2022) σ = 0.5 74.2 62.0 50.4 40.2 31.0

σ = 1.0 49.4 41.4 34.2 27.8 21.8

σ = 0.25 87.6(-0.4) 76.6(+2.8) 64.6(+8.4) 50.4(+8.8) 0.0(+0.0)
Ours σ = 0.5 73.6(-0.6) 65.4(+3.4) 55.6(+5.2) 46.0(+5.8) 37.4(+6.4)

σ = 1.0 55.0(+5.6) 47.8(+6.4) 40.8(+6.6) 33.0(+5.2) 28.2(+6.4)

Table A: Certified accuracy compared with Carlini et al. (2022) for CIFAR-10 at all σ. The numbers
in the bracket are the difference of certified accuracy between two methods. Our diffusion model
and classifier are the same as Carlini et al. (2022).

x̂0 = Reverse(· · ·Reverse(Reverse(xn;S
b
b);S

b
b−1); · · · ; 1)︸ ︷︷ ︸

b

. Since Σθ(xSb
i
, Sb

i ) is parameterized

as a range between βSb

and β̃Sb

, it will automatically be rescaled. Thus, x̂Sb
i−1

= Reverse(x̂Sb
i
;Sb

i )

is equivalent to sample xSb
i−1

from N (xSb
i−1

;µθ(xSb
i
, Sb

i ),Σθ(xSb
i
, Sb

i )).

D MORE EXPERIMENTAL DETAILS AND RESULTS

D.1 IMPLEMENTATION DETAILS

We select three different noise levels σ ∈ {0.25, 0.5, 1.0} for certification. For the parameters
of DensePure , The sampling numbers when computing the certified radius are n = 100000 for
CIFAR-10 and n = 10000 for ImageNet. We evaluate the certified robustness on 500 samples subset
of CIFAR-10 testset and 100 samples subset of ImageNet validation set. we set K = 40 and b = 10
except the results in ablation study. The details about the baselines are in the appendix.

D.2 BASELINES.

We select randomized smoothing based methods including PixelDP (Lecuyer et al., 2019), RS (Co-
hen et al., 2019), SmoothAdv (Salman et al., 2019a), Consistency (Jeong & Shin, 2020), MACER
(Zhai et al., 2020), Boosting (Horváth et al., 2021) , SmoothMix (Jeong et al., 2021), Denoised
(Salman et al., 2020), Lee (Lee, 2021), Carlini (Carlini et al., 2022) as our baselines. Among them,
PixelDP, RS, SmoothAdv, Consistency, MACER, and SmoothMix require training a smooth clas-
sifier for a better certification performance while the others do not. Salman et al. and Lee use the
off-the-shelf classifier but without using the diffusion model. The most similar one compared with
us is Carlini et al., which also uses both the off-the-shelf diffusion model and classifier. The above
two settings mainly refer to Carlini et al. (2022), which makes us easier to compared with their
results.

D.3 MAIN RESULTS FOR CERTIFIED ACCURACY

We compare with Carlini et al. (2022) in a more fine-grained version. We provide results of certified
accuracy at different ϵ in Table A for CIFAR-10 and Table B for ImageNet. We include the accuracy
difference between ours and Carlini et al. (2022) in the bracket in Tables. We can observe from the
tables that the certified accuracy of our method outperforms Carlini et al. (2022) except ϵ = 0 at
σ = 0.25, 0.5 for CIFAR-10.

D.4 EXPERIMENTS FOR VOTING SAMPLES

Here we provide more experiments with σ ∈ {0.5, 1.0} and b = 10 for different voting samplesK in
Figure A and Figure B. The results for CIFAR-10 is in Figure G. We can draw the same conclusion
mentioned in the main context .
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Certified Accuracy at ϵ(%)
Methods Noise 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 77.0 71.0 0.0 0.0 0.0 0.0
Carlini (Carlini et al., 2022) σ = 0.5 74.0 67.0 54.0 46.0 0.0 0.0

σ = 1.0 59.0 53.0 49.0 38.0 29.0 22.0

σ = 0.25 80.0(+3.0) 76.0(+5.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0)
Ours σ = 0.5 75.0(+1.0) 72.0(+5.0) 62.0(+8.0) 49.0(+3.0) 0.0(+0.0) 0.0(+0.0)

σ = 1.0 61.0(+2.0) 57.0(+4.0) 53.0(+4.0) 49.0(+11.0) 37.0(+8.0) 26.0(+4.0)

Table B: Certified accuracy compared with Carlini et al. (2022) for ImageNet at all σ. The numbers
in the bracket are the difference of certified accuracy between two methods. Our diffusion model
and classifier are the same as Carlini et al. (2022).

CIFAR=10 ImageNet

Figure A: Certified accuracy among different vote numbers with different radius. Each line in the
figure represents the certified accuracy among different vote numbers K with Gaussian noise σ =
0.50.

D.5 EXPERIMENTS FOR FAST SAMPLING STEPS

We also implement additional experiments with b ∈ {1, 2, 10} at σ = 0.5, 1.0. The results are
shown in Figure C and Figure D. The results for CIFAR-10 are in Figure G. We draw the same
conclusion as mentioned in the main context.

D.6 EXPERIMENTS FOR DIFFERENT ARCHITECTURES

We try different model architectures of ImageNet including Wide ResNet-50-2 and ResNet 152 with
b = 2 andK = 10. The results are shown in Figure F. we find that our method outperforms (Carlini
et al., 2022) for all σ among different classifiers.

D.7 EXPERIMENTS FOR RANDOMIZED SMOOTHING WITHOUT DIFFUSION MODEL

To explore randomized smoothing without diffusion model, we directly remove the diffusion model
from our pipeline and conduct additional experiments.

First, we remove the diffusion model and perform randomized smoothing only on the pretrained
classifier we used in DensePure (i.e., ViT-B/16 for CIFAR-10 and BEiT for ImageNet). The results
are shown in Table C and Table D. The number in the bracket is calculated by the robust accuracy
of pretrained classifier - the robust accuracy of DensePure. We can conclude from the table that
without the help of diffusion models, neither ViT nor BEiT could reach high certified accuracy.

Second, we conduct additional experiments to fairly compare with randomized smoothing without
diffusion models under majority vote settings. Specifically, we activate droppath in BEiT at the
inference stage to support majority votes. The other settings are the same as DensePure. The results
are shown in Table E. The number in the bracket is calculated by the robust accuracy of BeiT with
majority votes - the robust accuracy of DensePure. We find that simply performing majority votes
on the BeiT classifier will not result in higher certified robustness.
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CIFAR=10 ImageNet

Figure B: Certified accuracy among different vote numbers with different radius. Each line in the
figure represents the certified accuracy among different vote numbers K with Gaussian noise σ =
1.00.

CIFAR=10 ImageNet

Figure C: Certified accuracy with different fast sampling steps b. Each line in the figure shows the
certified accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 0.50.

Third, to compare with randomized smoothing without diffusion model, we also evaluate certified
accuracy with Gaussian augmentation-trained ViT models on CIFAR-10. The results shown in the
table F prove that DensePure can still achieve higher certified accuracy than randomized smoothing
on even Gaussian augmented models without diffusion models. The numbers in the bracket are
the difference between the robust accuracy of Gaussian augmentation randomized smoothing and
DensePure.

D.8 EXPERIMENTS FOR K-CONSENSUS AGGREGATION

In K-Consensus Aggregation, if the classification results of the K consecutive reversed samples are
the same, an early stop will be triggered. Here We calculate certified robustness for 100 subsamples
of CIFAR-10 and ImageNet with 2 sampling steps, a maximum 10 majority votes and consensus
threshold k=3. Results are shown in Table G and Table H. The column of ”Avg MV” in the tables
means the average of the actual number of majority votes required for our algorithm. For instance,
if the predicted labels of the first 3 reversed samples are the same, the actual majority vote numbers
will be 3. The numbers in the bracket are the difference between certified accuracy w/o K-Consensus
Aggregation.

D.9 EXPERIMENTS FOR CERTIFIED ACCURACY WITH LESS SAMPLING STEPS AND VOTE
NUMBERS

We also conduct additional experiments with 2 sampling steps and 5 majority votes. The results are
shown in Table I. We find that our method still achieves better results than the existing method.
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CIFAR=10 ImageNet

Figure D: Certified accuracy with different fast sampling steps b. Each line in the figure shows the
certified accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 1.00.

CIFAR=10 ImageNet

Figure E: Certified accuracy with different architectures. Each line in the figure shows the certified
accuracy among different L2 adversarial perturbation bound with Gaussian noise σ = 0.25.

D.10 EXPERIMENTS FOR DENSEPURE 500 TEST SAMPLING NUMBER RESULTS ON
IMAGENET

We increase the ImageNet test sampling number from 100 to 500 and update the experiment results
in Table J and Table K.
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Wide ResNet-50-2 ResNet152
Figure F: Certified accuracy of ImageNet for different architectures. The lines represent the certified
accuracy with different L2 perturbation bound with different Gaussian noise σ ∈ {0.25, 0.50, 1.00}.

ImageNet ImageNet

Figure G: Ablation study. The left image shows the certified accuracy among different vote num-
bers with different radius ϵ ∈ {0.0, 0.25, 0.5, 0.75}. Each line in the figure represents the certified
accuracy of our method among different vote numbers K with Gaussian noise σ = 0.25. The right
image shows the certified accuracy with different fast sampling steps b. Each line in the figure shows
the certified accuracy among different L2 adversarial perturbation bound.

Certified Accuracy at ϵ(%)
Noise 0.0 0.25 0.5 0.75 1.0

σ = 0.25 20.8(-66.8) 7.4(-69.2) 1.8(-62.8) 0.2(-50.2) 0.0(+0.0)
σ = 0.5 11.6(-62.0) 6.6(-58.8) 3.8(-51.8) 1.2(-44.8) 0.2(-37.2)
σ = 1.0 10.6(-44.4) 10.6(-37.4) 9.4(-31.4) 9.4(-23.6) 9.4(-18.8)

Table C: Certified accuracy of randomized smoothing on pretrained classifier ViT-B/16 at all σ for
CIFAR-10

Certified Accuracy at ϵ(%)
Noise 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 73.2(-10.8) 55.8(-22.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0)
σ = 0.5 7.8(-72.4) 4.6(-71.0) 3.2(-63.8) 1.0(-53.6) 0.0(+0.0) 0.0(+0.0)
σ = 1.0 0.0(-67.8) 0.0(-61.4) 0.0(-55.6) 0.0(-50.0) 0.0(-42.2) 0.0(-25.8)

Table D: Certified accuracy of randomized smoothing on pretrained classifier BEiT at all σ for
ImageNet
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Certified Accuracy at ϵ(%)
Noise 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 73.8(-10.2) 58.0(-19.8) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0)
σ = 0.5 9.0(-71.2) 7.0(-68.6) 4.0(-63.0) 2.0(-52.6) 0.0(+0.0) 0.0(+0.0)
σ = 1.0 0.0(-67.8) 0.0(-61.4) 0.0(-55.6) 0.0(-50.0) 0.0(-42.2) 0.0(-25.8)

Table E: Certified accuracy of randomized smoothing on droppatch activated BEiT with 10 majority
votes at all σ for ImageNet

Certified Accuracy at ϵ(%)
Noise 0.0 0.25 0.5 0.75 1.0

σ = 0.25 88.2(+0.6) 71.4(-5.2) 53.2(-11.4) 35.2(-15.2) 0.0(+0.0)
σ = 0.5 69.8(-3.8) 60.0(-5.4) 48.4(-7.2) 37.2(-8.8) 27.2(-10.2)
σ = 1.0 49.0(-6.0) 41.8(-6.0) 34.0(-6.8) 27.0(-6.0) 22.0(-6.2)

Table F: Certified accuracy of randomized smoothing on Gaussian augmentation-trained ViT at all
σ on CIFAR-10

Certified Accuracy at ϵ(%)
Noise 0.0 0.25 0.5 0.75 1.0 Avg MV

σ = 0.25 92(+0.0) 77(+0.0) 60(+0.0) 48(-1.0) 0(+0.0) 3.84
σ = 0.5 74(+0.0) 65(+0.0) 53(-1.0) 45(+0.0) 40(+0.0) 4.43
σ = 1.0 53(+0.0) 46(+0.0) 42(+0.0) 31(+0.0) 25(+0.0) 5.49

Table G: Certified accuracy and average majority votes with 2 sample steps and k = 3 consensus
threshold at all σ for CIFAR-10.

Certified Accuracy at ϵ(%)
Noise 0.0 0.5 1.0 1.5 2.0 3.0 Avg MV

σ = 0.25 78(+0.0) 74(+0.0) 0(+0.0) 0(+0.0) 0(+0.0) 0(+0.0) 3.34
σ = 0.5 75(+0.0) 69(+0.0) 61(+0.0) 47(+0.0) 0(+0.0) 0(+0.0) 3.89
σ = 1.0 60(+0.0) 54(+0.0) 50(+0.0) 41(+0.0) 32(+0.0) 23(+0.0) 5.23

Table H: Certified accuracy and average majority votes with 2 sample steps and k = 3 consensus
threshold at all σ for ImageNet.

Certified Accuracy at ϵ(%)
CIFAR-10 ImageNet

Noise 0.0 0.25 0.5 0.75 1.0 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 87.6 74.8 59.2 44.6 0.0 78 74 0 0 0 0
σ = 0.50 73.2 62.6 52.6 41.8 34.0 75 69 58 47 0 0
σ = 1.00 53.4 44.0 35.8 30.2 24.4 60 54 49 39 30 22

Table I: Certified accuracy with 2 sampling steps and 5 vote numbers at all σ for both CIFAR-10
and ImageNet
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Certified Accuracy at ϵ(%)
CIFAR-10 ImageNet

Method Off-the-shelf 0.25 0.5 0.75 1.0 0.5 1.0 1.5 2.0 3.0

PixelDP (Lecuyer et al., 2019) ✗ (71.0)22.0 (44.0)2.0 - - (33.0)16.0 - - - -
RS (Cohen et al., 2019) ✗ (75.0)61.0 (75.0)43.0 (65.0)32.0 (65.0)23.0 (67.0)49.0 (57.0)37.0 (57.0)29.0 (44.0)19.0 (44.0)12.0
SmoothAdv (Salman et al., 2019a) ✗ (82.0)68.0 (76.0)54.0 (68.0)41.0 (64.0)32.0 (63.0)54.0 (56.0)42.0 (56.0)34.0 (41.0)26.0 (41.0)18.0
Consistency (Jeong & Shin, 2020) ✗ (77.8)68.8 (75.8)58.1 (72.9)48.5 (52.3)37.8 (55.0)50.0 (55.0)44.0 (55.0)34.0 (41.0)24.0 (41.0)17.0
MACER (Zhai et al., 2020) ✗ (81.0)71.0 (81.0)59.0 (66.0)46.0 (66.0)38.0 (68.0)57.0 (64.0)43.0 (64.0)31.0 (48.0)25.0 (48.0)14.0
Boosting (Horváth et al., 2021) ✗ (83.4)70.6 (76.8)60.4 (71.6)52.4 (73.0)38.8 (65.6)57.0 (57.0)44.6 (57.0)38.4 (44.6)28.6 (38.6)21.2
SmoothMix (Jeong et al., 2021) ✓ (77.1)67.9 (77.1)57.9 (74.2)47.7 (61.8)37.2 (55.0)50.0 (55.0)43.0 (55.0)38.0 (40.0)26.0 (40.0)17.0

Denoised (Salman et al., 2020) ✓ (72.0)56.0 (62.0)41.0 (62.0)28.0 (44.0)19.0 (60.0)33.0 (38.0)14.0 (38.0)6.0 - -
Lee (Lee, 2021) ✓ 60.0 42.0 28.0 19.0 41.0 24.0 11.0 - -
Carlini (Carlini et al., 2022) ✓ (88.0)73.8 (88.0)56.2 (88.0)41.6 (74.2)31.0 (82.0)74.0 (77.2.0)59.8 (77.2)47.0 (64.6)31.0 (64.6)19.0
Ours ✓ (87.6)76.6 (87.6)64.6 (87.6)50.4 (73.6)37.4 (84.0)77.8 (80.2)67.0 (80.2)54.6 (67.8)42.2 (67.8)25.8

Table J: Certified accuracy compared with existing works. The certified accuracy at ϵ = 0 for each
model is in the parentheses. The certified accuracy for each cell is from the respective papers except
Carlini et al. (2022). Our diffusion model and classifier are the same as Carlini et al. (2022), where
the off-the-shelf classifier uses ViT-based architectures trained on a large dataset (ImageNet-22k).

Certified Accuracy at ϵ(%)
Methods Noise 0.0 0.5 1.0 1.5 2.0 3.0

σ = 0.25 82.0 74.0 0.0 0.0 0.0 0.0
Carlini (Carlini et al., 2022) σ = 0.5 77.2 71.8 59.8 47.0 0.0 0.0

σ = 1.0 64.6 57.8 49.2 40.6 31.0 19.0

σ = 0.25 84.0(+2.0) 77.8(+3.8) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0) 0.0(+0.0)
Ours σ = 0.5 80.2(+3.0) 75.6(+3.8) 67.0(+7.2) 54.6(+7.6) 0.0(+0.0) 0.0(+0.0)

σ = 1.0 67.8(+3.2) 61.4(+3.6) 55.6(+6.4) 50.0(+9.4) 42.2(+11.2) 25.8(+6.8)

Table K: Certified accuracy compared with Carlini et al. (2022) for ImageNet at all σ. The numbers
in the bracket are the difference of certified accuracy between two methods. Our diffusion model
and classifier are the same as Carlini et al. (2022).
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