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A EXPERIMENTS DETAILS

Appendix A encompasses the details of all numerical experiments. In Appendix A.1, we detail
the results of model generalization. Appendices A.2 describes the model speed of TSC methods.
Appendices A.3 shows the learning curve of typical TSC methods.

A.1 MODEL GENERALIZATION

Advanced-MP-JN1 is online-RL method, while BC-JN1, TD3+BC-IN1, BEAR-IN1, CQL-JN1,
and OfflineLight-JN1 are offline methods, which all are only trained on offline dataset Ji/V an' in
TSC-OID, which is around 20% of all data from TSC-OID. Then, these methods is directly deployed
on other traffic topologies and flows. Intuitively pleasing but with little surprise, OfflineLight-JN1
has almost achieved a similar performance to the SOTA RL methods.

As shown in Table 2] OfflineLight-IN1 performs the best among all RL-Transfer methods on most
real-world datasets, which are trained on offline dataset Ji Nan! in TSC-OID. Hence, partial offline
training is essential for further decreasing the time and computation cost.

Type Method JiNan HangZhou New York
1 2 3 1 2 1 2
Advanced-MPLight-JN1 ~ 258.29  267.24  289.34  345.20 334.68 1253.62  1525.84
BC-INI 282.31  261.98  259.48  311.94 355.14  1152.74  1489.49
RL-Transfer TD3-BC-JNI 284.70 24291  256.62 286.83 331.36  1201.09  1536.39
BEAR-JNI 271.29 24248 257.51  283.19 325.94 1033.88 1425.65
CQL-IN1 265.68 241.86 240.52  283.29  325.71  1119.83  1465.77
OfflineLight-JN1 263.31 240.42 237.93 284.11 308.87 1114.61 1450.01

Table 2: Performance comparison of different methods evaluated on JiNan, HangZhou and New York
real-world datasets (ATT in seconds, the smaller the better).

In addition, the performance on transferability is denoted as a transfer ratio: t;rans fer /tirain, Where
téransfer and t¢rqip are the ATT performance of transfer and direct training, respectively. The smaller
the transfer ratio is, the better the model’s transferability will be. At last, we compare the performance
of transferred and trained processes of the Advanced-MPLight and OfflineLight.

As shown in Figure[d] we can see that OfflineLight has shown an obvious advantage of transferability.
Moreover, OfflineLight inherently has a vast generalization for its framework design.
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Figure 4: The illustration of model generalization by transfer ratio comparison.
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A.2 MODEL SPEED

We compared the training time and running time of several classic online RL algorithms and Offline-
Light, all operating on the same computing resources. Specifically, for training time, we measured the
total time from the start of the training to its completion under the same configuration. For running
time, we measured the average time required to transition from the input traffic state to the output
signal action in a single event. OfflineLight leverages a large amount of pre-collected data for training,
which helps improve data utilization efficiency during the learning process. In contrast, online RL
methods typically require real-time interaction with the environment and involves a longer online
exploration process.

As shown in Table 3] OfflineLight is 15.6x times faster than Advanced-CoLight in Jinan, dataset,
although their performances in experiments are close. In addition, OfflineLight has an approximate
training time compared to CQL but shows the best performance in running time, which is more
critical for real-world deployment.

Table 3: Comparison on training speed and running speed in milliseconds.

Method Training Time Running Time
FixedTime 0 57.42
FRAP 22988.91 121.94
MPLight 26902.15 135.55
CoLight 6166.31 155.22
Advanced-CoLight 7016.85 99.21
CQL 449.92 77.31
OfflineLight 502.37 62.60

A.3 LEARNING CURVE

We choose Advanced-CoLightZhang et al.|(2022b)), and our OfflineLight to compare the stability of
the learning process. Each method is executed for a total of 30 episodes, with evaluations conducted
every three episodes. In each evaluation, the average travel time is reported for a single episode,
providing insights into the performance of the algorithms. These online reinforcement learning
models demonstrate exceptional performance and robust stability in practical research applications.

As illustrated in Figure[5] we observe that OfflineLight exhibits remarkably stable and consistently
smooth learning curves across four real-world datasets. In contrast, the compared methods require a
relatively longer and less stable learning process.

A.4 PERFORMANCE COMPARISON OF OFFLINELIGHT AGAINST CONVENTIONAL METHODS

We added the performance comparison of OfflineLight against conventional methods, such as:Fixed-
time, Max Pressure (MP). As shown in Table ] our OfflineLight has evident advantages in ATT
performance.

Type Method JiNan HangZhou New York
1 2 3 1 2 1
Traditional Mehtods Fixed-time 428.11 368.76 383.01 495.57 406.65 1507.12
MP 27396 24538 243.80 288.54 34898  1179.55

Table 4: Performance of traditional methods (ATT in seconds).
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Figure 5: Comparison of learning curves in four datasets.

B METHODS DETAILS

In this section, we introduce the details of baseline methods, the specific settings of hyperparameters
and network structures for OfflineLight.

B.1 DATASET

JiNan datasets: There are 12 (3 x 4) intersections on the road network. Each has a four-way inter-
section with two 800-meter-long (South-North) and two 400-meter-long (East-West) road segments.
This traffic road network dataset includes three traffic flow datasets (JiNani,JilNansg,JiNans).

HangZhou datasets: There are 16 (4 x 4) intersections on the road network. Each has a four-way in-
tersection with two 800-meter-long (East-West) and two 600-meter-long (South-North) road segments.
This traffic road network dataset includes two traffic flow datasets (HangZhou,HangZ hous).

New York dataset: There are 192 (28 x 7) intersections on the road network. Each has two 300-meter
(East-West) road segments and two 300-meter (South-North) road segments. This traffic road network
dataset contains two traffic flow datasets (N etworky,Networks).

Note: the New York dataset is much more extensive than JiNan and HangZhou, which has not been
used to generate TSC-OID.

B.2 BASELINE METHODS

Traditional RL Methods:

FRAP|Zheng et al.| (2019): Modeling phase conflicts, FRAP achieve invariant symmetry for flipped,
rotated, and other symmetric situations in traffic flow.

AttendLight|Oroojlooy et al.|(2020): Introducing the attention mechanism helps to handle general
traffic conditions.

CoLight Wei et al.| (2019b): Using graph attention network to realize intersection cooperation.

AttentionLight [Zhang et al.| (2022a)): Using the queue length as state and reward, applying self-
attention mechanism to obtain phase relationships.
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Efficient-MPLight [ Wu et al.| (2021): FRAP based model, using current phase and efficient traffic
movement pressure as observation, intersection pressure as reward.

Advanced-CoLight/Zhang et al.|(2022b)): CoLight based model, using current phase, efficient running
vehicle, efficient pressure as the state, queue length as reward. It is the current state-of-the-art method.

PRGLight|Zhao et al.|(2021): Combining traffic prediction and traffic light control to jointly control
the traffic light phase and traffic light duration.

Behavior Cloning (BC)

Behavior Cloning (BC) [Torabi et al|(2018)): Capitalizing on the expertise of an agent’s behavior, the
behavioral cloning algorithm acquires the ability to replicate its actions by carefully studying the
exhibited performance.

Offline RL Methods:

CQL |Kumar et al.| (2020): Mitigating overestimation bias by incorporating conservative constraints
into value estimation, CQL leads to a more effective balance between exploration and exploitation
during the learning process.

TD3+BC [Fujimoto & Gu|(2021): Leveraging the stability of TD3’s value function learning with the
expert demonstrations provided by BC, the algorithm leads to improved performance and sample
efficiency in reinforcement learning tasks.

BEAR |[Kumar et al.| (2019): Addressing the overestimation bias issue in off-policy learning, the
algorithm employs bootstrapped ensembles of value functions to effectively estimate the uncertainty
in value estimates.

Combo |Yu et al| (2021): Regularizing the value function on out-of-support state-action tuples
generated via rollouts under the learned model results in a conservative estimate of the value function
for out-of-support state-action tuples, without requiring explicit uncertainty estimation.

In contrast, our OfflineLight is an Offline-AC based method, which constrains Q-function and policy
simultaneously.

B.3 OFFLINE DATASETS GENERATION

In most existing works, it is still unclear which states and rewards are the best choices. We need to use
a variety of states and rewards for the dataset to enhance the model’s generalization. Moreover, the
offline dataset is generated by different logging policies, similar to how the data buffer of off-policy
RL (Q-learning or DDPGLillicrap et al.|(2016)) is generated.

Table 5: Typical RL-related works with different states and rewards

RL-based Method State Reward
FRAP NV QL
AttendLight NV-segments QL
CoLight NV QL
AttentionLight QL QL
Efficient-MPLight EP TMP

Advanced-CoLight EP and ERV QL

The traffic states include the number of vehicles (NV), the number of vehicles under segmented roads
(NV-segments), the queue length (QL), the efficient traffic movement pressure (EP), effective running
vehicles (ERV), and the traffic movement pressure (TMP). The traffic reward consists of QL and
TMP.

Hence, we record two groups (five offline datasets) for three epochs of training (denoted as JiNan',
JiNan?, JiNan3, HangZhou', and HangZhou?) by the training process of these RL methods
that we choose. Each dataset records groups according to the traffic state and reward, as shown in
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Table[5} The TSC-OID datasets are available online at anonymous Githut?|and the sizes of JiNan
and Hangzhou offline dataset files are 843.9M B and 1130 M B, respectively.

B.4 NETWORK STRUCTURES

We introduce the structures of the Actor and Critic networks. All the networks use the same structure
settings. The structure has three parts: phase embedding, lane embedding, and concat embeddings for
the result. We first embed the phase feature in phase embedding and output it to a 4 x 4 dimensional
matrix. Then, in lane embedding, we apply the MLP layers to embed the lane feature and output it to
a 4 x 44 dimensional matrix. After that, we concat the embeddings of phase and lane features and
use a 4-head MHA layer to learn the attention score between features. Finally, we employ an MLP

layer to output the final result. Also, We summarize the network structures of OfflineLight as shown
in Table

Table 6: Network structure design

Actor Critic

Layer name . . .
Y (input size, output size)

Embedding(8, 8x4)

# Phase embedding Sigmoid(8x4, 8x4)
Reshape(8x4, 2x4x4)
Lambda(2x4x4, 4x4)

Reshape(12x11, 12x11x1)

MLP(12x11x1, 12x11x4)

Sigmoid(12x11x4, 12x11x4)

# Lane embedding Reshape(12x11x4, 12x44)

Split(12x44, 1x44)

Concat(1x44, 2x44)
Lambda(2x44, 1x44)
Concat(1x44, 4x44)

Concat([4x44, 4x4], 4x48)
MHA (4x48, 4x48)
MLP(4x48, 4x20)
# Concat embeddings Relu(4x20, 4x20)
MLP(4x20, 4x20)
Relu(4x20, 4x20)
MLP(4x20, 4x1)
Reshape(4x1, 4)

B.5 HYPERPARAMS OF OFFLINELIGHT

We detail the hyperparameters used in the experiment for OfflineLight. The same hyperparameters
for both Actor and Critic networks: we set the multi-head attention counts to 4; we use a batch size

Zhttps://anonymous.4open.science/r/OfflineLight-6665/README.md
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Table 7: Hyperparameters of OfflineLight

Hyperparameter Actor  Critic
batch size 1000
MHA head counts 4
optimizer Adam
learning rate 0.001
T 0.1
discount(~y) - 0.8
normally distributed noise std - 0.02
clip noise ¢ - 0.2
update every t times 10 1

of 1000 for each step to train the network; we apply the Adam optimizer with a learning rate of 0.001
to update the parameters of the networks; we set 7 to 0.1 to update the target networks.

The different hyperparameters for Actor and Critic networks: for the Critic network, we use discount
~ of 0.8 to update the bellman function, and we add the normally distributed noise of 0.02 and clip
it to the range -0.2 to 0.2 for better explore action space. For the Actor network, we update the
network every ten times while we update the Critic network every one time. We summarize the
hyperparameters of OfflineLight as shown in Table[7]

C ABLATION STUDY

C.1 CONSTRAINS FROM OFFLINELIGHT

we remove the constraints of actor and critic in OfflineLight respectively, forming OfflineLight-
without-actor-constrain (OL-WAC), OfflineLight-without-critic-constrain (OL-WCC). Furthermore,
we remove all constraints of actor and critic, leading to OfflineLight-without-both-constrain (OL-
WBC), which is vanilla DDPGLillicrap et al.[(2016). As shown in Tabl we trained these methods
on JiNan' offline dataset and directly conducted on JinNan traffic flow and topology. There
is a significant decline in model performance when the actor and critical constraints are absent,
underscoring the crucial role played by our AC framework. There is a significant decline in model
performance when the actor and critical constraints are absent, underscoring the crucial role played
by our AC framework.

Table 8: Ablation studies on constrains from OfflineLight

Average waiting time on JiNan (s)

OL-WAC 1284 £4.3
OL-WCC 1496 + 0.0
OL-WBC 1275.83 +10.3

C.2 DISTANCE FUNCTION

We set the policy distance function between 7y and the behavior policy g as Dis(mg, 7). The choice
of this distance function can be flexibly implemented. In OfflineLight, we apply Kullback—Leibler
(KL) divergence K L(mg, m3) to implement the distance function Dis() for regularisation. Addi-
tionally, JS divergence, also known as JS distance, is a variant of KL divergence. we also can use
JS divergence to implement the distance function Dis() As shown in Table [0 we trained these
methods on JiNan' and HangZhou' from offline dataset and directly conducted on JinNan; and
HangZhou, traffic flow and topology, respectively. We can see that the performance of JS-div is a
little bit degraded compared to KL-div, which can prove that using KL-div is more effective than JS
for implementing our offline-AC framework.
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Table 10: Ablation studies on distance function

Average waiting time on Ji:/Nan, (s) Average waiting time on HangZhou; (s)
KL-Div 26532 +£1.22 281.50 £ 0.93
JS-Div 263.31+1.16 287.34 +0.00

D THEORETICAL PROOF

Actor: The design of the Actor combines KL divergence with a maximum Q value.

Critic: Below is the critic convergence proof. The objective function is

Qk+1 + arg min Oz(ESND,a~(7r9/ +e) [QI(S’ a)l

/ 1 / am Ak 2 (6)
_Es,aND[Q (Sa a)]) + iEs,awD[Q (S, a) - 5 Q (870,)]
L(Q) = a(ESND7aN(7Tg/ +e€) [Q/(S, (L)] - Es,a~D[Q/(Sa a)])+
1 e g
EEs,aND([Q (Saa’) - ﬁ Q (57 a)] )
Let VorL(Q') = 0
Vo L(Q) ==Y T(s | 5,a) P(s,a) |87Q" (+/,a') — Q'(5,0)| ©

+ad™(s)(me (a | s) — 7(a))

Sampling acquisition in the empirical state transfer distribution T (St+1 | st,at) to get spy1, sam-

pling from the marginal empirical distribution dre’ (s¢) to obtain s, sampling from the empirical
distribution 7y (a; | s¢) for a;.

ZSGD 1 (8 = St)

™' (s;) =
1D
. P (st,a Y osacp (8 =510 =ay)
tgr (ag | 5¢) = A( t: 1) = a€D — )
o’ (st) >sep 1(s=151)
T( | ) P(st,at,5t+1) Zs,a,s’eD:l(S:st?a:atasl:St+1)
S St, Q = = 2
t+1 ty Ut P(st,at) E&aGDl(S:Staa’:at)
According to Equation[J] we can get
k+1 = 3Ok — M _ 1 10
Q" (s,a) = "Q%(s,a) — af (@ l5) ] (10)

Lemma 1 For a given distribution mg: (a|s) = m(als) with factor o > 0, it holds that supp(mg:) C
supp(m).

Lemma 2 [f the policy gradient updates are very slow (at a sufficiently small update rate), disre-
garding sampling errors, that is, when 3™ = (3™, then selecting wo: = %" guarantees that at every
step of the iterative update process, VF11(s) < VFH1(s).

From Lemmas|T|and [2] it can be inferred that when the policy gradient updates are very slow (with
minimal variation between 7%*1 and 7*), it ensures that:

Boorrr [0 (5,0)] < Eyoren [870" (5, 0)]
Vk+1(s) < V]H'l(s)

k+1

(11)
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