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A Appendix

A.1 Evaluation Metrics

In this paper, we use the following five metrics, which are used by previous studies [6, 5, 2] to evaluate
the ability of our STEP approach to distinguish the in- and out-of-distribution data. We denote
TP,TN,FP,FN as true positives, true negatives, false positives, and false negatives, respectively.

AUROC is the Area Under the Receiver Operating Characteristic curve [1], which depicts the
relationship between TPR = TP

TP+FN and TPR = FP
FP+TN over all possible score thresholds. This

metric can be interpreted as the ability that the model assigns a positive sample a higher detection
score than a negative example.

FPR at 95%TPR measures the probability that a negative (out-of-distribution) sample is misclas-
sified as a positive (in-distribution) sample when the TPR is up to 95%. This metric evaluates the
method’s precision when recall most of the out-of-distribution samples.

Detection Error measures the minimum misclassification probability, which is calculated by min-
imum average TPR and FPR overall score thresholds. Here, we assume that both positive and
negative examples have an equal probability of appearing in the test set.

AUPR-In is the Area under the Precision-Recall curve[3] which is a graph showing the precision =
TP

TP+FP and recall = TP
TP+FN against each other. Here, the precision-recall curve treats in-distribution

samples are specified as positives.

AUPR-Out is similar to AUPR-In. The only difference is that the precision-recall curve treats
out-of-distribution samples as positives.

A.2 Implementation Details

All experiments were repeated five times with the random seed setting from 0 to 4. For SimCLR, We
adopt the version1 implemented by Pytorch to train our backbone network. We train our backbone
network for 500 epochs with 512 images in a batch. The feature dimension used in SimCLR is set
to 512. Other parameters are the same as the default settings. For extracting local structure, we
adopt Faiss2 to build a KNN graph with K set to 12. For our STEP approach, we train P for 1500
epochs with 512 image tuples in a batch. The learning rate and weight decay are set to 0.0003 and
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1e-4, respectively. For ensembling of latent representations, flatten the representation from 1st cov
and 3 blocks in the densenet and concat them as the representation for methods that require latent
representations. Refer to our code implementation for more details.

A.3 Stability of Training

We track the relationship between loss and performance on the validation set for UOOD † and STEP
during the training on several OOD detection benchmarks. The results are shown in Fig.( 1). The
images in the first row show the loss and AUROC per epoch of our STEP approach and the images in
the second row show the same thing for the SOTA UOOD method. The images in the same column
show the evaluation of different methods on the same OOD dataset. The results show that, for our
STEP approach, the AUROC keeps increasing while the loss is decreasing on the big trend during the
training stage. However, the same thing does hold for UOOD . The AUROC changes a lot in a wide
range while loss decreases for UOOD in the training stage. Therefore, UOOD’s training is not stable
enough, and it needs an extra OOD validation set to perform model selection.

(a) Our STEP approach’s loss and AUROC on different OOD benchmarks.

(b) UOOD ’s loss and AUROC on different OOD benchmarks.

Figure 1: (a) shows our STEP approach’s loss and AUROC on an OOD validation set for each epoch
during the training. (b) shows the same thing for the SOTA UOOD method. Results show that the
AUROC increases while loss decreases for STEP . However, this does not hold on UOOD .

A.4 Generalization Changes

We further test generalization on the extensive OOD data sets and add comparison with an unsuper-
vised OOD detection method [4]. For the fair comparison, SSD uses the same pre-trained network
as our STEP . The results in Tab.(1) show that SSD and ODIN are affected by the known OOD
samples in the training data, resulting in poor detection performance on the known OOD samples.
Relatively, their detection performance on unknown OOD samples is improved. Consistent with
the previous conclusion, when MAH and UOOD face unknown OOD samples, there will be great
detection performance fluctuations. Only our STEP approach can achieve an accurate and relatively
stable detection performance on both known and unknown OOD samples.

Table 1: Performance of different methods on Known / Unknown OOD data set evaluated by AUROC.
Our proposal achieves accurate and stable detection performance. The ID data set is CIFAR-10.

Known OOD samples Unknown OOD samples Avg. PerformanceTINr TINc LSUNr LSUNc iSUN

ODIN 59.25 ± 2.01 76.19 ± 2.73 66.36 ± 5.12 60.82 ± 2.44 64.51 ± 4.04 65.43
MAH 75.20 ± 1.97 55.67 ± 6.30 81.07 ± 1.44 17.74 ± 8.34 74.40 ± 1.70 60.82
UOOD 94.44 ± 2.05 69.78 ± 4.24 98.39 ± 1.13 57.20 ± 10.39 96.74 ± 2.04 83.31
SSD 68.34 ± 1.12 83.85 ± 1.93 67.92 ± 1.62 94.62 ± 0.66 70.00 ± 1.40 76.95
STEP 95.62 ± 0.37 93.19 ± 1.43 98.29 ± 0.21 91.67 ± 1.91 97.42 ± 0.36 95.23
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A.5 Varying the OOD Ratio

Since the ratio of OOD samples may affect the feature representations which play an important role in
our approach, we conduct an extra experiment to study the impact of different OOD ratios in unlabeled
data. Due to limited size of benchmark data sets, we fix unlabeled data set with 10,000 samples and try
five different OOD ratios γ ∈ {10%, 25%, 50%, 75%, 90%}, where γ denotes 1−

∑
x∈Du

1(g(x)∈Cl)

|Du|
and g(·) can obtain the ground-truth label of one sample. Fig.(2) shows the results on four OOD data
sets, where the ID data set is CIFAR-10. Comparing these results, we will find that the performance
of our proposal remains relatively stable at different OOD ratios. When the task is complex and the
OOD ratio is extreme, the performance of our proposal will decrease. In addition, the reduction
of unlabeled data also leads to deterioration of detection performance. This matters little because
unlabeled data is cheap and easy to obtain in large quantities in practical applications. In these cases,
how to ensure the OOD detection performance will be a proposition to explore.

Figure 2: Performance of different OOD ratio in unlabeled data.

A.6 Visualization

We test the ability to use MD to distinguish OOD samples when Σ̂ is estimated with different
scales of errors. We use the Equ.(5) to convert the Mahalanobis distance into the Euclidean distance
calculation in the projection space. And then use the dimensionality reduction technique in the
projection space to get the three pictures on the left. We visualize samples in the detection space of
STEP , and get the rightmost picture. The Fig.(3) shows that STEP not only solves the inaccurate
estimation problem but also distinguishes ID and OOD samples by a more significant margin.

Figure 3: Visualize STEP and Mahalanobis distance’s ability to distinguish between OOD and ID
samples through dimensionality reduction. Compared with Mahalanobis distance when we estimate
unbiased Σ̂, our STEP approach separates ID and OOD samples by a more significant margin.
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