
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEVERAGING PRIOR EXPERIENCE: AN EXPANDABLE
AUXILIARY KNOWLEDGE BASE FOR TEXT-TO-SQL
(SUPPLEMENTARY)

Anonymous authors
Paper under double-blind review

A PROMPT TEMPLATES

This section introduces the prompt templates used in LPE-SQL, categorized into four types: the tem-
plate for generically generating SQL queries (List 1), the template for generating the corresponding
thought process based on the SQL query (List 2), the template for generating tips based on the in-
correct SQL and the ground truth SQL (List 3), and the template for re-generating the SQL using
error information from SQL execution (List 4). For demonstration purposes, we use a scenario that
combines both the correct and mistake notebooks (correct rate = 0.5).

For your reference, here are some examples of Questions, sql queries,
and thought processes related to the Question you’re working with
{Example2}

Below are examples of mistakes you’ve made before that are similar to
the question you’re about to tackle, so please refer to not making
the same mistake!
{Example1}
{Example2}

Schema of the database:
{Database Schema}

-- Using valid SQLite and understanding Hint, answer the following
questions for the tables provided above.

-- {Question}
-- {External Knowledge}

Generate the SQLite for the above question after thinking step by step:

In your response, you do not need to mention your intermediate steps.
Do not include any comments in your response.
Do not need to start with the symbol ‘‘‘
Your SQL code should be concise and efficient.
You only need to return the result SQLite SQL code
start from SELECT

Listing 1: The template for generically generating SQL queries.

Schema of the database:
{database_schema}

Question:
{Question}

External Knowledge :
{External Knowledge}

You just generated the following SQL:
{SQL Query}

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Now, please provide your thought process behind the generation of this
SQL query. Your explanation should be concise and efficient, focusing
on the key reasoning steps.

Listing 2: The template for re-generating an SQL query based on error feedback from SQL
execution.

Schema of the database:
{Database Schema}

Question:
{Question}

External Knowledge :
{External Knowledge}

Error SQL Query:
{Error SQL Query}

Error information:
{Error}

SQL after Reflection:
{SQL after Reflection}

Ground Truth SQL:
{Ground Truth SQL}

Error SQL Query is the result you generate the first time and SQL after
Reflection is the result you generate again based on the Error
information returned by the compiler knowing that the first generated
result was wrong. Now that both results are known to be wrong, I am
providing Ground Truth SQL for your reference, please think carefully
about why your first two results were not correct, please provide a
Tip on how to avoid making the same mistake in the future. Note that
you only need to return the Tip. Please return in the following format:
Tip:

Listing 3: The template for generating tips based on the incorrect SQL and the ground truth SQL.

For your reference, here are some examples of Questions, sql queries,
and thought processes related to the Question you’re working with
{Example2}

Below are examples of mistakes you’ve made before that are similar to
the question you’re about to tackle, so please refer to not making
the same mistake!
{Example1}
{Example2}

Schema of the database:
{Database Schema}

Question:
{Question}

External Knowledge :
{External Knowledge}

SQL Query:
{SQL Query}

Error:
{Error}

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Reflect on the error encountered in the SQL query and provide a corrected
SQL query.

In your response, you do not need to mention your intermediate steps.
Do not include any comments in your response.
Do not need to start with the symbol ‘‘‘
Your SQL code should be concise and efficient.
You only need to return the result SQLite SQL code
start from SELECT

Listing 4: The template for generating a thought process corresponding to the SQL query.

B REASONING PIPELINE

To clarify the proposed LPE-SQL method, we provide a summary of the reasoning pipeline
in Algorithm Tables 1 and 2. Algorithm Table 1 outlines the reasoning process for a single
correct rate setting, whereas Algorithm Table 2 demonstrates the reasoning process using the cross-
consistency method across various correct rate settings. The complete source code is available in
src/gpt request.py.

Algorithm 1 Main Pipeline of Single Reasoning for LPE-SQL
Input: Initialization of the knowledge base KG, correct rate CR, number of demonstration exam-
ples k, Question Q, External Knowledge EK, database path db path, ground truth SQL GT .
Output: SQL query.

1: Initialize a retriever (CR, KG) to retrieve and update data in KG.
2: Demonstration example E ← retriever.get example(Q)
3: Prompt← generate prompt common sql(Q, E, EK)
4: SQL query← LLM(Prompt)
5: Prompt← generate prompt thought process(Q, EK, SQL query)
6: Thought process← LLM(Prompt)
7: , error← execute sql(SQL query, db path)
8: if error ̸= None then
9: Prompt← generate prompt reflection sql(E, Q, EK, SQL query, error)

10: Reflectioned SQL query← LLM(Prompt)
11: end if
12: Predicted SQL← if New SQL query ̸= None then New SQL query else SQL query
13: res← execute compare(Predicted SQL, GT)
14: if res == 0 then
15: Prompt ← generate prompt reflection tip(Q, EK, SQL query, error, Reflectioned SQL

query, GT)
16: Tip← LLM(Prompt)
17: KG ← retriever.add to mistake notebook(Q, EK, SQL query, error, Reflectioned SQL

query, GT , Tip)
18: else
19: KG← retriever.add to correct notebook(Q, EK, Predicted SQL, Thought process)
20: end if
21: Obtain the predicted SQL query and updated knowledge base KG.

Algorithm 2 Main Pipeline of Cross-Consistency Reasoning for LPE-SQL
Input: Initialization of all knowledge bases KG list, list of all correct rates CR list, number of
demonstration examples k, Question Q, External Knowledge EK, database path db path, ground
truth SQL GT .
Output: Final SQL query.

1: Initialize a list sql list to store all generated SQL queries.
2: for each CR, KG in CR list and KG list do
3: Use Algorithm 1 to obtain the SQL query based on the current CR and KG, and save it into

sql list.
4: end for
5: Compare the execution results of all SQL queries in sql list, and select the SQL query with the

most consistent results as the final SQL query.
6: Obtain the final SQL query and all updated knowledge base.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

C MORE RESULTS

Figure 1: EX scores across problems of varying difficulty levels from the BIRD development dataset
using different methods.

In Fig. 1, we present a comparison of different methods applied to problems of varying difficulty
levels from the BIRD development dataset. These methods include: i) using only manually an-
notated examples based on Pourreza & Rafiei (2024), ii) using 1000 examples collected from the
training set, and iii) using examples dynamically accumulated during evaluation via the LPE-SQL
method. The first two methods are commonly used in few-shot learning as knowledge base, while
the third method is introduced in our LPE-SQL approach. Consequently, a detailed examination of
our approach, along with a comparison to other methods, by analyzing performance across problems
of varying difficulty at a more granular level, provides valuable insights.

Using the training set as a knowledge base does not significantly outperform carefully de-
signed fixed examples. Across all three different LLMs tested in the experiment, using the training
set as a knowledge base provided a slight performance improvement—around 1%—over manually
annotated examples for tasks of simple and moderate difficulty. However, at the challenging diffi-
culty level, both Llama-3.1-70B and CodeLlama-34B showed consistent performance drops, with
CodeLlama-34B experiencing a decline of 3.44%. These observations indicate that there is no sig-
nificant difference in performance between these two methods.

In-domain data accumulation leads to comprehensive improvements. Compared to both using
the training set as a knowledge base and relying on carefully designed fixed examples, continuously
accumulating domain-specific data during evaluation results in significant improvements across var-
ious difficulty levels. At the simple, moderate, and challenging levels, applying the evaluation-only
method with different LLMs achieves at least 4.44%, 1.94%, and 2.76% improvements over the
other two methods, respectively. The maximum observed improvements reach 6.92%, 7.76%, and
11.72%, underscoring the effectiveness of this approach.

REFERENCES

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

4

	prompt templates
	Reasoning Pipeline
	MORE RESULTS

