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Abstract

Tuning hyperparameters is a crucial but arduous part of the machine learning
pipeline. Hyperparameter optimization is even more challenging in federated learn-
ing, where models are learned over a distributed network of heterogeneous devices;
here, the need to keep data on device and perform local training makes it difficult to
efficiently train and evaluate configurations. In this work, we investigate the prob-
lem of federated hyperparameter tuning. We first identify key challenges and show
how standard approaches may be adapted to form baselines for the federated setting.
Then, by making a novel connection to the neural architecture search technique
of weight-sharing, we introduce a new method, FedEx, to accelerate federated
hyperparameter tuning that is applicable to widely-used federated optimization
methods such as FedAvg and recent variants. Theoretically, we show that a FedEx
variant correctly tunes the on-device learning rate in the setting of online convex
optimization across devices. Empirically, we show that FedEx can outperform
natural baselines for federated hyperparameter tuning by several percentage points
on the Shakespeare, FEMNIST, and CIFAR-10 benchmarks—obtaining higher
accuracy using the same training budget.

1 Introduction

Federated learning (FL) is a popular distributed computational setting where training is performed
locally or privately [30, 36] and where hyperparameter tuning has been identified as a critical
problem [18]. Although general hyperparameter optimization has been the subject of intense study [3,
16, 26], several unique aspects of the federated setting make tuning hyperparameters especially
challenging. However, to the best of our knowledge there has been no dedicated study on the specific
challenges and solutions in federated hyperparameter tuning. In this work, we first formalize the
problem of hyperparameter optimization in FL, introducing the following three key challenges:

1. Federated validation data: In federated networks, as the validation data is split across devices,
the entire dataset is not available at any one time; instead a central server is given access to
some number of devices at each communication round, for one or at most a few runs of local
training and validation. Thus, because the standard measure of complexity in FL is the number of
communication rounds, computing validation metrics exactly dramatically increases the cost.
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Figure 1: FedEx can be applied to any local training-based FL method, e.g. FedAvg, by interleaving
standard updates to model weights (computed by aggregating results of local training) with exponen-
tiated gradient updates to hyperparameters (computed by aggregating results of local validation).

2. Extreme resource limitations: FL applications often involve training using devices with very
limited computational and communication capabilities. Furthermore, many require the use of
privacy techniques such as differential privacy that limit the number times user data can be accessed.
Thus we cannot depend on being able to run many different configurations to completion.

3. Evaluating personalization: Finally, even with non-federated data, applying common hyperpa-
rameter optimization methods to standard personalized FL approaches (such as finetuning) can be
costly because evaluation may require performing many additional training steps locally.

With these challenges' in mind, we propose reasonable baselines for federated hyperparameter tuning
by showing how to adapt standard non-federated algorithms. We further study the challenge of noisy
validation signal due to federation, and show that simple state-estimation-based fixes do not help.

Our formalization and analysis of this problem leads us to develop FedEx, a method that exploits
a novel connection between hyperparameter tuning in FL and the weight-sharing technique widely
used in neural architecture search (NAS) [4, 34, 40]. In particular, we observe that weight-sharing
is a natural way of addressing the three challenges above for federated hyperparameter tuning, as
it incorporates noisy validation signal, simultaneously tunes and trains the model, and evaluates
personalization as part of training rather than as a costly separate step. Although standard weight-
sharing only handles architectural hyperparameters such as the choice of layer or activation, and not
critical settings such as those of local stochastic gradient descent (SGD), we develop a formulation
that allows us to tune most of these as well via the relationship between local-training and fine-tuning-
based personalization. This make FedEx a general hyperparameter tuning algorithm applicable to
many local training-based FL methods, e.g. FedAvg [36], FedProx [31], and SCAFFOLD [19].

In Section 4, we next conduct a theoretical study of FedEx in a simple setting: tuning the client
step-size. Using the ARUBA framework for analyzing meta-learning [20], we show that a variant
of FedEx correctly tunes the on-device step-size to minimize client-averaged regret by adapting to
the intrinsic similarity between client data. We improve the convergence rate compared to some past
meta-learning theory [20, 25] while not depending on knowing the (usually unknown) task-similarity.

Finally, in Section 5, we instantiate our baselines and FedEx to tune hyperparameters of FedAvg,
FedProx, and Reptile, evaluating on three standard FL benchmarks: Shakespeare, FEMNIST, and
CIFAR-10 [5, 36]. While our baselines already obtain performance similar to past hand-tuning,
FedEx further surpasses them in most settings examined, including by 2-3% on Shakespeare.

Related Work To the best of our knowledge, we are the first to systematically analyze the formu-
lation and challenges of hyperparameter optimization in the federated setting. Several papers have
explored limited aspects of hyperparameter tuning in FL [7, 23, 38], focusing on a small number of
hyperparameters (e.g. the step-size and sometimes one or two more) in less general settings (studying
small-scale problems or assuming server-side validation data). In contrast our methods are able to
tune a wide range of hyperparameters in realistic federated networks. Some papers also discussed the
challenges of finding good configurations while studying other aspects of federated training [41]. We
argue that it is critical to properly address the challenges of federated hyperparameter optimization in
practical settings, as we discuss in detail in Section 2.

Methodologically, our approach draws on the fact that local training-based methods such as FedAvg
can be viewed as optimizing a surrogate objective for personalization [20], and more broadly leverages
the similarity of the personalized FL setup and initialization-based meta-learning [6, 11, 17, 25].
While FedEx’s formulation and guarantees use this relationship, the method itself is general-purpose

'A further challenge we do not address is that of the time-dependency of federated evaluation, c.f. [9].



and applicable to federated training of a single global model. Many recent papers address FL
personalization more directly [13, 29, 35, 43, 47]. This connection and our use of NAS techniques
also makes research connecting NAS and meta-learning relevant [10, 33], but unlike these methods we
focus on tuning non-architectural parameters. In fact, we believe our work is the first to apply weight-
sharing to regular hyperparameter search. Furthermore, meta-learning does not have the data-access
and computational restrictions of FL, where such methods using the DARTS mixture relaxation [34]
are less practical. Instead, FedEx employs the lower-overhead stochastic relaxation [8, 28], and its
exponentiated update is similar to the recently proposed GAEA approach for NAS [27]. Running NAS
itself in federated settings has also been studied [12, 15, 46]; while our focus is on non-architectural
hyperparameters, in-principle our algorithms can also be used for federated NAS.

Theoretically, our work makes use of the average regret-upper-bound analysis (ARUBA) frame-
work [20] to derive guarantees for learning the initialization, i.e. the global model, while simul-
taneously tuning the step-size of the local algorithm. The step-size of gradient-based algorithms
has also been tuned on its own in the settings of data-driven algorithm design [14] and of statistical
learning-to-learn [45].

2 Federated Hyperparameter Optimization

In this section we formalize the problem of hyperparameter optimization for FL and discuss the con-
nection of its personalized variant to meta-learning. We also review FedAvg [36], a common federated
optimization method, and present a reasonable baseline approach for tuning its hyperparameters.

Global and Personalized FL.  In FL we are concerned with optimizing over a network of heteroge-
neous clients ¢ = 1,...,n, each with training, validation, and testing sets 73, V;, and F;, respectively.
We use Ls(w) to denote the average loss over a dataset .S of some w-parameterized ML model, for
w € R some real vector. For hyperparameter optimization, we assume a class of algorithms Alg,
hyperparameterized by a € A that use federated access to training sets 7; to output some element of
R?. Here by “federated access" we mean that each iteration corresponds to a communication round at
which Alg, has access to a batch of B clients? that can do local training and validation.

Specifically, we assume Alg, can be described by two subroutines with hyperparameters encoded
by b € Band c € C, so that a = (b,c) and A = B x C. Here c encodes settings of a local training
algorithm Loc,. that take a training set S and initialization w € R¢ as input and outputs a model
Loc.(S,w) € R?, while b sets those of an aggregation Agg, that takes the initialization w and
outputs of Loc, as input and returns a model parameter. For example, in standard FedAvg, Loc, is
T steps of gradient descent with step-size n and Agg, takes a weighted average of the outputs of
Loc, across clients; here ¢ = (n,T) and b = (). As detailed in the appendix, many FL methods
can be decomposed this way, including well-known ones such as FedAvg [36], FedProx [31],
SCAFFOLD [19], and Reptile [39] as well as more recent methods [1, 2, 29]. Our analysis and our
proposed FedEx algorithm will thus apply to all of them, up to an assumption detailed next.

Starting from this decomposition, the global hyperparameter optimization problem can be written as
min > |VilLv, (Alg,({Z;}j=1)) (1)
i=1

In many cases we are also interested in obtaining a device-specific local model, where we take
a model trained on all clients and finetune it on each individual client before evaluating. A key
assumption we make is that the finetuning algorithm will be the same as the local training algorithm
Loc. used by Alg,. This assumption can be justified by recent work in meta-learning that shows that
algorithms that aggregate the outputs of local SGD can be viewed as optimizing for personalization
using local SGD [20]. Then, in the personalized setting, the tuning objective becomes

a_glil)leA > [VilLy, (Loc (T3, Alg, ({T;}7-,)) (2)
=oe i=1

Our approach will focus on the setting where the hyperparameters c of local training make up a
significant portion of all hyperparameters a = (b, ¢); by considering the personalization objective we
will be able to treat such hyperparameters as architectural and thus apply weight-sharing.



Algorithm 1: Successive halving algorithm (SHA) ap-
plied to personalized FL. For the non-personalized ob-
jective (1), replace Ly, (w;) by Ly,, (w,). For random
search (RS) with NV samples, set = N and R = 1.

Input: distribution D over hyperparameters .4,
elimination rate 17 € N, elimination rounds
T0 :O,Tl,...,TR

sample set of 7 hyperparameters H ~ DU

initialize a model w, € R? for each a € H

i

tuning FedAvg on FEMNIST, fully non-i.id. data

—*— 0.0 (last only)
0.5 (power discount)
1.0 (average)

tuning FedAvg on CIFAR, i.id. client data

—— 0.0 (last only)
0.5 (power discount)

1.0 (average)

for elimination round r € [R] do
for setting a = (b,c) € H do
for comm. roundt =71,_1+1,...,7.do
for clienti=1,...,B do i
send w, ¢ to client o
W; < LOCC(TM, Wa)
send w;, Ly,, (w;) to server

W, Angb(Waa {wit ) .,
Sa < Zi:l Vi L, (Wi)/ziz1 |Viil

H<{a€H:s, < -quantile({s, : a € H})}

Output: remaining ¢ € H and associated model w,

Figure 2: Tuning FL with SHA but mak-
ing elimination decisions based on vali-
dation estimates using different discount
factors. On both FEMNIST (top) and CI-
FAR (bottom) using more of the validation
data does not improve upon just using the
most recent round’s validation error.

Tuning FLL Methods: Challenges and Baselines In the non-federated setting, the objective (1) is
amenable to regular hyperparameter optimization methods; for example, a random search approach
would repeatedly sample a setting a from some distribution over .A, run Alg, to completion, and eval-
uate the objective, saving the best setting and output [3]. With a reasonable distribution and enough
samples this is guaranteed to converge and can be accelerated using early stopping methods [26], in
which Alg, is not always run to completion if the desired objective is poor at intermediate stages,
or by adapting the sampling distribution using the results of previous objective evaluations [44]. As
mentioned in the introduction, applying such methods to FL is inherently challenging due to

1. Federated validation data: Separating data across devices means we cannot immediately get
a good estimate of the model’s validation performance, as we only have access to a possibly
small batch of devices at a time. This means that decisions such as which models to flag for early
stopping will be noisy and may not fully incorporate all the available validation signal.

2. Extreme resource limitations: As FL algorithms can take a very long time to run in-practice due
to the weakness and spotty availability of devices, we often cannot afford to conduct many training
runs to evaluate different configurations. This issue is made more salient in cases where we use
privacy techniques that only allow a limited number of accesses to the data of any individual user.

3. Evaluating personalization: While personalization is important in FL due to client heterogeneity,
checking the performance of the current model on the personalization objective (2) is computation-
ally intensive because computing may require running local training multiple times. In particular,
while regular validation losses require computing one forward pass per data point, personalized
losses require several forward-backward passes, making it many times more expensive if this loss
is needed to make a tuning decision such as eliminating a configuration from consideration.

Despite these challenges, we can still devise sensible baselines for tuning hyperparameters in FL,
most straightforward of which is to use a regular hyperparameter method but use validation data
from a single round as a noisy surrogate for the full validation objective. Specifically, one can use
random search (RS)—repeatedly evaluate random configurations—and a simple generalization called
successive halving (SHA), in which we sample a set of configurations and partially run all of them
for some number of communication rounds before eliminating all but the best % fraction, repeating

until only one configuration remains. Note both are equivalent to a “bracket” in Hyperband [26] and
their adaptation to FL is detailed in Algorithm 1.

2For simplicity the number of clients per round is fixed, but all methods can be easily generalized to varying B.



As shown in Section 5, SHA performs reasonably well on the benchmarks we consider. However,
by using validation data from one round it may make noisy elimination decisions, early-stopping
potentially good configurations because of a difficult set of clients on a particular round. Here the
problem is one of insufficient utilization of the validation data to estimate model performance. A
reasonable approach to use more is to try some type of state-estimation: using the performance from
previous rounds to improve the noisy measurement of the current one. For example, instead of using
only the most recent round for elimination decisions we can use a weighted sum of the performances
at all past rounds. To investigate this, we study a power decay weighting, where a round is discounted
by some constant factor for each time step it is in the past. We consider factors 0.0 (taking the most
recent performance only, as before), 0.5, and 1.0 (taking the average). However, in Figure 2 we show
that incorporating more validation data this way than is used by Algorithm 1 by default does not
significantly affect results.

Thus we may need a better algorithm to use more of the validation signal, most of which is discarded
by using the most recent round’s performance. We next propose FedEx, a new method that does so
by using validation on each round to update a client hyperparameters distribution used to sample
configurations to send to devices. Thus it alleviates issue (1) above by updating at each step, not
waiting for an elimination round as in RS or SHA. By simultaneously training the model and tuning
(client) hyperparameters, it also moves towards a fully single-shot procedure in which we only train
once (we must still run multiple times due to server hyperparameters), which would solve issue (2).
Finally, FedEx addresses issue (3) by using local training to both update the model and to estimate
personalized validation loss, thus not spending extra computation on this more expensive objective.

3 Weight-Sharing for Federated Learning

We now present FedEx, a way to tune local FL hyperparameters. This section contains the general
algorithm and its connection to weight-sharing; we instantiate it on several FL. methods in Section 5.

Weight-Sharing for Architecture Search We first review the weight-sharing approach in NAS,
which for a set C of network configurations is often posed as the bilevel optimization

min Lyga(w,c) st w € argmin Lyyis(u, ) 3)
ceC ucRd

where Liyqin, Lvaiia €valuate a single configuration with the given weights. If, as in NAS, all hyperpa-

rameters are architectural, then they are effectively themselves trainable model parameters [27], so

we could instead consider solving the following “single-level" empirical risk minimization (ERM):

eduin Lw,e) = min - Liin(W, €) o+ Lt (W, €) 4)

Solving this instead of the bilevel problem (3) has been proposed in several recent papers [24, 27].

Early approaches to solving either formulation of NAS were costly due to the need for full or partial
training of many architectures in a very large search space. The weight-sharing paradigm [40] reduces
the problem to that of training a single architecture, a “supernet” containing all architectures in the
search space C. A straightforward way of constructing a supernet is via a “stochastic relaxation"
where the loss is an expectation w.r.t. sampling ¢ from some distribution over C [8]. Then the shared
weights can be updated using SGD by first sampling an architecture ¢ and using an unbiased estimate
of VwL(w, ¢) to update w. The distribution over C may itself be adapted or stay fixed. We focus on
the former case, adapting some #-parameterized distribution Dy; this yields the stochastic relaxation
objective

min  E..p,L(w,c) (5)

0€O,wecR?

Since architectural hyperparameters are often discrete decisions, e.g. a choice of which of a fixed
number of operations to use, a natural choice of Dy is as a product of categorical distributions over
simplices. In this case, any discretization of an optimum 6 of the relaxed objective (5) whose support
is in the support of § will be an optimum of the original objective (4). A natural update scheme
here is exponentiated gradient [22], where each successive 6 is proportional to 6 © exp(—nV),

7 is a step-size, and V an unbiased estimate of VyE...p, L(w, ¢) that can be computed using the
re-parameterization trick [42]. By alternating this exponentiated update with the standard SGD update
to w discussed earlier we obtain a simple block-stochastic minimization scheme that is guaranteed to
converge, under certain conditions, to the ERM objective, and also performs well in practice [27].



The FedEx Method To obtain FedEx from weight-sharing we restrict to the case of tuning only the
hyperparameters c of local training Loc...> Our goal then is just to find the best initialization w € R¢
and local hyperparameters ¢ € C, i.e. we replace the personalized objective (2) by

i Vi| Ly, (Loc. (T, ;
e, 2 Vil (Loec(Ti w) o

Note Alg, outputs an element of R, so this new objective is upper-bounded by the original (2),
i.e. any solution will be at least as good for the original objective. Note also that for fixed c this is
equivalent to the classic train-validation split objective for meta-learning with Loc,. as the base-learner.
More importantly for us, it is also in the form of the r.h.s. of the weight-sharing objective (4), i.e. it is
a single-level function of w and c. We thus apply a NAS-like stochastic relaxation:

n
pediin ; VilEcep, Lv; (Locc (T, w)) ©)
In NAS we would now set the distribution to be a product of categorical distributions over different
architectures, thus making 6 an element of a product of simplices and making the optimum of the
original objective (6) equivalent to the optimum of the relaxed objective (7) as an extreme point of
the simplex. Unlike in NAS, FL hyperparameters such as the learning rate are not extreme points of a
simplex and so it is less clear what parameterized distribution Dy to use. Nevertheless, we find that
crudely imposing a categorical distribution over £ > 1 random samples from some distribution (e.g.
uniform) over C and updating 6 using exponentiated gradient over the resulting k-simplex works well.
We alternate this with updating w € R?, which in a NAS algorithm involves an SGD update using an
unbiased estimate of the gradient at the current w and 6.

We call this alternating method for solving (7) FedEx and describe it for a general Alg, consisting
of sub-routines Agg, and Loc, in Algorithm 2; recall from Section 2 that many FL. methods can
be decomposed this way, so our approach is widely applicable. FedEx has a minimal overhead,
consisting only of the last four lines of the outer loop updating €. Thus, as with weight-sharing,
FedEx can be viewed as reducing the complexity of tuning local hyperparameters to that of training a
single model. Each update to # requires a step-size 7; and an approximation V of the gradient w.r.t. 6;

for the latter we obtain an estimate V; of each gradient entry via the reparameterization trick, whose
variance we reduce by subtracting a baseline \;. How we set 7; and )\; is detailed in the Appendix.

To see how FedEx is approximately optimizing the relaxed objective (7), we can consider the case
where Alg, is Reptile [39], which was designed to optimize some approximation of (6) for fixed
¢, or equivalently the relaxed objective for an atomic distribution Dy. The theoretical literature on
meta-learning [20, 21] shows that Reptile can be interpreted as optimizing a surrogate objective
minimizing the squared distance between w and the optimum of each task ¢, with the latter being
replaced by the last iterate in practice. It is also shown that the surrogate objective is useful for
personalization in the online convex setting.* As opposed to this past work, FedEx makes two
gradient updates in the outer loop, on two disjoint sets of variables: the first is the sub-routine Agg, of
Alg, that aggregates the outputs of local training and is using the gradient of the surrogate objective,
since the derivative of the squared distance is the difference between the initialization w and the
parameter at the last iterate of Loc,; the second is the exponentiated gradient update that is directly
using an unbiased estimate of the derivative of the second objective w.r.t. the distribution parameters 6.
Thus, roughly speaking FedEx runs simultaneous stochastic gradient descent on the relaxed objective
(7), although for the variables w we are using a first-order surrogate. In the theoretical portion of this
work we employ this interpretation to show the approach works for tuning the step-size of online
gradient descent in the online convex optimizations setting.

Wrapping FedEx We can view FedEx as an algorithm of the form tuned by Algorithm 1 that
implements federated training of a supernet parameter (w, #), with the local training routine Loc
including a step for sampling ¢ ~ Dy and the server aggregation routine including an exponentiated
update of 6. Thus we can wrap FedEx in Algorithm 1, which we find useful for a variety of reasons:

o The wrapper can tune the settings of b for the aggregation step Agg,, which FedEx cannot.
e FedEx itself has a few hyperparameters, e.g. how to set the baseline \;, which can be tuned.

3We will use some wrapper algorithm to tune the hyperparameters b of Agg,.
*Formally they study a sequence of upper bounds and not a surrogate objective, as their focus is online learning.



Algorithm 2: FedEx

Input: configurations cy, ..., ¢ € C, setting b for
Agg;, schemes for setting step-size 7, and
baseline )¢, total number of steps 7 > 1

initialize #; = 1;/k and shared weights w; € R?

for comm. roundt =1,...,7 do

for clienti =1,...,B do

send wy, 0, to client

sample cy; ~ D,

wy; < Loce,, (T, wi)

send wy;, ¢4, Ly, (Wy;) to server

w1 < Agg,(w, {wyi} )

FEMNIST, fully non-i.i.d data CIFAR, i.i.d client data
= 09 —

error of personalized model

error of personalized model

_ | F I

- ——

Epsilon=1.0  Epsilon=0.1 Epsilon=1.0  Epsilon=0.1

Figure 3: Comparison of the range of perfor-
mance values attained using different pertur-
bation settings. Although the range is much
smaller for ¢ = 0.1 than for ¢ = 1.0 (the lat-

= S Vil (Lvy (Wei) =)oy =c
Vi€ SVl
0141 « 0 © exp(—1,V)

L Orr1 < Oupa /|01 [l2

Output: model w, hyperparameter distribution ¢

v ter is the entire space), it still covers a large
(roughly 10-20%) range of different perfor-
mance levels on both FEMNIST (left) and

CIFAR (right).

e By running multiple seeds and potentially using early stopping, we can run FedEx using more
aggressive steps-sizes and the wrapper will discard cases where this leads to poor results.

e We can directly compare FedEx to a regular hyperparameter optimization scheme run over the
original algorithm, e.g. FedAvg, by using the same scheme to both wrap FedEx and tune FedAvg.

e Using the wrapper allows us to determine the configurations cq, . . ., ¢; given to Algorithm 2 using
a local perturbation scheme (detailed next) while still exploring the entire hyperparameter space.

Local Perturbation It remains to specify how to select the configurations ¢y, .. ., ¢x € C to pass to
Algorithm 2. While the simplest approach is to draw from Unif* (C), we find that this leads to unstable
behavior if the configurations are too distinct from each other. To interpolate between sampling
¢; independently and setting them to be identical (which would just be equivalent to the baseline
algorithm), we use a simple local perturbation method in which ¢; is sampled from Unif(C) and
ca,. ..,k are sampled uniformly from a local neighborhood of C. For continuous hyperparameters
(e.g. step-size, dropout) drawn from an interval [a, b] C R the local neighborhood is [¢ £ (b — a)e] for
some € > 0, i.e. a scaled e-ball; for discrete hyperparameters (e.g. batch-size, epochs) drawn from a
set {a, ...,b} C Z, the local neighborhood is similarly {¢ — [ (b —a)e],...,c+ [(b—a)e]}; in our
experiments we set € = 0.1, which works well, but run ablation studies varying these values in the
appendix showing that a wide range of them leads to improvement. Note that while local perturbation
does limit the size of the search space explored by each instance of FedEx, as shown in Figure 3 the
difference in performance between different configurations in the same ball is still substantial.

Limitations of FedEx While FedEx is applicable to many important FL algorithms, those that
cannot be decomposed into local fine-tuning and aggregation should instead be tuned by one of our
baselines, e.g. SHA. FedEx is also limited in that it is forced to rely on such algorithms as wrappers
for tuning its own hyperparameters and certain FL hyperparameters such as server learning rate.

4 Theoretical Analysis for Tuning the Step-Size in an Online Setting

As noted in Section 3, FedEx can be viewed as alternating minimization, with a gradient step on a
surrogate personalization loss and an exponentiated gradient update of the configuration distribution
6. We make this formal and prove guarantees for a simple variant of FedEx in the setting where
the server has one client per round, to which the server sends an initialization to solve an online
convex optimization (OCO) problem using online gradient descent (OGD) on a sequence of m
adversarial convex losses (i.e. one SGD epoch in the stochastic case). Note we use “client” and “task”
interchangeably, as the goal is a meta-learning (personalization) result. The performance measure
here is task-averaged regret, which takes the average over 7 clients of the regret they incur on its loss:



T m

_ 1
R, = - Z Z€t7i<wt,i) — Ly i(wyp) (®)

t=1 i=1

Here ¢, ; is the ith loss of client ¢, w;; the parameter chosen on its ith round from a compact
parameter space W, and w; € argming,cyy ., {¢,i(w) the task optimum. In this setting, the
Average Regret-Upper-Bound Analysis (ARUBA) framework [20] can be used to show guarantees
for a Reptile (i.e. FedEx with a server step-size) variant in which at each round the initialization
is updated as wiy1 « (1 — az)wy + ayw; for server step-size oz = 1/t. Observe that the only
difference between this update and FedEx’s is that the task-¢ optimum w; is used rather than the last
iterate of OGD on that task. Specifically they bound task-averaged regret by

. ~ (1 1<
RT<O(%+V)\/T7L for VQZ&i%;;HW—w;H% )
Here V—the average deviation of the optimal actions w; across tasks—is a measure of task-similarity:
V' is small when the tasks (clients) have similar data and thus can be solved by similar parameters in W
but large when their data is different and so the optimum parameters to use are very different. Thus the
bound in (9) shows that as the server (meta-learning) sees more and more clients (tasks), their regret
on each decays with rate 1/+/7 to depend only on the task-similarity, which is hopefully small if the
client data is similar enough that transfer learning makes sense, in particular if V' < diam()V). Since
single-task regret has lower bound Q(D+/m), achieving asymptotic regret Vy/m thus demonstrates
successful learning of a useful initialization in )V that can be used for personalization. Note that such
bounds can also be converted to obtain guarantees in the statistical meta-learning setting as well [20].

A drawback of past results using the ARUBA framework is that they either assume the task-similarity
V' is known in order to set the client step-size [25] or they employ an OCO method to learn the local
step-size that cannot be applied to other potential algorithmic hyperparameters [20]. In contrast, we
prove results for using bandit exponentiated gradient to tune the client step-size, which is precisely
the FedEx update. In particular, Theorem 4.1 shows that by using a discretization of potential client
step-sizes as the configurations in Algorithms 2 we can obtain the following task-averaged regret:

Theorem 4.1. Let W C RY be convex and compact with diameter D = diam(W) and let {; ; be
a sequence of mt b-bounded convex losses—m for each of T tasks—with Lipschitz constant < G.
We assume that the adversary is oblivious within-task. Suppose we run Algorithm 2 with B = 1,
configurations c; = ﬁ foreach j = 1,..., k determining the local step-size of single-epoch SGD
(OGD), w; = W}, regret Z:’;l by i(Wy,i)— Ly i (W) used in place of Ly, (Wy;), and \y = 0V ¢ € [7].
Then if i, = L4/ l‘ﬁk Vitelr], k2 = DC /o, and Agg,(w,w}) = (1 — ay)w + oy w} for
ay = 1/t V t € [1] we have (taking expectations over sampling from Dy, )

ER, < O ({/m/r+V)vm (10)

The proof of this result, given in the supplement, follows the ARUBA framework of using meta OCO
algorithm to optimize the initialization-dependent upper bound on the regret of OGD; in addition we
bound errors to the bandit setting and discretization of the step-sizes. Theorem 4.1 demonstrates that
FedEx is a sensible algorithm for tuning the step-size in the meta-learning setting where each task
is an OCO problem, with the average regret across tasks (clients) converging to depend only on the
task-similarity V', which we hope is small in the setting where personalization is useful. As we can
see by comparing to the bound in (9), besides holding for a more generally-applicable algorithm our
bound also improves the dependence on 7, albeit at the cost of an additional m3 factor. Note that
that the sublinear term can be replaced by 1/4/7 in the full-information setting, i.e. where required
the client to try SGD with each configuration c; at each round to obtain regret for all of them.



Table 1: Final test error obtained when tuning using a standard hyperparameter tuning algorithm
(SHA or RS) alone, or when using it for server (aggregation) hyperparameters while FedEx tunes
client (on-device training) hyperparameters. The target model is the one used to compute on-device
validation error by the wrapper method, as well as the one used to compute test error after tuning.
Note that this table reports the final error results corresponding to the online evaluations reported in
Figure 4, which measure performance as more of the computational budget is expended.

Wrapper  Target Tuning Shakespeare FEMNIST CIFAR-10
method  model method iid. non-i.i.d. iid. non-i.i.d. iid.

RS (server & client) 60.32 + 10.03 64.36 + 14.19 22.81 +£4.56 22.98 £3.41 30.46 +9.44
Random + FedEx (client) 53.94+9.13 57.70 £17.57 20.96 £4.77 22.30 +3.66 34.83 + 14.74
Search  person- RS (server & client) 61.10+9.32 61.71+£9.08 17.45+2.82 17.77+2.63 34.89 £ 10.56

(RS) alized + FedEx (client) 54.90+£9.97 56.48 +£13.60 16.31 £3.77 15.93+3.06 39.13 £ 15.13

SHA (server & client) 47.38 +3.40 46.79+3.51 18.64+1.68 20.30+1.66 21.62+ 2.51
Successive + FedEx (client) 44.52+1.68 45.24 +3.31 19.22+2.05 19.43+1.45 20.82+1.37
Halving person- SHA (server & client) 46.77 £3.61 48.04 £3.72 14.79+1.55 14.78 £1.31 24.81+6.13
(SHA) alized + FedEx (client) 46.08+2.57 45.89+3.76 14.97+1.31 14.76 £1.70 21.77+2.83

global

global

5 Empirical Results

In our experiments, we instantiate FedEx on the problem of tuning FedAvg, FedProx, and Reptile;
the first is the most popular algorithm for federated training, the second is an extension designed
for heterogeneous devices, and the last is a compatible meta-learning method used for learning
initializations for personalization. At communication round ¢ these algorithms use the aggregation

A AwilB ) =01 - ; 11
ggy(w, {wi}/L)) = ( at>w+zllmu§_j|t| (11)

for some learning rate o; > 0 that can vary through time; in the case of FedAvg we have oy =1V £.
The local training sub-routine Loc,. is SGD with hyperparameters c over some objective defined by
the training data 7};, which can also depend on c. For example, to include FedProx we include in ¢
an additional local hyperparameter for the proximal term compared with that of FedAvg.

We tune several hyperparameters of both aggregation and local training; for the former we tune
the server learning rate schedule and momentum, found to be helpful for personalization [17]; for
the latter we tune the learning rate, momentum, weight-decay, the number of local epochs, the
batch-size, dropout, and proximal regularization. Please see the supplementary material for the
exact hyperparameter space considered. While we mainly evaluate FedEx in cross-device federated
settings, which is generally more difficult than cross-silo in terms of hyperparameter optimization,
FedEx can be naturally applied to cross-silo settings, where the challenges of heterogeneity, privacy
requirements, and personalization remain.

Because our baseline is running Algorithm 1, a standard hyperparameter tuning algorithm, to tune
all hyperparameters, and because we need to also wrap FedEx in such an algorithm for the reasons
described in Section 3, our empirical results will test the following question: does FedEx, wrapped by
random search (RS) or a successive halving algorithm (SHA), do better than RS or SHA run with the
same settings directly? Here “better” will mean both the final test accuracy obtained and the online
evaluation setting, which tests how well hyperparameter optimization is doing at intermediate phases.
Furthermore, we also investigate whether FedEx can improve upon the wrapper alone even when
targeting a good global and not personalized model, i.e. when elimination decisions are made using
the average global validation loss. We run Algorithm 1 on the personalized objective and use RS and
SHA with elimination rate = 3, the latter following Hyperband [26]. To both wrappers we allocate
the same (problem-dependent) tuning budget. To obtain the elimination rounds in Algorithm 1 for
SHA, we set the number of eliminations to R = 3, fix a total communication round budget, and fix a
maximum number of rounds to be allocated to any configuration a; as detailed in the Appendix, this
allows us to determine 77, ..., Tr so as to use up as much of the budget as possible.

We evaluate the performance of FedEx on three datasets (Shakespeare, FEMNIST, and CIFAR-10)
on both vision and language tasks. We consider the following two different partitions of data:

1. Each device holds i.i.d. data. While overall data across the entire network can be non-i.i.d., we
randomly shuffle local data within each device before splitting into train, validation, and test sets.
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Figure 4: Online evaluation of FedEx on the Shakespeare next-character prediction dataset (left),
the FEMNIST image classification dataset (middle), and the CIFAR-10 image classification dataset
(right) in the fully non-i.i.d. setting (except CIFAR-10). We report global model performance on the
top and personalized performance on the bottom. All evaluations are run for three trials.

2. Each device holds non-i.i.d. data. In Shakespeare, each device is an actor and the local data is
split according to the temporal position in the play; in FEMNIST, each device is the digit writer
and the local data is split randomly; in CIFAR-10, we do not consider a non-i.i.d. setting.

For Shakespeare and FEMNIST we use 80% of the data for training and 10% each for validation and
testing. In CIFAR-10 we hold out 10K examples from the usual training/testing split for validation.
The backbone models used for Shakespeare and CIFAR-10 follow from the FedAvg evaluation [36]
and use 4K communications rounds (at most 800 round for each arm), while that of FEMNIST
follows from LEAF [5] and uses 2K communication rounds (at most 200 for each arm).

Table 1 presents our main results, displaying the final test error of the target model after tuning using
either a wrapper algorithm alone or its combination with FedEx. The evaluation shows that using
FedEx on the client parameters is either equally or more effective in most cases; in particular, a
FedEx-modified method performs best everywhere except i.i.d. FEMNIST, where it is very close.
Furthermore, FedEx frequently improves upon the wrapper algorithm by 2 or more percentage points.

We further present online evaluation results in Figure 4, where we display the test error of FedEx
wrapped with SHA compared to SHA alone as a function of communication rounds. Here we see
that for most of training FedEx is either around the same or better then the alternative, except at the
beginning; the former is to be expected since the randomness of FedEx leads to less certain updates
at initialization. Nevertheless FedEx is usually better than the SHA baseline by the halfway point.

6 Conclusion

In this paper we study the problem of hyperparameter optimization in FL, starting with identifying the
key challenges and proposing reasonable baselines that adapts standard approaches to the federated
setting. We further make a novel connection to the weight-sharing paradigm from NAS—to our
knowledge the first instance of this being used for regular (non-architectural) hyperparameters—
and use it to introduce FedEx. This simple, low-overhead algorithm for accelerating the tuning of
hyperparameters in federated learning can be theoretically shown to successfully tune the step-size
for multi-task OCO problems and effectively tunes FedAvg, FedProx, and Reptile on standard
benchmarks. The scope of application of FedEx is very broad, including tuning actual architectural
hyperparameters rather than just settings of local SGD, i.e. doing federated NAS, and tuning
initialization-based meta-learning algorithms such as Reptile and MAML. Lastly, any work on FL.
comes with privacy and fairness risks due its frequent use of sensitive data; thus any application of
our work must consider tools being developed by the community for mitigating such issues [32, 37].
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A Proof of Theorem 4.1

Proof. Let v, ~ Dy, be the step-size chosen at time ¢. Then we have that
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where the second line uses linearity of expectations over y; ~ Dg,, the third substitutes the bandit

regret of EG [? , Corollary 4.2], the fourth substitutes n = %1/ ek and the regret of OGD

[? , Corollary 2.7], the fifth substitutes the regret guarantee of Adaptlve OGD over functions
$llwy — w3 [, Theorem 2.1] with step-size oy = 1/t and the definition of V, the sixth substitutes

. . . . . * D .
the best discretized step-size c; for the optimal v* € (0, eNoT %}, and the seventh substitutes

1+log T
2G\/% + 55 5 for v* and arg min;

dividing both sides by 7 yields the result.
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B Decomposing Federated Optimization Methods

As detailed in Section 2 our analysis and use of FedEx to tune local training hyperparameters
depends on a formulation that decomposes FL methods into two subroutines: a local training
routine Loc. (.S, w) with hyperparameters ¢ over data S and starting from initialization w and an
aggregation routine Agg, with hyperparameters b. In this section we discuss how a variety of federated
optimization methods, including several of the best-known, can be decomposed in this manner. This
enables the application of FedEx to tune their hyperparameters.

B.1 FedAvg [36]

The best-known FL method, FedAvg runs SGD on each client in a batch starting from a shared
initialization and then updates to the average of the last iterate of the clients, often weighted by the
number of data points each client has. The decomposition here is:

Loc. Local SGD (or another gradient-based algorithm, e.g. Adam [? ]), with c being the standard
hyperparameters such as step-size, momentum, weight-decay, etc.

Agg, Weighted averaging, with no hyperparameters in b.

B.2 FedProx[31]

FedProx has the same decomposition as FedAvg except local SGD is replaced by a proximal version
that regularizes the routine to be closer to the initialization, adding another hyperparameter to c
governing the strength of this regularization.

B.3 Reptile [39]

A well-known meta-learning algorithm, Reptile has the same decomposition as FedAvg except the
averaged aggregation is replaced by a convex combination of the initialization and the average of the
last iterates, as in Equation 11. This adds another hyperparameter to b governing the tradeoff between
the two.

B.4 SCAFFOLD [19]

SCAFFOLD comes in two variants, both of which compute and aggregate control variates in parallel to
the model weights. The decomposition here is:

Loc. Local SGD starting from a weight initialization with a control variate, which can be merged
to form the local training initialization. The hyperparameters in c are the same as in FedAvg.

Agg; Weighted averaging of both the initialization and the control variates, with the same hyper-
parameters as Reptile.

B.S FedDyn[1]

In addition to a FedAvg/FedProx/Reptile-like training routine, this algorithm maintains a regu-
larizer on each device that affects the local training routine. While this statefulness cannot strictly
be subsumed in our decomposition, since it does not introduce any additional hyperparameters the
remaining hyperparameters can be tuned in the same manner as we do for FedAvg/FedProx/Reptile.
In order to choose between using FedDyn or not, one can introduce a binary hyperparameter to ¢
specifying whether or not Loc, uses that term in the objective it optimizes or not, allowing it also to
be tuned via FedEx.

B.6 FedPA [2]

This algorithm replaces local SGD in FedAvg by a local Markov-chain Monte Carlo (MCMC) routine
starting from the initialization given by aggregating the previous round’s MCMC routines. The
decomposition is then just a replacement of local SGD and its associated hyperparameters by local
MCMC and its hyperparameters, with the aggregation routine remaining the same.
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B.7 Ditto[29]

Although it depends on what solver is used for the local solver and aggregation routines, in the
simplest formulation, the local optimization of personalized models involves an additional regular-
ization hyperparameter. While the updating rule of Ditto is different from that of FedProx, the
hyperparameters can be decomposed and tuned in a similar manner.

B.8§ MAML[? ]

A well-known meta-learning algorithm, MAML takes one or more full-batch gradient descent (GD)
steps locally and updates the global model using a second-order gradient using validation data. The
decomposition here is :

Loc. Local SGD starting from a weight initialization. The hyperparameters in c are the same as
in FedAvg. The algorithm also returns second-order information required to compute the
meta-gradient.

Agg, Meta-gradient computation, summation, and updating using a standard descent method like
Adam [? ]. The hyperparameters in b are the hyperparameters of the latter.

C FedEx Details

C.1 Stochastic Gradient used by FedEx

Below is a simple calculation showing that the stochastic gradient used to update the categorical
architecture distribution of FedEx is an unbiased approximation of the true gradient w.r.t. its
parameters.

Vo, E, j0Lv,, (Wi)
= ECij\@ ((LVn‘ (Wl) - )‘)VOJ‘ log Py (cij))

=E,0 ((Lvu- (x) — M) Vo, log [T Pa(c; = Cj))

i=1

=1
(LVm‘ (Wl) - A)lcij:Cj
0;

=E., o <(Lvﬁ, (Wi) = A) Y Vo, logPo(ci = Cj))

= Eci]‘ ‘0

Note that this use of the reparameterization trick has some similarity with a recent RL approach to
tune the local step-size and number of epochs [38]; however, FedEx can be rigorously formulated as
an optimization over the personalization objective, has provable guarantees in a simple setting, uses a
different configuration distribution that leads to our exponentiated update, and crucially for practical
deployment does not depend on obtaining aggregate reward signal on each round.
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C.2 FedEx wrapped with SHA

For completeness, we present the pseudo code of wrapping FedEx with SHA in Algorithm 3 below.

Algorithm 3: FedEx wrapped with SHA
Input: distribution D over hyperparameters .4, elimination rate € N, elimination rounds
T0 :O,Tl,...,TR
sample set of * hyperparameters H ~ DU
initialize a model w, € R% foreach a € H
for elimination round r € [R] do
for setting a = (b,c) € H do
L Sas Wq, ea < FedEx (WCH b7 C, ecw 7—’I‘Jr]. - TT)
H < {a€H:s, < -quantile({s, : a € H})}
Output: remaining @ € H and associated model w,

FedEx (w,b,{c1,...,cc},0,7 > 1):

i

initialize 6, < 0
initialize shared weights w; <— w
for comm. roundt =1,...,7do
for clienti=1,...,B do
send wy, 0; to client
sample c;; ~ Dy,
wii < Loce,, (Thi, wy)
send Wy, ¢, Ly, (Wy;) to server
wii1  Aggy(w, (Wi}l )
set step size 7, and baseline \;
= >2, IVeil (Lvy; (Wei)=Ae)Ley =)
Vi Oup) il [Vail
9t+1 < Gt ® exp(—mV)
Orr1 < Ori1/||0rs1llx
L s e S0 Vil Lvi/ S5 Vil
Return s, model w, hyperparameter distribution 6

¥

C.3 Hyperparameters of FedEx

We tune the computation of the baseline \;, which we set to

t—s B

1 Y
At = — Ly, (w;)
Zs<t ok Z Zf:l |Viil Z

s<t 1=1

for discount factor v € [0, 1]. As discussed in Section 3, the local perturbation factor is set to e = 0.1.
27 configurations are used in each arm for SHA and RS. The number of configuration used per arm
of FedEx (i.e. the dimensionality of ) is the same (27).
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D Experimental Details

Code implementing FedEx is available at https://github. com/mkhodak/fedex. The code auto-
matically downloads CIFAR-10 data, while Shakespeare and FEMNIST data is made available by the
LEAF repository: https://github.com/TalwalkarLab/leaf.

D.1 Settings of the Baseline/Wrapper Algorithm

We use the same settings of Algorithm 1 for both tuning FedAvg and for wrapping FedEx. Given an
elimination rate 7, number of elimination rounds R, resource budget B, and maximum rounds per
arm M, we assign 11, ..., Tg s.t.

T—-M
nn+1,1
n—1

T, —Ti =

—n—1

(recall Ty = 0) and assign any remaining resources to maximize resource use. All remaining details
were noted in Section 5.

D.2 Hyperparameters of FedAvg/FedProx/Reptile

Server hyperparameters (learning rate o; = 7%):

loggIr : Unif[—1,1]
momentum : Unif[0, 0.9]
logyo(1 —7) : Unif[—4, —2]
Local training hyperparameters (note we only use 1 epoch for Shakespeare to conserve computation):
logyo(Ir) : Unif[—4, 0]
momentum : Unif[0.0, 1.0]
log,(weight-decay) : Unif[—5, —1]

epoch : Unif{1,2,3,4,5}
logy(batch) :  Unif{3,4,5,6,7}
dropout : Unif]0, 0.5]

E Confidence Intervals

Table 2: Final test error obtained when tuning using a standard hyperparameter tuning algorithm
(SHA or RS) alone, or when using it for server (aggregation) hyperparameters while FedEx tunes
client (on-device training) hyperparameters. The target model is the one used to compute on-device
validation error by the wrapper method, as well as the one used to compute test error after tuning.
The confidence intervals displayed are 90% Student-t confidence intervals for the mean estimates
from Table 1, with 5 independent trials for Shakespeare, 10 for FEMNIST, 10 for RS on CIFAR, and
6 for SHA on CIFAR.

Wrapper  Target Tuning Shakespeare FEMNIST CIFAR-10
method  model method iid. non-i.i.d. iid. non-i.i.d. iid.
elobal RS (server & client) 60.32 +£9.56 64.36 = 13.53 22.81 £2.64 22.98£1.98 30.46 &+ 5.47

Random + FedEx (client) 53.94+8.70 57.70 £16.75 20.96 +2.77 22.30 +2.12 34.83 +8.54
Search  person- RS (server & client) 61.10+8.89 61.71+£8.66 17.45+1.63 17.77+1.52 34.89+6.12
(RS) alized + FedEx (client) 54.90 +£9.50 56.48 £12.97 16.31+2.19 15.93+1.77 39.13 £8.77

SHA (server & client) 47.38 £3.24 46.79+3.35 18.64+0.97 20.30+£0.96 21.62+1.45
Successive + FedEx (client) 44.52+1.60 45.24 +3.16 19.22+1.19 19.43+0.84 20.82 £0.79
Halving person- SHA (server & client) 46.77 +3.44 48.04 £3.54 14.79+£0.90 14.78 £0.75 24.81 £3.55
(SHA)  alized + FedEx (client) 46.08+2.45 4589+3.58 14.97+£0.76 14.76 +£0.99 21.77 +1.64

global
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FEMNIST online evaluation, fully non-i.i.d. data

s Epsilon ablations on CIFAR, i.i.d. client data
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Figure 5: Comparison of different € settings for  Figure 6: Comparison of step-size schedules for

the local perturbation component of FedEx from 1), in FedEx. In practice we chose the ‘aggres-

Section 3. sive’ schedule, which exhibits faster convergence
to favorable configurations.

F Ablation Studies

We now discuss two design choices of FedEx and how they affect performance of the algorithm.
First, the choice of the local perturbation ¢ = 0.1 discussed in Section 3; we choose this setting
due to its consistent performance across several settings. In Figure 5 we plot the performance of
FedEx on CIFAR-10 between ¢ = 0.0 (no FedEx, i.e. SHA only) and ¢ = 1.0 (full FedEx, i.e. client
configurations are chosen independently) and show that while the use of a nonzero ¢ is important,
performance at fairly low values of ¢ is roughly similar.

We further investigated the setting of the step-size 7, for the exponentiated gradient update in FedEx.
We examine three different approaches: a constant rate of 7, = /2 log k, an ‘adaptive’ schedule of

ne = v2logk/\/> < |Vs]|2,. and an ‘aggressive’ schedule of 7, = v/21og k/||V||oe. Here V,

is the stochastic gradient w.r.t. 6 computed in Algorithm 2 at step ¢ and the form of the step-size
is derived from standard settings for exponentiated gradient in online learning [? ]. We found that
the ‘aggressive’ schedule works best in practice, as shown in Figure 6. A key issue with using
the ‘constant’ and ‘adaptive’ approaches is that they continue to assign high probability to several
configurations late in the tuning process; this slows down training of the shared weights. One could
consider a tradeoff between allowing FedEx to run longer than while keeping the total budget constant,
but for simplicity we chose the more effective ‘aggressive’ schedule.
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