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ABSTRACT

Most bandit algorithms assume that the reward variances or their upper bounds are
known, and that they are the same for all arms. This naturally leads to suboptimal
performance and higher regret due to variance overestimation. On the other hand,
underestimated reward variances may lead to linear regret due to committing early
to a suboptimal arm. This motivated prior works on variance-adaptive frequentist
algorithms, which have strong instance-dependent regret bounds but cannot incor-
porate prior knowledge on reward variances. We lay foundations for the Bayesian
setting, which incorporates prior knowledge. This results in lower regret in practice,
since the prior is used in the algorithm design, and also improved regret guarantees.
Specifically, we study Gaussian bandits with unknown heterogeneous reward vari-
ances and develop a Thompson sampling algorithm with prior-dependent Bayes
regret bounds. We achieve lower regret with lower reward variances and more
informative priors on them, which is precisely why we pay only for what is uncer-
tain. This is the first such result in the bandit literature. Finally, we corroborate our
theory with experiments, which demonstrate the benefit of our variance-adaptive
Bayesian algorithm over prior frequentist works. We also show that our approach
is robust to model misspecification and can be applied with estimated priors.

1 INTRODUCTION

A stochastic bandit (Lai & Robbins, 1985; Auer et al., 2002; Lattimore & Szepesvári, 2020) is an
online learning problem where a learning agent sequentially interacts with an environment over n
rounds. In each round, the agent pulls an arm and receives a stochastic reward. The mean rewards of
the arms are initially unknown and the agent learns them by pulling the arms. Therefore, the agent
faces an exploration-exploitation dilemma: explore, and learn more about the arms by pulling them;
or exploit, and commit to the arm with the highest estimated reward. An example of this setting is a
recommender system, where the arm is a recommendation and the reward is a click.

Most bandit algorithms assume that the reward variance or its upper bound is known. For instance,
the confidence intervals in UCB1 (Auer et al., 2002) are derived under the assumption that the rewards
are [0, 1], and hence σ2-sub-Gaussian for σ = 0.5. In Bernoulli KL-UCB (Garivier & Cappe, 2011)
and Thompson sampling (TS) (Agrawal & Goyal, 2012), tighter confidence intervals are derived for
Bernoulli rewards. Specifically, a Bernoulli random variable with either a low or high mean also has
a low variance. In general, the reward variance may be hard to specify (Audibert et al., 2009b). While
overestimating it is typically safe, this decreases the learning rate of the bandit algorithm and thus
increases its regret. On the other hand, when the variance is underestimated, this may lead to linear
regret because the algorithm can commit to an arm without sufficient evidence.

We motivate learning of reward variances by the following example. Take a movie recommender
that learns to recommend highest rated movies in a “Trending Now” carousel. The movies are rated
on scale [1, 5]. Some movies, such as The Godfather, are classics. Therefore, their ratings are high
on average and have low variance. On the other hand, ratings of low-budget movies are often low
on average and have low variance, due to the quality of the presentation. Finally, most movies are
made for a specific audience, such as Star Wars, and thus have a high variance in ratings. Clearly, any
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sensible learning algorithm would require fewer queries to estimate the mean ratings of movies with
low variances. Since the variance is unknown a priori, adaptation is necessary. This would reduce the
overall query complexity and improve statistical efficiency–as one should–because we only pay for
what is uncertain. This example is not limited to movies and applies to other domains, such as online
shopping. Our work answers the following questions in affirmative:

Can we quickly learn the right representation of the reward distribution for efficient learning? What
is the right dependence of the learner’s performance (regret) versus the prior parameters and reward
variances? Can we design an algorithm to achieve that rate? Does the regret decrease with lower

reward variances and more informative priors on them?

Unknown reward variances are a major concern and thus have been studied extensively. In the cumu-
lative regret setting, Audibert et al. (2009b) proposed an algorithm based on upper confidence bounds
(UCBs) and Mukherjee et al. (2018) proposed an elimination algorithm. In best-arm identification
(BAI) (Audibert et al., 2009b; Bubeck et al., 2009), several papers studied the fixed-budget (Gabillon
et al., 2011; Faella et al., 2020; Saha et al., 2020; Lalitha et al., 2023) and fixed-confidence (Lu et al.,
2021; Zhou & Tian, 2022; Jourdan et al., 2022) settings with unknown reward variances. All above
works studied frequentist algorithms. On the other hand, Bayesian algorithms based on posterior
sampling (Thompson, 1933; Chapelle & Li, 2011; Agrawal & Goyal, 2012; Russo & Van Roy, 2014;
Russo et al., 2018; Kveton et al., 2021; Hong et al., 2022b) perform well in practice, but learning of
reward variances in these algorithms is understudied.

We consider the Bayesian setting (Russo & Van Roy, 2014) and introduce it in detail in Section 3. This
is because Bayesian algorithms are very practical (Chapelle & Li, 2011; Russo et al., 2018; Kveton
et al., 2021) and Bayesian analyses are the only bandit analyses that can capture the dependence on
prior (Russo & Van Roy, 2016; Lu & Van Roy, 2019; Hong et al., 2022b;a). More specifically, as the
prior becomes more informative, Bayes regret bounds go to zero, and so does the Bayes regret of
Thompson sampling. Frequentist regret bounds do not have this behavior because they are proved for
any bandit instance, which is unrelated to the prior in the bandit algorithm (Agrawal & Goyal, 2012;
2013b). In fact, all frequentist regret bounds for Bayesian algorithms assume a sufficiently-wide prior,
which is analogous to being uninformative. Taking an expectation of frequentist regret bounds over
instances sampled from the prior does not yield the right dependence on the prior. In our experiments,
we show that as the prior becomes more informative, our bounds become tighter than the frequentist
bounds. This shows the benefit of Bayesian analyses.

Bayesian analyses have two shortcomings. First, they are on average over bandit instances sampled
from the prior. This relates the bandit instances to the prior in the bandit algorithm and allows a
prior-dependent analysis. Second, to derive closed-form posteriors and use them in the analysis,
modeling assumptions are needed. In our work, we assume Gaussian noise, which is less general than
the sub-Gaussian noise that is typically used in frequentist analyses (Abbasi-Yadkori et al., 2011).
Our contributions are summarized next.

Contributions: (1) To warm up, we start with Thompson sampling in a K-armed Gaussian bandit
with known heterogeneous reward variances (Section 4). Its regret bound (Theorem 1) decreases
as reward variances decrease. It also approaches zero as the prior variances of mean arm rewards
go to zero, since a Bayesian learning agent knows the bandit instance with certainty in this case. (2)
We propose a Thompson sampling algorithm VarTS for a K-armed Gaussian bandit with unknown
heterogeneous reward variances (Section 5). VarTS maintains a joint Gaussian-Gamma posterior for
the mean and precision of the rewards of all arms and samples from it in each round. (3) We prove a
Bayes regret bound for VarTS (Theorem 2), which decreases with lower reward variances and more
informative priors on them. This is the first such regret bound. The novelty in our analysis is in
handling random confidence interval widths due to random reward variances. The bound captures
the same trade-offs as if the variance was known, replaced by the corresponding prior-dependent
quantities. (4) We evaluate VarTS on various types of reward distributions, from Bernoulli to beta to
Gaussian (Section 6). Our evaluation shows that VarTS outperforms all existing baselines, even with
an estimated prior. This showcases the generality and robustness of our method.

2 RELATED WORK

Classic K-armed bandits have been studied for over three decades (Lai & Robbins, 1985; Lai, 1987).
Two popular techniques for solving these problems are UCBs (Auer, 2002; Audibert et al., 2009a;
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Ménard & Garivier, 2017) and Thompson sampling (Thompson, 1933; Agrawal & Goyal, 2012;
Bubeck & Liu, 2013). Recent works on TS matched the minimax optimal rate in K-armed bandits
(Jin et al., 2021). Jin et al. (2023) designed a minimax and asymptotically optimal TS. Improved TS
algorithms for combinatorial bandits and semi-bandits have also been proposed (Perrault et al., 2020;
Perrault, 2022). The focus of our work is on TS that adapts to unknown reward variances.

The beginnings of variance-adaptive algorithms can be traced to Auer et al. (2002). Auer et al. (2002)
proposed a variance-adaptive UCB1 for Gaussian bandits, called UCB1-Normal, where the reward
distribution of arm i is N (µi, σ

2
i ) and σi > 0 is known by the learning agent. The n-round regret of

this algorithm is O
(∑

i:µi<µa∗
σ2
i

∆i
log n

)
, where ∆i = µa∗ − µi is the gap of arm i and a∗ is the

arm with the highest mean reward µi. The first UCB algorithm for unknown reward variances with
an analysis was UCB-V by Audibert et al. (2009b). The key idea in the algorithm is to design high-
probability confidence intervals based on empirical Bernstein bounds. The n-round regret of UCB-V
is O

(∑
i:µi<µa∗

(
σ2
i

∆i
+ b
)
log n

)
, where b is an upper bound on the absolute value of rewards. In

summary, variance adaptation in UCB-V incurs only a small penalty of O(bK log n). Mukherjee et al.
(2018) proposed an elimination-based variant of UCB-V that attains the optimal gap-free regret of
O(

√
Kn). While empirical Bernstein bounds are general, they tend to be conservative in practice.

This was observed by Garivier & Cappe (2011) and we observe the same trend in our experiments
(Section 6). Our work can be viewed as a similar development to UCB-V in Thompson sampling. We
show that Thompson sampling with unknown reward variances (Section 5) incurs only a slightly
higher regret than the one with known variances (Section 4), by a multiplicative factor. Compared to
UCB-V, the algorithm is highly practical.

Two closest papers to our work are Honda & Takemura (2014); Zhu & Tan (2020). Both papers
propose variance-adaptive Thompson sampling and bound its regret. There are three key differences
from our work. First, the algorithms of Honda & Takemura (2014); Zhu & Tan (2020) are designed for
the frequentist setting. Specifically, they have a fixed sufficiently-wide prior and enjoy a per-instance
regret bound under this prior. While this is a strong guarantee, the algorithms can perform poorly
when priors are narrower and thus more informative. Truly Bayesian algorithm designs, as proposed
in our work, can be analyzed for any informative prior. Second, the analyses of Honda & Takemura
(2014); Zhu & Tan (2020) are frequentist. Therefore, they cannot justify the use of more informative
priors. We prove regret bounds that decrease with lower reward variances and more informative priors
on them. Finally, the regret bounds of Honda & Takemura (2014); Zhu & Tan (2020) are asymptotic.
We provide strong finite-time guarantees. We discuss these difference in more detail after Theorem 2
and demonstrate them empirically in Section 6.

Another line of related works are variance-dependent regret bounds for d-dimensional linear con-
textual bandits (Kim et al., 2022; Zhao et al., 2022; 2023; Zhang et al., 2021). These works address
the problem of time-dependent variance adaptivity. They derive frequentist regret bounds that scale
as Õ(poly(d)

√
1 +

∑n
t=1 σ

2
t ), where σ2

t is an unknown reward variance in round t. This setting
is different from ours in two aspects. First, the reward variances change over time but are fixed
across the arms. We do the opposite in our work. Second, their algorithm designs and analyses are
frequentist, and thus do not exploit prior knowledge. On the other hand, we focus only on K-armed
bandits, which is a special case of linear bandits.

3 PROBLEM SETUP

Notation. The set {1, . . . , n} is denoted by [n]. The indicator 1{E} denotes that event E occurs. We
use boldface letters to denote vectors. For any vector v ∈ Rd, we denote its i-th entry by vi or v(i).
We denote the entry-wise square of v by v2. A diagonal matrix with entries v is diag (v). Õ is the
big O notation up to polylogarithmic factors. Gaussian, Gamma, and Gaussian-Gamma distributions
are denoted by N , Gam, and NG, respectively. For any random variables X and Y , we abbreviate
E [E [· | X,Y ] | X] as E [E [· | Y ] | X].

Setting. A bandit instance is a pair of mean arm rewards and reward variances, (µ,σ2), where
µ ∈ RK is a vector of mean arm rewards, σ2 ∈ RK

≥0 is a vector of reward variances, and K is the
number of arms. We propose algorithms and analyze them for both when the reward variances σ2 are
known (Section 4) and unknown (Section 5).
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Feedback model. The agent interacts with the bandit instance (µ,σ2) for n rounds. In round t ∈ [n],
it pulls an arm and observes its stochastic reward. We denote the pulled arm in round t by At ∈ [K],
a stochastic reward vector of all arms in round t by xt ∈ RK , and the reward of arm i ∈ [K] by
xt,i ∈ R. The rewards are sampled from a Gaussian distribution, xt,i ∼ N (µi, σ

2
i ). The interactions

of the agent up to round t are summarized by a history Ht =
(
A1, x1,A1

, . . . , At−1, xt−1,At−1

)
.

Bayesian bandit setting. We consider a Bayesian multi-armed bandit (Russo & Van Roy, 2014;
Russo et al., 2018; Kveton et al., 2021; Hong et al., 2022b) where the bandit instance is either fully or
partially random:

(i). When reward variances are known (Section 4), the bandit instance (µ,σ) is generated as follows.
The mean arm rewards are sampled from a Gaussian distribution, µ ∼ P0 = N (µ0,diag

(
σ2
0

)
),

where µ0 ∈ RK and σ2
0 ∈ RK

≥0 are the prior means and variances of µ, respectively. Both µ0 and
σ2
0 are assumed to be known by the agent. The reward variances σ2 are also known.

(ii). When reward variances are unknown (Section 5), the bandit instance (µ,σ) is sampled from a
Gaussian-Gamma prior. Specifically, for any arm i, the mean and variance of its rewards are sampled
as (µi, σ

−2
i ) ∼ NG(µ0,i, κ0,i, α0,i, β0,i), where (µ0,κ0,α0,β0) are known prior parameters. This

can also be seen as sampling σ−2
i ∼ Gam(α0,i, β0,i) and then µi ∼ N (µ0,i,

σ2
i

κ0,i
). This equivalence

follows from the basic properties of the Gaussian-Gamma distribution (Lemma 3 in Appendix).

Regret. We measure the n-round Bayes regret of a learning agent with instance prior P0 as:

Rn = E [
∑n

t=1 µA∗ − µAt
] , (1)

where A∗ = argmaxi∈[K] µi is the optimal arm. The above expectation is over mean arm rewards µ
drawn from the prior distribution, unlike in the frequentist setting where µ would be unknown but
fixed (Lattimore & Szepesvári, 2020). The randomness in the expectation includes how the agent
chooses At and the randomness in bandit feedback xt,At

∼ N (µAt
, σ2

At
).

We depart from the classic bandit setting (Auer et al., 2002; Abbasi-Yadkori et al., 2011; Lattimore &
Szepesvári, 2020) in two major ways. First, we consider Gaussian reward noise, as opposing to a
more general sub-Gaussian noise. The Gaussian noise and corresponding conjugate priors lead to
closed-form posteriors in our algorithms and analyses, which simplifies them. This is why this choice
has been popular in recent Bayesian analyses (Lu & Van Roy, 2019; Kveton et al., 2021; Wan et al.,
2021; Hong et al., 2022b;a). Second, our regret is Bayesian, on average over bandit instances. An
alternative would be the frequentist regret, which holds for any bounded bandit instance. We choose
the Bayes regret because it can capture the relation between the bandit instance and its prior, and thus
show benefits of informative priors. We discuss this in depth throughout the paper, and especially
after Theorem 1 and Theorem 2. To alleviate concerns about Gaussian posteriors in the algorithm
design, we experiment with non-Gaussian bandit problems in Section 6.

4 GAUSSIAN BANDIT WITH KNOWN VARIANCES

We start with the Bayesian setting with Gaussian rewards and known heterogeneous reward variances.
In Section 4.1, we introduce a Thompson sampling algorithm (Thompson, 1933; Chapelle & Li, 2011;
Agrawal & Goyal, 2012) for this setting. Gaussian TS is straightforward and appeared in many prior
works, starting with Agrawal & Goyal (2013a). We state and discuss its regret bound in Section 4.2.
The bound scales roughly as:

√
n log n

√∑K
i=1 σ

2
i log

(
1 + n

σ2
0,i

σ2
i

)
. (2)

One notable property of the bound is that it goes to zero when the reward variances σ2
i or the prior

variances of the mean arm rewards σ2
0,i do. Although the bound is novel, its proof mostly follows

Kveton et al. (2021). We mainly state it to contrast it with the main result in Section 5.

4.1 GAUSSIAN THOMPSON SAMPLING

The key idea in our algorithm is to maintain a posterior distribution over the unknown mean arm
rewards µ and act optimistically with respect to samples from it. Since µ and its rewards are sampled

4



Published as a conference paper at ICLR 2024

from Gaussian distributions, the posterior is also Gaussian. Specifically, the posterior distribution of
arm i in round t is N (µ̂t,i, σ

2
t,i), where µ̂t,i and σ2

t,i are the posterior mean and variance, respectively,
of arm i in round t. These quantities are initialized as µ̂1,i := µ0,i and σ1,i := σ0,i.

Our algorithm is presented in Algorithm 1 (Appendix A) and we call it Gaussian TS due to Gaussian
rewards. The algorithm works as follows. In round t, it samples the mean reward of each arm i from
its posterior, µ̃t,i ∼ N (µ̂t,i, σ

2
t,i). After that, the arm with the highest posterior-sampled mean reward

is pulled, At := argmaxi∈[K] µ̃t,i. Finally, the algorithm observes a stochastic reward of arm At,
xt,At ∼ N (µAt , σ

2
At
), and updates its posteriors (Lemma 7 in Appendix) as:

σ2
t+1,i :=

1

σ−2
0,i +Nt+1(i)σ

−2
i

, µ̂t+1,i := σ2
t+1,i

(
µ0,i

σ2
0,i

+
Nt+1(i)x̄t+1,i

σ2
i

)
,

where x̄t+1,i :=
1

Nt+1(i)

∑t
s=1 1{As = i}xs,i is the empirical mean reward of arm i at the beginning

of round t+ 1 and Nt+1(i) is the number of its pulls. The complete pseudocode of Algorithm 1 is
given in Appendix A.

4.2 REGRET ANALYSIS

Before analyzing Algorithm 1, we recall the setting again. The mean arm rewards are sampled from a
Gaussian prior, µ ∼ P0 = N (µ0,diag

(
σ2
0

)
), where µ0 ∈ RK and σ2

0 ∈ RK
≥0 are the prior means

and variances of µ, respectively. The reward of arm i in round t is sampled as xt,i ∼ N (µi, σ
2
i ).

Both µ0 and σ2
0 , and reward variances σ2, are fixed and known. Our regret bound is stated below.

Theorem 1 (Variance-dependent regret bound for known variances). Consider the above setting.
Then for any δ > 0, the Bayes regret of Gaussian TS is bounded as:

Rn ≤
K∑
i=1

√
2σ2

0,i

π
nδ +

√
2n

√√√√ K∑
i=1

σ2
i

(
log(1 + nσ2

0,iσ
−2
i ) + σ2

0,iσ
−2
i

)
log(1/δ) .

The complete proof of Theorem 1 is in Appendix B. We discuss the bound below.

Dependence on all parameters of interest and prior. For δ = 1/n, the bound in Theorem 1 scales

roughly as Õ
(√

n
∑K

i=1 σ
2
i log

(
1 + nσ2

0,iσ
−2
i

)
+
√

n
∑K

i=1 σ
2
0,i

)
. Note that we ignore the first

term in Theorem 1, which is order-wise dominated by the second term when δ = 1/n. Our bound
has several properties that we discuss next. First, it matches the usual

√
n dependence of all classic

Bayes regret bounds (Russo & Van Roy, 2014; 2016; Lu & Van Roy, 2019). Second, it increases with
variances σ2

i of individual arm rewards, which is expected because higher reward variances make
learning harder. Third, the bound can be viewed as a generalization of existing bounds that assume
homogeneous reward variances. Specifically, Kveton et al. (2021) proved a Õ(

√
σ2Kn) Bayes regret

bound in Lemma 4 under the assumption that the reward distribution of arm i is N (µi, σ
2). We

match it when σi = σ for all arms i. Fourth, the bound approaches zero as σ0,i → 0. In this setting,
Gaussian TS knows the mean arm rewards µi almost with certainty because their prior variances σ2

0,i
are low, and thus no exploration is necessary. This is a unique property of Bayes regret bounds that is
not captured by any frequentist analysis, such as that of UCB1-Normal (Auer et al., 2002).

Regret optimality. Starting with the seminal works of Russo & Van Roy (2014; 2016), most Bayes
regret bounds are Õ(

√
n) and do not have finite-time instance-dependent lower bounds. Lattimore

& Szepesvári (2020) derived a Ω(
√
Kn) asymptotic lower bound for a K-armed bandit as n → ∞

(Theorem 35.1). Our regret bound (Theorem 1) matches this rate when all variances are the same,
σ0,i = σi = 1 for all i ∈ [K]. In addition, it provides an improved dependence on lower reward
variances and more informative priors, which implies faster learning rates in these regimes. In fact,
when the prior variances of all mean arm rewards go to zero, σ0,i → 0 for all i ∈ [K], our bound goes
to zero; as expected. Therefore, we conjecture that our regret bound is worst-case optimal. The only
other lower bound that we are aware of is Ω(log2 n) for a K-armed bandit (Theorem 3 in Lai (1987)).
This lower bound is asymptotic and applies only to exponential-family reward distributions with a
single parameter, which excludes Gaussian distributions because they have two parameters. The

5



Published as a conference paper at ICLR 2024

lower bound was recently matched in a Bernoulli bandit by Atsidakou et al. (2023). This indicates
that logarithmic upper bounds may be possible in our setting. To conclude, we believe that deriving a
tight finite-time Ω(

√
Kn) lower bound for our setting or a logarithmic upper bound are important

problems, and we leave them for future work.

5 GAUSSIAN BANDIT WITH UNKNOWN VARIANCES

Our main contribution is the Bayesian setting with Gaussian rewards and unknown heterogeneous
reward variances. Similarly to Section 4, we propose a Thompson sampling algorithm for this setting
in Section 5.1. We state and discuss its regret bound in Section 5.2. The bound scales roughly as:

√
n log n

√∑K
i=1

β0,i

α0,i−1 log
(
1 + n

κ0,i

)
,

where β0,i

α0,i−1 is a proxy for the reward variance σ2
i in equation 2 and κ−1

0,i plays the role of σ2
0,i/σ

2
i .

Since the dependencies are analogous, the bound captures the structure of the problem similarly
to equation 2. Our main novelty lies in handling the uncertainty of reward variances σ2, which is
unique among all existing TS proofs.

5.1 ALGORITHM VarTS

As in Algorithm 1, we maintain a posterior distribution over the unknown mean arm rewards µ and
act optimistically with respect to samples from it. The challenge is that the reward variances σ2 are
also unknown. To overcome it, we use the fact that the posterior of (µi, σ

−2
i ) is a Gaussian-Gamma

distribution when the prior is and the rewards are Gaussian. We represent the posterior hierarchically,
in an equivalent form (Lemma 3 in Appendix), as follows. The posterior distribution of the mean
reward of arm i in round t is N (µ̂t,i, σ

2
t,i), where µ̂t,i and σ2

t,i are the posterior mean and sampled
variance, respectively. The variance is σ2

t,i =
1

κt,iλt,i
, where κt,i = O(Nt(i)) and λt,i is a posterior-

sampled reward precision of arm i in round t. The posterior distribution of λt,i is Gam(αt,i, βt,i),
where αt,i and βt,i denote its shape and rate parameters, respectively. All posterior parameters are
initialized by their prior values (µ0,i, κ0,i, α0,i, β0,i).

Our algorithm is presented in Algorithm 2 and we call it VarTS, because it adapts to the unknown
reward variances of arms. The algorithm works as follows. In round t, it first samples the precision
of each arm from its posterior, λt,i ∼ Gam(αt,i, βt,i), and then it samples the mean arm reward from
its posterior, µ̃t,i ∼ N (µ̂t,i,

1
κt,iλt,i

). After that, the arm with the highest posterior-sampled mean
reward is pulled, At := argmaxi∈[K] µ̃t,i. Finally, the algorithm observes a stochastic reward of
arm At, xt,At

∼ N (µAt
, σ2

At
), and updates its posteriors (lines 7–13 in Algorithm 2). The complete

pseudocode Algorithm 2 is given in Appendix C.

5.2 REGRET ANALYSIS

We recall that the bandit instance (µ,σ) is sampled from a Gaussian-Gamma distribution: for any
arm i, the mean and variance of its rewards are sampled as (µi, σ

−2
i ) ∼ NG(µ0,i, κ0,i, α0,i, β0,i),

where (µ0,κ0,α0,β0) are known prior parameters. This can also be seen as first sampling σ−2
i ∼

Gam(α0,i, β0,i) and then µi ∼ N (µ0,i,
σ2
i

κ0,i
). Our regret bound is stated below.

Theorem 2 (Variance-dependent regret bound for unknown variances). Consider the above setting
and let α0,i ≥ 1 for all arms i ∈ [K]. Then for any δ > 0, the Bayes regret of VarTS is bounded as:

Rn ≤ C
√
n log(1/δ) + δC

√
nk/(2π) ,

where C2 =
∑K

i=1
β0,i

α0,i−1

(
2

κ0,i
+ 0.5

κ0,i(α0,i−1) + 5 log
(
1 + n

κ0,i

))
is a prior-dependent constant.

Proof of Theorem 2. The difficulty lies in tightly bounding confidence intervals of random reward
means with unknown reward variances, to obtain the right dependence on β0,i

α0,i−1 and 1
κ0,i

. This is
algebraically challenging due complicated posterior updates of Gaussian-Gamma distributions in

6



Published as a conference paper at ICLR 2024

Algorithm 2. To overcome these difficulties, we carefully condition random variables on each other
together with their appropriate histories, and then combine them using Jensen’s and Cauchy-Schwarz
inequalities. The key lemmas along with the complete proof of Theorem 2 are in Appendix D.

Dependence on all parameters of interest and prior. For δ = 1/n, the bound in Theorem 2 is
Õ(

√
Cn). The dependence on

√
n is the same as in Theorem 1. A closer examination of C reveals

many similarities with Theorem 1.

First, since σ−2
i ∼ Gam(α0,i, β0,i), we know that σ2

i is sampled from an Inverse-Gamma distribution
with the same parameters. The mean of this distribution is β0,i/(α0,i − 1). Hence, β0,i/(α0,i − 1) in
Theorem 2 plays the role of σ2

i in Theorem 1 and represents the effective reward variance.

Second, κ0,i in the Gaussian-Gamma prior plays the role of σ2
i /σ

2
0,i in the known variance setting

(Murphy, 2007). Therefore, as κ0,i → ∞, the bound in Theorem 2 should go to zero, similarly to
Theorem 1. This is indeed the case and a very unique property of Bayes regret bounds, which is not
captured by Honda & Takemura (2014); Zhou & Tian (2022).

Finally, we take α0,i, β0,i → ∞ while keeping β0,i/(α0,i − 1) fixed. Since the mean and variance of
the Inverse-Gamma distribution are β0,i/(α0,i − 1) and β2

0,i/((α0,i − 1)2(α0,i − 2)), respectively,
the mean of the variance prior is fixed while we narrow its width. In this case, we expect the bound in
Theorem 2 to approach Theorem 1, which happens because 0.5/(κ0,i(α0,i − 1)) vanishes. After that,
the bounds are similar up a multiplicative factor of 5.

Existing frequentist regret bounds for variance-adaptive Thomson sampling. Honda & Takemura
(2014); Zhu & Tan (2020) proposed variance-adaptive Thompson sampling and bounded its regret.
These works differ from us in three aspects. First, the algorithms of Honda & Takemura (2014); Zhu
& Tan (2020) are designed for the frequentist setting. Specifically, they have a fixed sufficiently-wide
prior, and enjoy a per-instance regret bound under this prior. As an example, the algorithm of Zhu
& Tan (2020) for ρ → ∞ (Remark 4) is essentially VarTS with µ0,i = 0, κ0,i = 0, α0,i = 0.5,
and β0,i = 0.5. While per-instance regret bounds are strong, the algorithms of Honda & Takemura
(2014); Zhu & Tan (2020) can perform poorly when priors are narrower and thus more informative.
Truly Bayesian algorithm designs, as proposed in our work, can be analyzed for any informative
prior. Second, the analyses of Honda & Takemura (2014); Zhu & Tan (2020) are frequentist. This
means that they cannot justify the use of more informative priors and are essentially similar to those
of frequentist upper confidence bound algorithms. As an example, in Remark 4 of Zhu & Tan (2020),
the authors derive a O

(∑
i:µi<µa∗

1
∆i

log n
)

regret bound, where ∆i = µa∗ − µi and a∗ is the arm
with the highest mean reward µi. This bound clearly does not depend on prior parameters, which
we incorporate in our bounds. Specifically, our bound in Theorem 2 decreases with lower reward
variances and more informative priors on them. Finally, the regret bounds of Honda & Takemura
(2014); Zhu & Tan (2020) are asymptotic. We provide strong finite-time guarantees.

6 EXPERIMENTS

We also study the empirical performance of our proposed algorithms. Since VarTS does not assume
that the reward variances are known, and thus is more realistic than Algorithm 1, we focus on VarTS.
We conduct four experiments. First, we evaluate VarTS in a Bernoulli bandit, which is a standard
bandit benchmark. Second, we experiment with beta reward distributions. Their support is [0, 1], as
in Bernoulli distributions, but their variances are not fully determined by their means. Since VarTS
is designed for Gaussian bandits, the first two experiments also evaluate the robustness of VarTS to
model misspecification. Third, we experiment with a Gaussian bandit. Finally, we vary the number
of arms and observe how the performance of VarTS scales with problem size.

6.1 EXPERIMENTAL SETUP

All problem instances in our experiments are Bayesian bandits. The mean arm rewards are drawn
from a prior distribution. In Gaussian bandits, VarTS is run with the true (µ0,κ0,α0,β0). In other
problems, the hyper-parameters of VarTS are set using the method of moments (Pearson, 1936) and
samples from the prior. In particular, for a given Bayesian bandit, let µ̄i and vi be the estimated mean
and variance of the mean reward of arm i sampled from its prior, respectively. Moreover, let λ̄i and
νi be the estimated mean and variance of the precision of the reward distribution of arm i sampled
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Figure 1: VarTS compared to 7 baselines. The plots share legends.
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Figure 2: VarTS with 7 baselines as we vary the number of arms K. The plots share legends.

from its prior, respectively. Then, using these statistics, we estimate the unknown hyper-parameters
of the prior as µ0,i = µ̄i, β0,i = λ̄i/νi, α0,i = β0,i/λ̄i, and κ0,i = β0,i/(α0,ivi).

We compare VarTS to several baselines. UCB1 (Auer et al., 2002) is the most popular algorithm for
stochastic K-armed bandits with [0, 1] rewards. It does not adapt to reward variances and thus may
be too conservative in our setting. We also consider variance-adaptive UCB algorithms: UCB1-Tuned
(Auer et al., 2002) and UCB-V (Audibert et al., 2009b). UCB1-Tuned is a heuristic that performs well
in practice. UCB-V uses empirical Bernstein confidence intervals and has theoretical guarantees. We
implement both algorithms for [0, 1] rewards. The next two baselines are Bernoulli and Gaussian TS
(Agrawal & Goyal, 2013a). Bernoulli TS has a uniform Beta(1, 1) prior. When the rewards Yt,i are
not binary, we clip them to [0, 1] and then apply Bernoulli rounding: the reward is replaced with 1
with probability Yt,i and 0 otherwise. Gaussian TS has a N (0, 1) prior and unit reward variances. We
modify both algorithms to explore using the posterior sample 1/K fraction of time and the posterior
mean otherwise, as proposed and analyzed in Jin et al. (2023). This significantly reduces the regret
of Gaussian TS while the regret of Bernoulli TS remains comparable. We refer to these algorithms
as ε-TS. The last two baselines are Thompson sampling with unknown reward variances (Honda &
Takemura, 2014; Zhu & Tan, 2020). We implement Algorithm 1 in Honda & Takemura (2014) and
call it TS14, and Algorithm 3 in Zhu & Tan (2020) for ρ → ∞ and call it TS20. Note that TS20 is
VarTS where µ0,i = 0, κ0,i = 0, α0,i = 0.5, and β0,i = 0.5. The shortcoming of all TS baselines is
that they are designed to have frequentist per-instance guarantees. Therefore, their priors are set too
conservatively to compete with VarTS, which takes the true prior or its estimate as an input. In all
simulations, the horizon is n = 2000 and they are averaged over 1 000 randomly initialized runs.

The baselines in our experiments were chosen to cover well existing variance-adaptive / not adaptive
and Bayesian / frequentist bandit algorithms: UCB1-Tuned, UCB-V, TS14, and TS20 adapt to unknown
reward variances; while UCB1 and ε-TS do not. ε-TS, TS14, and TS20 are Bayesian algorithms; while
UCB1, UCB1-Tuned, and UCB-V are frequentist algorithms.

6.2 BERNOULLI BANDIT

We start with a Bernoulli bandit with K = 10 arms. The mean reward of arm i ∈ [K], µi, is sampled
i.i.d. from prior Beta(i,K + 1 − i). Since E [µi] = i/(K + 1) and std [µi] ≈ 1/

√
K + 1, higher

prior means indicate higher µi, although arm K may not have the highest mean reward.

Our results are reported in Figure 1a. We observe that VarTS and Bernoulli ε-TS have the lowest
regret. The latter is not surprising since Bernoulli ε-TS is designed for this problem class. The fact

8



Published as a conference paper at ICLR 2024

that we match its performance is a testament to adapting to reward variances and using priors. Three
out of four of the next best-performing algorithms (UCB1-Tuned, TS14, and TS20) adapt to reward
variances but do not use informative priors. The frequentist algorithms with regret bounds (UCB1 and
UCB-V) have the highest regret because they are too conservative.

6.3 BETA BANDIT

The bandit problem in the second experiment is a variant of Section 6.2 where the reward distribution
of arm i is Beta(sµi, s(1− µi)) for s = 10. Roughly speaking, this means that the reward variance
of arm i is 10 lower than in Section 6.2. The rest of the setup is the same.

Our results are reported in Figure 1b. We observe only two differences from Figure 1a. First, VarTS
outperforms Bernoulli ε-TS because it learns that the arms have 10 times lower reward variances than
in Figure 1a. Therefore, it can be more aggressive in pulling the optimal arm. Second, both TS14 and
TS20 outperform UCB1-Tuned, possibly due to more principled learning of reward variances.

6.4 GAUSSIAN BANDIT

The third experiment is with a Gaussian bandit where both the means and variances of rewards are
sampled i.i.d. from a prior with parameters µ0,i = i/(K + 1), κ0,i = K, α0,i = 4, and β0,i = 1. For
this setting, E [µi] = i/(K + 1) and std [µi] ≈ 1/

√
K + 1. Therefore, higher prior means indicate

higher µi, although arm K may not have the highest mean reward. Since the average reward variance
is 0.25, bandit algorithms for [0, 1] rewards are expected to work well.

Our results are reported in Figure 1c. We observe that UCB1-Tuned has the lowest regret and VarTS
performs similarly. This shows the practicality of our design, which is analyzable and comparable to
a well-known heuristic without guarantees. All other algorithms have at least 50% higher regret. As
before, the frequentist algorithms with regret bounds (UCB1 and UCB-V) are overly conservative and
among the worst performing baselines.

6.5 SCALABILITY

We vary the number of arms K and observe how the performance of VarTS scales with problem size.
This experiment is done in Bernoulli (Section 6.2), beta (Section 6.3), and Gaussian (Section 6.4)
bandits. Our results in Figure 2 show that the gap between VarTS and the baselines increases with
K. For K = 32 and Bernoulli bandit, VarTS has at least 3 times lower regret than any baseline. For
K = 32 and beta bandit, VarTS has at least 5 times lower regret than any baseline. For K = 32 and
Gaussian bandit, VarTS has at least 2 times lower regret than any baseline. These gains are driven by
adaptation to reward variances and using priors, on both the mean and variance of the rewards.

7 CONCLUSIONS

We study the problem of learning to act in a multi-armed Bayesian bandit with Gaussian rewards
and heterogeneous reward variances. As a first step, we present a Thompson sampling algorithm
for the setting of known reward variances and bound its regret (Theorem 1). The bound scales as
√
n log n

√∑K
i=1 σ

2
i log

(
1 + n

σ2
0,i

σ2
i

)
. Therefore, it goes to zero as the reward variances σ2

i or the

prior variances of the mean arm rewards σ2
0,i decrease. Our main contribution is VarTS, a variance-

adaptive TS algorithm for Gaussian bandits with unknown heterogeneous reward variances. The
algorithmic novelty lies in maintaining a joint Gaussian-Gamma posterior for the mean and variance
of rewards of each arm. We prove a Bayes regret bound for VarTS (Theorem 2) that scales similarly

to the known variance bound. More specifically, it is
√
n log n

√∑K
i=1

β0,i

α0,i−1 log
(
1 + n

κ0,i

)
, where

β0,i

α0,i−1 is a proxy for the reward variance σ2
i and κ−1

0,i plays the role of σ2
0,i/σ

2
i . Our bound captures

the effect of the prior on learning reward variances and is the first such bound.

Potential future directions include extending our framework to infinite arms, which would require a
different set of assumptions on the priors and reward distributions for tractable solutions. Another
very practical and general direction would be incorporating context and changing reward variances
over time, as in Kim et al. (2022); Zhao et al. (2022; 2023); Zhang et al. (2021).

9



Published as a conference paper at ICLR 2024

REFERENCES

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari. Improved algorithms for linear stochastic
bandits. In Advances in Neural Information Processing Systems 24, pp. 2312–2320, 2011.

Shipra Agrawal and Navin Goyal. Analysis of Thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Annual Conference on Learning Theory, pp. 39.1–39.26,
2012.

Shipra Agrawal and Navin Goyal. Further optimal regret bounds for Thompson sampling. In
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, pp.
99–107, 2013a.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
Proceedings of the 30th International Conference on Machine Learning, pp. 127–135, 2013b.

Alexia Atsidakou, Branislav Kveton, Sumeet Katariya, Constantine Caramanis, and Sujay Sanghavi.
Finite-time logarithmic Bayes regret upper bounds. In Advances in Neural Information Processing
Systems 36, 2023.
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