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ABSTRACT

Online-Within-Online (OWO) meta learning stands for the online multi-task
learning paradigm in which both tasks and data within each task become available
in a sequential order. In this work, we study the OWO meta learning of the initial-
ization and step size of within-task online algorithms in the non-convex setting,
and provide improved regret bounds under mild assumptions of loss functions.
Previous work analyzing this scenario has obtained for bounded and piecewise
Lipschitz functions an averaged regret bound O((

√
m

T 1/4 + (logm) log T√
T

+ V )
√
m)

across T tasks, with m iterations per task and V the task similarity. Our first
contribution is to modify the existing non-convex OWO meta learning algorith-
m and improve the regret bound to O(( 1

T 1/2−α + (log T )9/2

T + V )
√
m), for any

α ∈ (0, 1/2). The derived bound has a faster convergence rate with respect to
T , and guarantees a vanishing task-averaged regret with respect to m (for any
fixed T ). Then, we propose a new algorithm of regret O(( log T

T + V )
√
m) for

non-convex OWO meta learning. This regret bound exhibits a better asymptot-
ic performance than previous ones, and holds for any bounded (not necessarily
Lipschitz) loss functions. Besides the improved regret bounds, our contributions
include investigating how to attain generalization bounds for statistical meta learn-
ing via regret analysis. Specifically, by online-to-batch arguments, we achieve a
transfer risk bound for batch meta learning that assumes all tasks are drawn from
a distribution. Moreover, by connecting multi-task generalization error with task-
averaged regret, we develop for statistical multi-task learning a novel PAC-Bayes
generalization error bound that involves our regret bound for OWO meta learning.

1 INTRODUCTION

Meta learning, also referred to as learning to learn, is a multi-task learning paradigm that transfers
knowledge from past tasks to the new task for fast adaptation (Thrun & Pratt, 1998). Due to the
advantage of reducing annotation cost and training time for novel task, meta learning has received
increasing attention over the last decade, both from practical (Finn et al., 2017; Snell et al., 2017;
Ye et al., 2020) and theoretical perspectives (Baxter, 2000; Balcan et al., 2019; Chen et al., 2020).

Traditional meta learning theory mainly investigates generalization bounds for statistical/batch meta
learning (Baxter, 2000; Pentina & Lampert, 2014; Maurer et al., 2016; Guan et al., 2022). In this
setting, samples within each task are assumed to be drawn from the same data distribution and pro-
cessed in a batch, and different tasks are drawn from the same task distribution. Recently, there
emerges an interest in studying online meta learning, where tasks are observed sequentially and
require real-time processing (Alquier et al., 2017; Finn et al., 2019). According to (Denevi et al.,
2019), there are two main frameworks in online meta learning setting: (1) Online-Within-Batch
(OWB) framework, where tasks are available in a sequential order but the data within each task are
available in one batch, see (Finn et al., 2019; Zhuang et al., 2020; Acar et al., 2021). (2) Online-
Within-Online (OWO) framework, where both tasks and data within each task are available and pro-
cessed sequentially, see (Alquier et al., 2017; Denevi et al., 2019; Khodak et al., 2019; Balcan et al.,
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2019; 2021). The goal of this paper is to investigate the OWO meta learning of initialization-based
online optimization algorithms in the non-convex setting, and provide strong theoretical guarantees.

Initialization-based online algorithms (e.g. online gradient descent (Zinkevich, 2003)) typically
have two hyper-parameters to learn: the initialization of model’s parameter, and step size to update
the parameter. OWO meta learning aims to utilize knowledge from previous tasks to set a good
initialization and step size of online algorithm on novel task for fast adaptation. Recall that the
metric used to measure the performance of online single-task learner is the so-called regret, which
is defined as the gap between cumulative loss of online learner and the cumulative loss of the best
fixed strategy in hindsight. Analogously, the metric used to measure the performance of OWO
meta-learner is the averaged regret across T training tasks, denoted as task-averaged regret (Balcan
et al., 2019). Previous work (Balcan et al., 2021) analyzing the non-convex OWO meta learning of
initialization-based online algorithms has attained for bounded and piecewise Lipschitz functions a
task-averaged regret bound O((

√
m

T 1/4 + (logm) log T√
T

+V )
√
m), with m iterations per task and V the

task similarity. However, this bound has two limitations: (1) For any fixed T , it cannot guarantee a
vanishing regret with respect to (w.r.t.) m; (2) The convergence rate w.r.t. T is slow. In this work,
we attempt to address the two issues and provide improved regret bounds with fine-grained analysis.

Our first contribution is based on the modification of existing non-convex OWO meta learning al-
gorithm from Balcan et al. (2021). We improve the regret bounds of online algorithms for learning
initialization and step size respectively, and combine them to get the sharper task-averaged regret
bound of O(( 1

T 1/2−α + (log T )9/2

T +V )
√
m), for any α ∈ (0, 1/2). The derived bound has a faster

convergence rate w.r.t. T , and guarantees a vanishing task-averaged regret w.r.t. m (for any fixed T ).
Then, we propose a new and more efficient algorithm of regret O(( log T

T +V )
√
m) for non-convex

OWO meta learning. This regret bound exhibits a better asymptotic performance than previous ones,
and holds for any bounded (not necessarily Lipschitz) loss functions. Furthermore, we show how to
attain generalization bounds for statistical meta learning via regret analysis. Specifically, by online-
to-batch arguments, we achieve a new transfer risk bound for non-convex batch meta learning in
which different tasks are drawn from a task distribution. Moreover, by revealing the connection be-
tween multi-task generalization error and task-averaged regret, we develop for statistical multi-task
learning a novel PAC-Bayes generalization error bound that involves our improved regret bound for
non-convex OWO meta learning setting. To the best of our knowledge, this is the first PAC-Bayes
bound for batch/online multi-task setting that imposes distribution assumption over the data per task.

To summarize, our contributions are four-fold: (1) For non-convex OWO meta learning, we improve
regret bound from O((

√
m

T 1/4 + (logm) log T√
T

+ V )
√
m) to O(( 1

T 1/2−α + (log T )9/2

T + V )
√
m) (α ∈

(0, 1/2)) for bounded and piecewise Lipschitz functions. (2) We design a new and efficient OWO
meta learning algorithm of sharper regret bound O(( log T

T +V )
√
m) for bounded (not necessarily

Lipschitz) functions. (3) We obtain a new transfer risk bound for statistical meta learning via regret
analysis. (4) We derive a PAC-Bayes bound for multi-task learning, shedding light on proving PAC-
Bayes multi-task generalization bound with the regret bound from non-convex OWO meta learning.

2 RELATED WORK

Regret Bounds for Online-Within-Batch Meta Learning. In OWB meta learning setting, the meta
parameter is transferred and updated sequentially across T tasks. Concretely, when encountering a
training task, OWB meta learning algorithm takes the meta parameter and the training data from
the task as input, and outputs a model suitable for that task. The incurred loss of the task-specific
model over the evaluation data is denoted as the online loss on the task. The gap between the
cumulative loss of updated meta parameters across T tasks and the cumulative loss of the best fixed
meta parameter in hindsight is defined as the regret. Thus, the regret bound for OWB meta learning
is of O(log T ) in the strongly-convex setting (see (Finn et al., 2019, Cor 2)), and of O(

√
T ) in

the convex/non-convex setting (see (Acar et al., 2021, Thm 1) and (Zhuang et al., 2020, Thm 1)).
These regret bounds are irrelevant to the sample size m per task, and are achieved under very strong
assumptions of loss functions (e.g. including Lipschitzness, smoothness, and Hessian smoothness).

Regret Bounds for Online-Within-Online Meta Learning. OWO meta learning is more chal-
lenging than OWB meta learning. Existing algorithms in OWO meta learning can be catego-
rized into two groups: (1) The first group learns a common meta parameter (e.g. a feature map
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(Alquier et al., 2017) or a meta regularization function (Denevi et al., 2019)) shared across T tasks
and uses the meta parameter to learn specific model for each task. The averaged regret bound
across m iterations and T tasks in (Alquier et al., 2017, Thm 3.1) is of O(1/

√
m + 1/

√
T ).

The regret bound in (Denevi et al., 2019, Thm 1) is of O(
√

logm/m + 1/
√
T ). However, both

works focus on convex OWO meta learning, and it is hard to extend their analysis (e.g. es-
pecially the primal-dual technique in Denevi et al. (2019)) to the non-convex setting. (2) The
second group learns the initialization and step size of online algorithms for each task, and com-
bines the regrets for learning these two hyper-parameters to obtain ultimate averaged regret across
T tasks. Concretely, the task-averaged regret bound in (Khodak et al., 2019, Thm 5.1) is of
O((log T/T + log T/

√
T + V )

√
m) for convex and Lipschitz functions. The bound in (Balcan

et al., 2021, Thm 3.3) is of O((
√
m/T 1/4 + (logm) log T/

√
T + V )

√
m) for non-convex and

piecewise Lipschitz functions. Our work focuses on non-convex setting, improves regret bound to
O((1/T 1/2−α+(log T )9/2/T+V )

√
m) in Theorem 2 for piecewise Lipschitz functions, and further

obtains a sharper regret bound of O((log T/T + V )
√
m) in Theorem 3 for non-Lipschitz functions.

Generalization Bounds for Statistical Meta Learning. The basic assumption in statistical meta
learning theory is that all tasks are sampled from the same task distribution (Baxter, 2000). Under
this assumption, Guan et al. (2022) summarize existing generalization bounds for meta learning
into three groups: (1) Generalization bounds based on hypothesis space complexity (e.g. covering
number based ones (Baxter, 2000) and Gaussian complexity based ones (Maurer et al., 2016)). (2)
Generalization bounds based on PAC-Bayes theory (Pentina & Lampert, 2014; 2015; Guan & Lu,
2022). (3) Generalization bounds based on algorithmic stability (Maurer, 2005; Chen et al., 2020).
However, with the tool of stability analysis, Guan et al. (2022) point out that, under the statistical
task distribution assumption, the optimal generalization bound for meta learning is of O(1/

√
T ),

where T is the number of training tasks. The optimal bound is irrelevant to the sample size m
per task and hence is slow, indicating the limitation of task distribution assumption. Our transfer
risk bound in Theorem 4 via regret analysis is different from the above generalization bounds for
meta learning. Our bound of O(V 2/

√
m) decreases with higher similarity among T training tasks,

shedding more light on the generalization ability of meta learning models. More discussions about
generalization bounds for statistical multi-task learning can be found in Section A of the Appendix.

3 PRELIMINARY

In online learning, an action space Θ is a compact subset of Rd. A loss function ` : Θ 7→ R≥0 is
called α-strongly convex with respect to (w.r.t.) certain norm ‖·‖ in Rd, if for any x, y ∈ Θ, we have
`(x)− `(y) ≥ 〈g, x− y〉+ α

2 ‖x− y‖
2, where g ∈ ∂`(y) and ∂`(y) denotes the set of subgradients

of ` at y. If ` is differentiable, ∂` denotes the set of (unique) gradient of `, i.e. ∂` = {∇`}. When
α = 0, ` is called convex. ` is called uniformly L-Lipschitz over Θ w.r.t. the norm ‖ · ‖, if for any
x, y ∈ Θ, |`(x)− `(y)| ≤ L‖x− y‖. Let P(Θ) be the set of all probability distributions over action
space Θ. For any ρ ∈ P(Θ) and any loss function `, we use 〈ρ, `〉 = Eθ∼ρ`(θ) for brevity when the
context is clear. We use boldface letter x to denote the real vector in high-dimensional space, and x̂
as its normalized version x/‖x‖. We also use abbreviation [m] = {1, 2, ...,m} for any integer m.

Online Learning. Vanilla online learning (also called online single-task learning setting) is always
cast as a m-round optimization problem . At each round i ∈ [m], the online learner selects an action
θi ∈ Θ. Then a loss function `i : Θ 7→ R≥0 is revealed from the nature and the online learner
suffers loss `i(θi) of the chosen action θi. The quantity used to measure the performance of online
learner is the so-called regret, which is the difference between the cumulative loss of chosen actions
during m rounds and the cumulative loss of the best fixed action in hindsight. Detailed introduction
of regret bounds for convex/non-convex online learning can be found in Section A of the Appendix.

Online-Within-Online Meta Learning. In non-convex OWO meta learning setting, the online
meta-learner will encounter T tasks and each task t ∈ [T ] is composed of a sequence of m loss
functions {`ti : Θ 7→ R≥0}i∈[m]. Concretely, at i-th round of the t-th task, the online meta-learner
selects an action θti ∈ Θ, and then suffers the loss `ti(θti), with `ti chosen adversarially from the
nature. The regret for task t is defined asRt,m ,

∑m
i=1 Eθ∼ρti`ti(θ)−minθ∈Θ

∑m
i=1 `ti(θ). Then,

the quantity to measure the performance of online meta-learner is the following task-averaged regret:

R̄T,m=
1

T

T∑
t=1

Rt,m =
1

T

T∑
t=1

m∑
i=1

Eθ∼ρti`ti(θ)−`ti(θ∗t ), where θ∗t ∈ arg min
θ∈Θ

m∑
i=1

`ti(θ). (1)
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If we set the probability distribution ρ∗t as Dirac measure δθ∗t that only has mass 1 at the point θ∗t , we
can rewrite the above task-averaged regret in a concise form: R̄T,m = 1

T

∑T
t=1

∑m
i=1〈ρti−ρ∗t , `ti〉.

The upper bound on R̄T,m is denoted as ŪT,m. The goal of OWO meta learning is to improve the
single-task regret by leveraging information from other tasks. Formally speaking, we expect that
when T is large enough, the task-averaged regret R̄T,m is smaller than the single-task regret Rt,m.

4 REGRET BOUNDS FOR NON-CONVEX ONLINE META LEARNING

Following previous work (Balcan et al., 2021), we study the non-convex OWO meta learning of
the initialization and step size of the Exponentially Weighted Aggregation (EWA) algorithm. We
first provide a general framework for analyzing the regret bounds for non-convex OWO meta Learn-
ing. Such framework is motivated by the form of regret upper bound of EWA (see regret bound for
piecewise Lipschitz functions in Eq. (2) and regret bound for non-Lipschitz functions in Eq. (3)):
Ut(ρt1, λt) = mbλt +

V (ρt1,ρ
∗
t )2

λt
+ g(m), where b > 0, λt is the step size, ρt1 ∈ P(Θ) the ini-

tialization distribution over the action space Θ for task t, ρ∗t ∈ P(Θ) may have some dependence
on the optimal action θ∗t , V (ρt1, ρ

∗
t )

2 is the non-negative function of ρt1 and ρ∗t (e.g. the diver-
gence between ρt1 and ρ∗t ), g(m) is the term that cannot be optimized by meta learning. We then
set V 2 = minρ∈P(Θ)

1
T

∑T
t=1 V (ρ, ρ∗t )

2 as the task similarity among T tasks. We will also use
ft(ρ) = V (ρ, ρ∗t )

2 for brevity when the context is clear. Using the scaling technique, the regret
bound Ut(ρ, λ) of the EWA algorithm run with initialization ρ ∈ P(Θ) and step size λ = v/

√
mb

for v > 0 can be rewritten as an equivalent form: Ut(ρ, v) = (v+ ft(ρ)
v )
√
mb+g(m). Therefore the

OWO meta learning algorithm always consists of two online sub-algorithms: one is to play action
over functions {fs(ρ) = V (ρ, ρ∗s)

2}s∈[t−1] to determine the initialization distribution ρt1 for task t,
another is to play action over functions {hs(v) = v + fs(ρs1)/v}s∈[t−1] to determine the step size
vt. The process of utilizing {ρ∗s}s∈[t−1] and {vs}s∈[t−1] to determine the initialization distribution
ρt1 and the step size vt for EWA algorithm on task t can be considered as transferring knowledge
from past tasks to the novel task. Combining the regret bounds for this two online sub-algorithms at-
tains the following task-averaged regret bound for non-convex OWO meta learning algorithms with
general functions (i.e. without boundedness, convexity or Lipschitzness assumptions of {`ti}t,i≥1).

Theorem 1 Assume that the upper regret bound for each task t ∈ [T ] has the form of Ut(ρ, v) =

(v+ ft(ρ)
v )
√
mb+g(m). Assume we have a sub-algorithm that achieves FT (ρ) regret w.r.t. any ρ ∈

P(Θ) by setting distributions ρt1 on ft(ρ) = V (ρ, ρ∗t )
2, and another sub-algorithm that achieves

non-increasingHT (v) regret w.r.t. any v > 0 by playing actions vt > 0 on ht(v) = v+ ft(ρt1)
v for all

t ∈ [T ]. Then, running the OWO meta learning algorithm (consisting of these two sub-algorithms)
with the step size vt/

√
mb and initialization ρt1 at each task t, for ρ∗ = arg minρ∈P(Θ)

∑T
t=1 ft(ρ)

the optimal initialization and V the task-similarity, we get the task-averaged regret upper bound:

1

T

T∑
t=1

m∑
i=1

〈ρti − ρ∗t , `ti〉 ≤
(HT (V )

T
+ min{FT (ρ∗)

V T
, 2

√
FT (ρ∗)

T
}+ 2V

)√
mb+ g(m).

We need to mention that the task-averaged regret upper bound framework in Theorem 1 is not only
suitable to analyze EWA, but also applicable to any online algorithm (e.g. Follow-The-Perturbed-
Leader in (Suggala & Netrapalli, 2020, Thm 1)) with the regret bound of form Ut(ρ, v) = (v +
ft(ρ)
v )
√
mb + g(m). In Sections 4.1-4.2, we leverage different strategies to learn initialization ρt1

for Lipschitz and non-Lipschitz functions. For learning the step size vt, we consistently use Follow-
The-Leader (FTL) algorithm, as running FTL can achieve the following logarithmic regret bound.

Proposition 1 Assume that FTL algorithm runs on the sequence of functions {ht(v) = v +
ft(ρt1)
v }t∈[T ] over the domain [0, D], where D2 ≥ maxt∈[T ] ft(ρt1), then we have the regret bound:

T∑
t=1

ht(vt)− min
v∈[0,D]

T∑
t=1

ht(v) ≤ D3

4

T∑
t=1

∣∣1−∑t−1
s=1 ft(ρt1)/

∑t−1
s=1 fs(ρs1)

∣∣2∑t
s=1 fs(ρs1)

.

Furthermore, if for all t ∈ [T ], ft(ρt1) ∈ [B2, D2] with D ≥ B > 0, then we have the logarithmic
regret upper bound:

∑T
t=1 ht(vt)−minv∈[0,D]

∑T
t=1 ht(v) ≤ D7

4B6 (log T + 1).
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Table 1: Different task-averaged regret bounds for OWO meta learning algorithms under different
assumptions of loss functions {`ti}T,mt,i=1. T is the number of tasks, and m is the number of iterations
per task. Concretely, the task-averaged regret upper bound =

(
Bound I + Bound II + V

)√
m,

where Bound I is the regret upper bound for learning the initialization, Bound II is the regret upper
bound for learning the step size, V represents the task similarity among different tasks, α ∈ (0, 1/2).
The explicit form of these regret bounds and task similarities are given in Table B.1 of the Appendix.

Existing Works Task-Averaged Regret Assumptions of `ti Bound I Bound II

Khodak et al. (2019) 1
T

∑T,m
t,i=1 `ti(θti)− `ti(θ∗t )

Convex &
Uniformly Lipschitz O( log T

T ) O( log T√
T

)

Balcan et al. (2021) 1
T

∑T,m
t,i=1〈ρti, `ti〉 − `ti(θ∗t )

Bounded &
Piecewise Lipschitz O(m

d/2

T 1/4 ) O( (logm) log T√
T

)

Our Theorem 2 1
T

∑T,m
t,i=1〈ρti, `ti〉 − `ti(θ∗t )

Bounded &
Piecewise Lipschitz O( 1

T 1/2−α ) O( (log T )9/2

T )

Our Theorem 3 1
T

∑T,m
t,i=1〈ρti − ρ∗t , `ti〉 Bounded O( log T

T ) O( log T
T )

4.1 REGRET BOUNDS FOR NON-CONVEX PIECEWISE LIPSCHITZ FUNCTIONS

In this section, we let ρ : Θ 7→ R≥0 be an unnormalized distribution over Θ. For any loss function
` : Θ 7→ R, 〈ρ, `〉 =

∫
Θ
`(θ)ρ(θ)dθ/

∫
Θ
ρ(θ)dθ. The update rules of Exponentially Weighted Ag-

gregation (EWA) algorithm (with initialized distribution ρ1 and step size λ) for each round i can be
summarized as follows: (1) Set normalization factor Pi =

∫
Θ
ρi(θ)dθ; (2) Sample θi with probabili-

ty pi(θi) = ρi(θi)
Pi

; (3) Suffer `i(θi) and observe `i(·); (4) ∀θ ∈ Θ, set ρi+1(θ) = e−λ`i(θ)ρi(θ). We
next give the formal definition of piecewise Lipschitz functions proposed by Balcan et al. (2018).

Definition 1 (Piecewise Lipschitzness) The sequence of random loss functions {`i}mi=1 is piecewise
L-Lipschitz (L > 0) that are β-dispersed, if ∀m,∀ε ≥ m−β , in expectation over the randomness of
the loss functions, we have E[max ‖θ−θ′‖2≤ε

∣∣{i ∈ [m] | `i(θ)− `i(θ′) > L‖θ − θ′‖2}
∣∣] ≤ Õ(εm).

Piecewise Lipschitzness is a weakly Lipschitz condition, indicating that the loss functions are dis-
continuous in a concentrated small region. The soft-O suppresses dependence on logarithmic terms.
Let {`i : Θ 7→ [0,M ]}i∈[m] be a sequence of piecewise L-Lipschitz functions that are β-dispersed.
Let V (ρ, θ∗)2 = − log (

∫
B(θ∗,m−β)

ρ(θ)dθ/
∫

Θ
ρ(θ)dθ), where B(θ∗, ε) is the ε-radius ball around

the minimizer θ∗. Then, adapting the analysis from (Balcan et al., 2021, Thm 2.1) to theM -bounded
functions obtains the regret bound for EWA algorithm with the initialization ρ1 and the step size λ:

m∑
i=1

Eθ∼ρi`i(θ)−
n∑
i=1

`i(θ
∗) ≤ λM2m+

V (ρ1, θ
∗)2

λ
+ Õ((L+ 1)m1−β). (2)

Detailed proofs of Eq. (2) can be found in Lemma D.1. Therefore, the task-similarity is
defined as V 2 = minρ:Θ7→R≥0,

∫
Θ
ρ(θ)dθ=1− 1

T

∑T
t=1 log

∫
B(θ∗t ,m

−β)
ρ(θ)dθ. At task t, de-

note Θt = B(θ∗t ,m
−β), we need to design an algorithm to minimize the function ft(ρ) =

− log(
∫

Θt
ρ(θ)dθ

/ ∫
Θ
ρ(θ)dθ). We borrow the idea from Balcan et al. (2021) to discretize Θ

and translate the minimization problem minρ:Θ7→R≥0
ft(ρ) over the set of distributions into an on-

line convex optimization problem. Concretely, at task t, define the discretization Dt = {A =

∩s≤tΘ
(θ[s])
s : θ ∈ {0, 1}t, vol(A) > 0} of Θ, where Θ

(0)
s = Θs,Θ

(1)
s = Θ\Θs. Then we

use elements of these discretization to construct non-negative vectors in R|Dt|≥0 : for any unnor-

malized distribution ρ : Θ 7→ R≥0, let ρ(t) ∈ R|Dt|≥0 denote the vector with entries ρ(t)[A] =∫
A
ρ(θ)dθ for A ∈ Dt. We will use ν as the uniform measure, i.e. ν(t)[A] = vol(A), and

use ν = ν(T ),ρ = ρ(T ) for brevity. With simple calculations, it is not difficult to see that
ft(ρ) = − log (

∫
Θt
ρ(θ)dθ/

∫
Θ
ρ(θ)dθ) = − log 〈ρ∗t , ρ̂〉, where ρ∗t [A] = 1A⊂Θt . Notice that

min‖ρ‖1=1 ft(ρ) = − log 〈ρ∗t ,ρ〉 is a convex optimization problem over the |DT |-dimensional sim-
plex. Thus, we can use the optimal Follow-The-Regularized-Leader (FTRL) algorithm with the
KL-divergence regularization to solve this problem. The regret bound is exhibited in Proposition 2.
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Algorithm 1 Non-convex OWO meta learning algorithm for bounded piecewise Lipschitz functions.
1: Input: step size η for FTRL, mixture parameter γ ∈ (0, 1], domain upper bound D; initialized

distribution ρ11 : Θ 7→ R≥0 and initialized step size λ1 =
√

(D2 − log γ)/(mM2) for EWA.
2: for task t ∈ [T ] do
3: for round i ∈ [m] do
4: Set Pti =

∫
Θ
ρti(θ)dθ and sample θti with probability pti(θti) = ρti(θti)/Pti

5: Suffer loss `ti(θti), observe `ti(·), and update ρt,i+1(θ) = e−λt`ti(θ)ρti(θ) // EWA step
6: Sample θ∗t with probability ptm and obtain task-t optimum θ∗t ∈ Θ
7: Set 1B(θ∗t ,m

−β) to be the function that is 1 in the ball B(θ∗t ,m
−β) and otherwise 0

8: Update ρt+1,1 to ρt+1(t) = arg min‖ρ‖1=1,ρ≥γν̂(t) KL(ρ||ν̂(t)) − η
∑
s≤t log 〈ρ∗s(t),ρ〉,

λt+1 =

√
−

∑
s≤t log 〈ρ∗s(s),ρs(s)〉

tmM2 // meta-update step

Proposition 2 Assume that FTRL algorithm with initialization ν̂ and regularization KL(ρ||ν̂) runs
on functions {ft(ρt)}t∈[T ] over the set ∆ = {ρ : ‖ρ‖1 = 1,ρ ≥ γν̂}, then

∑T
t=1 ft(ρt)−ft(ρ∗) ≤

2GL
√
T/γ, where ρ∗ ∈ arg minρ∈∆

∑T
t=1 ft(ρ), G2 ≥ KL(ρ∗||ν̂), L2 = 1

T

∑T
t=1

vol(Θ)2

vol(Θt)2 .

Notice that vol(Θt) = Vdm
−βd, where Vd = πd/2

Γ(d/2+1) is the volume of the unit ball in the d-
dimensional Euclidean space, Γ(x+ 1) = xΓ(x) is the Gamma function. Then, apply Proposition 1
to learn the step size vt in the piecewise Lipschitz setting and choose a proper γ, we attain the regret.

Proposition 3 Assume that FTL algorithm runs on the sequence of functions {ht(v) =

v + ft(ρt1)
v }t∈[T ] with ft(ρt1) = − log 〈ρ∗t ,ρt1〉 over the domain [0, D], where D2 =

maxt∈[T ] log vol(Θ)
γvol(Θt)

≥ ft(ρt1), for any t ∈ [T ]. Denote B2 = mint∈[T ] log vol(Θ)
γvol(Θt)+(1−γ)vol(Θ) .

Then if we set γ = mdβ/Tα ∈ (0, 1] with α ∈ (0, 1/2), we have the following regret upper bound:
T∑
t=1

ht(vt)− min
v∈[0,D]

T∑
t=1

ht(v) ≤ (α log T + log (vol(Θ)/Vd))
7/2(log T + 1)

4B6
.

For large enough T , if we set α ∈ [lnmdβ/lnT , ln ( em
dβ

e−1 −
Vd

(e−1)vol(Θ) )/lnT ] ⊂ (0, 1
2 ), we have

B2 ≥ 1, and the regret bound in Proposition 3 has the order ofO((log T )9/2) (see more explanations
in Remark D.1 of the Appendix). We list the whole pseudo code of the OWO meta learning algorith-
m for piecewise Lipschitz functions {`ti}t,i≥1 in Algorithm 1, and achieve our first improved regret
bound for this OWO meta learning algorithm by combining regret bounds in Propositions 2-3.

Theorem 2 Under the conditions of Theorem 1, for any task t ∈ [T ], let {`ti : Θ 7→ [0,M ]}i∈[m]

be a sequence of piecewise L-Lipschitz functions that are β-dispersed. Set α ∈ (0, 1
2 ), let g(m) =

Õ((L+ 1)m1−β), then using FTRL algorithm in Proposition 2 and FTL algorithm in Proposition 3
respectively to learn the initialization and step size in Algorithm 1 obtains the regret upper bound:

R̄T,m ≤g(m) +
{ (α log T + log (vol(Θ)/Vd))

7/2(log T + 1)

4TB6

+ min
{vol(Θ)(KL(ρ∗||ν̂) + 1)

VdV T
1
2−α

, 2

√
vol(Θ)(KL(ρ∗||ν̂) + 1)

VdT
1
2−α

}
+ 2V

}√
mM.

Remark 1 Our task-averaged regret bound ŪT,m in Theorem 2 has 3 improvements over the regret
bound in (Balcan et al., 2021, Thm 3.3) that is obtained under the same assumptions (see Table 1
for details): (1) Our bound guarantees a vanishing task-averaged regret. For any fixed T , our ŪT,m
is a vanishing bound w.r.t. m (i.e. ŪT,m = o(m)). However, in (Balcan et al., 2021, Thm 3.3) the
bound ŪT,m = O((md/2/T 1/4 + (logm) log T/

√
T + V )

√
m) is not a vanishing bound w.r.t. m

since the action space dimension d ≥ 1. (2) Our regret bound of O(1/T 1/2−α) (α ∈ (0, 1/2)) for
learning the initialization distribution in each task is sharper than that of O(md/2/T 1/4) in Balcan
et al. (2021). (3) Our regret bound of O((log T )9/2/T ) for learning the step size has a better
convergence rate than that of O((logm) log T/

√
T ) in Balcan et al. (2021). More comparisons

between our regret bound and that in Balcan et al. (2021) can be found in Table B.1 of the Appendix.
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Algorithm 2 Non-convex OWO meta learning algorithm for bounded non-Lipschitz functions.
1: Input: initialized distribution ρ11 ∈ P(Θ) and learning rate λ1 > 0.
2: for task t ∈ [T ] do
3: for round i ∈ [m] do
4: ρti = arg minρ∈P(Θ) KL(ρ||ρt1) + λt

∑i−1
j=1〈`tj , ρ〉 // EWA step

5: Suffer loss 〈ρti, `ti〉 and observe `ti(·)

6: Update ρt+1,1 = 1
t

∑t
s=1 ρsm, λt+1 =

√∑t
s=1 KL(ρsm||ρs1)

tmM2 // meta-update step

4.2 REGRET BOUNDS FOR NON-CONVEX NON-LIPSCHITZ FUNCTIONS

In this section, we will describe the problem with the language of measure theory. For probability
distributions ρ, π ∈ P(Θ), define the Radon-Nikodym (RN) derivative of ρ w.r.t. π as dρ

dπ , when
ρ is absolutely continuous w.r.t. π (i.e. ρ � π). If ρ 6� π, we simply set dρ

dπ = +∞. We re-
fer readers to Page 247 in Yeh (2014) for more properties of RN derivative. For distribution ρ, π,
the KL-divergence between them is defined as KL(ρ||π) = Eθ∼ρ log dρ

dπ , and the χ2-divergence
is χ2(ρ||π) = Eθ∼π

[
( dρ

dπ )2 − 1
]
. Then the update rule at i-th round of exponentially weighted

aggregation (EWA) algorithm (with initialization distribution ρ1 and step size λ) can be summa-
rized as ρi = arg minρ∈P(Θ)

∑i−1
j=1〈ρ, `j〉+ KL(ρ||ρ1)/λ, and the posterior ρi has an analytic for-

m: ρi(dθ) = exp{−λ
∑i−1
j=1 `j(θ)}ρ1(dθ)

/∫
exp{−λ

∑i−1
j=1 `j(θ)}ρ1(dθ). According to (Alquier,

2021, Thm 2.1), for any loss function `i : Θ 7→ [0,M ], EWA has the following regret upper bound:
m∑
i=1

〈ρi − ρ, `i〉 ≤ λM2m+
KL(ρ||ρ1)

λ
, ∀ρ ∈ P(Θ). (3)

Therefore, the task similarity V 2 = minρ∈P(Θ)
1
T

∑T
t=1 KL(ρ∗t ||ρ). Then, we need to choose online

algorithms to learn respectively the initialization ρt1 and step size vt in Eq. (3) of EWA on task t. For
learning ρt1, we choose FTL algorithm over functions {KL(ρ∗t ||ρt1)}t≥1 to yield the regret bound.

Proposition 4 Given a sequence of distributions {ρ∗t }t∈[T ], assume that FTL algorithm runs on
the sequence of {KL(ρ∗t ||ρ)}t∈[T ] to determine ρ, i.e. ρt1 = arg minρ∈P(Θ)

∑t−1
s=1 KL(ρ∗s||ρ), and

further assume G2 ≥ maxt∈[T ] χ
2(ρ∗t ||ρt1), then we can obtain the following regret upper bound:

T∑
t=1

KL(ρ∗t ||ρt1)− min
ρ∈P(Θ)

T∑
t=1

KL(ρ∗t ||ρ) ≤
T∑
t=1

χ2(ρ∗t ||ρt1)

t
≤ G2(log T + 1).

The above logarithmic regret bound is non-trivial, since KL(ρ∗t ||ρt1) is the functional of distribution
ρt1, and it is hard to find a norm in the space of distributions ρt1 to verify the strong-convexity
or Lipschitzness of functional KL(ρ∗t ||ρt1). Thus, we are unable to utilize regret analysis for the
functions over Euclidean space (Shalev-Shwartz, 2012). Instead, we use the analytic form of the
optimal distribution of FTL and the properties of RN derivative to get this logarithmic regret (see
Section E). Then, applying Proposition 1 to learn the step size achieves the following regret bound.

Proposition 5 Given a sequence of functions {ft(ρt1) = KL(ρ∗t ||ρt1)}t∈[T ], assume that there exist
D2 ≥ maxt∈[T ] KL(ρ∗t ||ρt1), B2 ≤ mint∈[T ] KL(ρ∗t ||ρt1) with B > 0. Assume that FTL algorithm
runs on the sequence of functions {ht(v) = v+ ft(ρt1)

v }t∈[T ] over the domain [0, D]. Then we have
T∑
t=1

ht(vt)− min
v∈[0,D]

T∑
t=1

ht(v) ≤ D7

4B6
(log T + 1).

If we use EWA algorithm to learn distribution ρ∗t (i.e. set ρ∗t = ρtm) for task t, then the above condi-
tion B > 0 truly holds (see proof at the end of Section E). The pseudo code of OWO meta learning
algorithm with ρ∗t = ρtm is listed in Algorithm 2 for non-Lipschitz functions. The correspond-
ing task-averaged regret upper bound is given as follow by combining results in Propositions 4-5,
achieving the fastest convergence rate O((log T/T +V )

√
m) with respect to T in the current work.

Theorem 3 Under the conditions of Theorem 1, for any task t ∈ [T ], let {`ti : Θ 7→ [0,M ]}i∈[m] be
a sequence of M -bounded functions. Let G2 ≥ maxt∈[T ] χ

2(ρ∗t ||ρt1), D2 ≥ maxt∈[T ] KL(ρ∗t ||ρt1)

7
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and mint∈[T ] KL(ρ∗t ||ρt1) ≥ B2 > 0, then using FTL algorithm to respectively learn the initializa-
tion and step size of EWA algorithm in Algorithm 2 attains the task-averaged regret upper bound:

1

T

T∑
t=1

m∑
i=1

〈ρti−ρ∗t , `ti〉≤
(D7(log T + 1)

4TB6
+min{G

2(log T + 1)

V T
, 2G

√
log T + 1

T
}+2V

)√
mM.

Remark 2 Let’s compare the regret bound in Theorem 3 (for bounded functions) with the bound
in Theorem 2 (for bounded piecewise Lipschitz functions) and the bound in (Khodak et al., 2019,
Thm 3.2) (for convex and Lipschitz functions) in Table 1. (1) In Theorem 3, the regret bounds
for learning the initialization and the step size are O(log T/T ), both of which are sharper than
the corresponding regret bounds of O(1/T 1/2−α) and O((log T )9/2/T ) in Theorem 2. Besides,
Theorem 3 obtains improved regret bounds without piecewise Lipschitz assumption of loss functions.
(2) When compared with Khodak et al. (2019), both our regret bound and theirs for learning the
initialization have the same order of O(log T/T ); but our bound for learning the step size is of
O(log T/T ), sharper than theirs of O(log T/

√
T ). The improvement is obtained by using primal-

dual technique from Shalev-Shwartz & Kakade (2008) to analyze the strong-convexity of functions
{ht(v) = v + ft(ρt1)/v}t∈[T ]. Besides, we achieve the improved result for bounded functions,
without convexity or Lipschitzness assumptions of loss functions {`ti}t∈[T ],i∈[m]. We further discuss
the limitations of our Theorem 3 and our Algorithm 2 in Remark B.1 and Remark H.1, respectively.

5 GENERALIZATION BOUNDS FOR META LEARNING VIA REGRET ANALYSIS

In this section, we show how to derive generalization bound for statistical meta learning via re-
gret analysis. Concretely, in Section 5.1, we provide a novel transfer risk bound for non-convex
batch meta learning under the task distribution assumption. In Section 5.2, we yield a PAC-Bayes
generalization bound for statistical multi-task learning that supposes independence between tasks.

5.1 IMPROVED TRANSFER RISK BOUNDS FOR STATISTICAL META LEARNING

In statistical meta learning, let τ be a probability measure over the set of all data distributions µ on
bounded loss functions ` : Θ 7→ [0,M ]. A sequence of loss function {`ti}t∈[T ],i∈[m] is generated
by drawing m loss functions i.i.d. from each in a sequence of distributions {µt}t∈[T ], where each
µt is regarded as a random variable and is drawn i.i.d. from τ . We use the cumulative informa-
tion {ρt1, λt}t∈[T ] from previous T training tasks in OWO meta learning to run an online learning
algorithm EWA on the novel task with loss functions {`i}i∈[m] generated i.i.d. from distribution
µ that is drawn i.i.d. from τ , to output a sequence of probability distributions {ρi}i∈[m]. Using
online-to-batch arguments, we achieve the transfer risk bound for non-convex batch meta learning.

Theorem 4 Assume that for each task t ∈ [T ], there exist G2 ≥ maxt∈[T ] χ
2(ρ∗t ||ρt1), and

mint∈[T ] KL(ρ∗t ||ρt1) ≥ B2 > 0. Assume that the novel task consists of loss functions {`i}i∈[m]
i.i.d.∼

µ, µ i.i.d.∼ τ , and for any optimal distribution ρ∗ over task µ, there exists H > 0 such that

KL(ρ∗|| 1T
∑T
t=1 ρt1) ≤ H . Then we use ( 1

T

∑T
t=1 ρt1,

√∑T
t=1 KL(ρ∗t ||ρt1)/(TmM2)) to run

EWA algorithm for novel task µ ∼ τ with loss functions {`i}i∈[m] to output probability distribu-
tions {ρi}i∈[m]. Then let ρ̄ = 1

m

∑m
i=1 ρi, for the optimal distribution ρ∗ over task µ that does not

dependent on {`i}i∈[m], with probability 1− δ over the draw of probability distributions {µt}Tt=1:

Eµ∼τE{`i}mi=1∼µmE`∼µEθ∼ρ̄`(θ)≤Eµ∼τE`∼µEθ∼ρ∗`(θ)+M(

√
4G2 log T

Tm
+

3V 2

√
mB

+
H

B

√
log 1/δ

2Tm
).

Remark 3 (Comparisons among different transfer risk bounds) (1) The first group of bound-
s holds for meta learning algorithms that learn a shared representation across tasks: The bound
in (Alquier et al., 2017, Thm 6.1) is O(1/

√
m+ 1/

√
T ). The bound in (Denevi et al., 2019, Cor 42)

is O(
√

logm/m + 1/
√
T ). (2) The second group holds for algorithms that learn the initialization

and step size for each task: The bound in (Khodak et al., 2019, Thm 5.1) is O(log T/(m
√
T ) +

1/
√
m + 1/

√
Tm). The bound in Theorem 4 O(

√
log T/(Tm) + 1/

√
m + 1/

√
Tm) is slightly

larger, because our work focuses on non-convex setting and
∑
t ft(ρ)/v is not convex w.r.t. (ρ, v).

However, (Khodak et al., 2019) focuses on convex loss and
∑
t ‖θ − θ∗t ‖22/v is convex w.r.t. (θ, v),

hence able to use Jensen inequality to get a slightly better transfer risk bound (see their Thm E.1).
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5.2 PAC-BAYES GENERALIZATION BOUNDS FOR STATISTICAL MULTI-TASK LEARNING

In statistical multi-task learning, each task t has the training dataset St = {zti}mi=1, where
zti is drawn i.i.d. from the sample space Z according to the data distribution µt. We al-
so suppose the independence between datasets Si and Sj (i 6= j) drawn from different tasks.
We use Fti = σ({zsj}1≤s≤t,1≤j≤i) to denote the σ-algebra induced by the sequence of ran-
dom variables up until the end of i-round at t-th task. Formally, an online learning algorithm
Πtm = {ρti}mi=1 is the set of m probability distributions over the action space Θ. For conve-
nience, we abbreviate ρti = ρti({zsj}1≤s≤t−1,1≤j≤m ∪ {ztj}1≤j≤i−1). A random variable as-
sociated to the online learning algorithm Πtm is MΠtm = 1

m

∑m
i=1〈ρti, cti〉, where cti(θ) =

Ez∼µt [`(θ, z)|θ] − 1/m
∑m
i=1 `(θ, zti). Note that MΠtm is a sum of normalized martingale dif-

ferences since E[〈ρti, cti〉|Ft,i−1] = 0. The generalization error of the action θ ∈ Θ is defined as:
gen(θ, St) = Ez∼µt [`(θ, z)|θ]−1/m

∑m
i=1 `(θ, zti). In PAC-Bayes learning, for each task t, the al-

gorithmAt takes the training sample St and a prior as input and outputs a posteriorAt(St) ∈ P(Θ).
The generalization error of posteriorAt(St) is defined as gen(At, St) = Eθ∼At(St)gen(θ, St). Then
we obtain the following proposition that connects the multi-task generalization error of posteriors
{At(St)}t≥1 in statistical multi-task learning and the task-averaged regret in OWO meta learning.

Proposition 6 Let R̄T,m=
∑T,m
t,i=1〈ρti−At(St),

`ti
T 〉, then

∑T
t=1gen(At, St)=

R̄T,m
m − 1

T

∑T
t=1MΠtm .

Using ŪT,m in our Theorem 3 to upper bound the task-averaged regret R̄T,m, and applying simple
concentration inequality to upper bound the sum of martingale differences

∑
tMΠtm , we obtain for

statistical multi-task learning a novel PAC-Bayes bound that does not appear in existing literature.

Theorem 5 LetAt be the statistical learning algorithm for task t ∈ [T ]. Assume that for all actions
θ ∈ Θ, samples z ∈ Z , `(θ, z) ∈ [0,M ]. Then, with probability at least 1 − δ over the draw of
{St}t∈[T ], the multi-task generalization error of statistical learning algorithms {At}t∈[T ] satisfies:

1

T

T∑
t=1

Eθ∼At(St)
[
Ez∼µt`(θ, z)−

1

m

T∑
i=1

`(θ, zti)
]
≤ ŪT,m

m
+M

√
2 log 1

δ

Tm
.

Remark 4 We give two insights into the PAC-Bayes bound in our Theorem 5. (1) The most related
work to our bound is the PAC-Bayes bound for multi-task generalization error in PAC-Bayes meta
learning theory (in the batch setting), which assumes that the priors for each task are the same
and are sampled from the hyper-posterior Q. The tightest PAC-Bayes bound in this field is from
(Guan & Lu, 2022, Prop 3) of O({EP∼Q

∑T
t=1 KL(At(St)||P ) + ln (Tm)}/(Tm)) ≈ O(1/m +

ln (Tm)/(Tm)). Such PAC-Bayes bound for batch multi-task learning is sharper than our bound of
O(V/

√
m + 1/

√
Tm) in our Theorem 5 for statistical multi-task learning, indicating the difficulty

of online meta learning w.r.t. batch meta learning. (2) Our Proposition 6 for the first time reveals
the connection between multi-task generalization error in PAC-Bayes theory and the task-averaged
regret in non-convex OWO meta learning. This gives a promising direction of proving PAC-Bayes
multi-task generalization bounds by applying regret analysis and simple concentration inequality.

6 CONCLUSION

We study the non-convex online-within-online (OWO) meta learning of the initialization and step
size of exponentially weighted aggregation (EWA) algorithm. We extend the averaged regret upper
bound analysis to the non-convex setting, and typically propose to learn the step size with Follow-
The-Leader (FTL) algorithm to guarantee the logarithmic regret. For learning the initialization, we
develop two algorithms based on the type of loss functions. For piecewise Lipschitz functions, we
choose Follow-The-Regularized-Leader algorithm to learn the discrete initialization distribution and
achieve a sublinear regret. For non-Lipschitz functions, we utilize FTL algorithm to learn the con-
tinuous initialization distribution and derive a logarithmic regret. Both strategies lead to improved
regret bound for non-convex OWO meta learning. Furthermore, by online-to-batch arguments, we
yield a new transfer risk bound for batch meta learning. By online-to-PAC techniques, we achieve
a novel PAC-Bayes generalization bound for statistical multi-task learning, revealing a promising
framework of proving PAC-Bayes bounds for multi-task setting via regret analysis. Our ongoing
research includes exploring the OWO meta learning of other online algorithms (e.g. Follow-The-
Perturbed-Leader), and investigating whether we can obtain its optimal task-averaged regret bound.
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Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University
Press, 2006.

Jiaxin Chen, Xiao-Ming Wu, Yanke Li, Qimai LI, Li-Ming Zhan, and Fu-Lai Chung. A closer look
at the training strategy for modern meta-learning. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 396–406, 2020.

Giulia Denevi, Carlo Ciliberto, and Massimiliano Pontil. Online-within-online meta-learning. In
Advances in Neural Information Processing Systems (NeurIPS), pp. 13089–13099, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning (ICML), pp. 1126–1135,
2017.

Chelsea Finn, Aravind Rajeswaran, Sham M. Kakade, and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning (ICML), pp. 1920–1930, 2019.

10



Published as a conference paper at ICLR 2024

Bela A. Frigyik, Santosh Srivastava, and Maya R. Gupta. Functional bregman divergence and
bayesian estimation of distributions. IEEE Transactions on Information Theory, 54(11):5130–
5139, 2008.

Xiang Gao, Xiaobo Li, and Shuzhong Zhang. Online learning with non-convex losses and non-
stationary regret. In International Conference on Artificial Intelligence and Statistics (AISTATS),
pp. 235–243, 2018.

Jiechao Guan and Zhiwu Lu. Fast-rate pac-bayesian generalization bounds for meta-learning. In
International Conference on Machine Learning (ICML), pp. 7930–7948, 2022.

Jiechao Guan, Yong Liu, and Zhiwu Lu. Fine-grained analysis of stability and generalization
for modern meta learning algorithms. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 18487–18500, 2022.

Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207v3, 2023.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. In Advances in Neural Information Processing Systems (NeurIPS), pp. 5915–
5926, 2019.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

Tongliang Liu, Dacheng Tao, Mingli Song, and Stephen J. Maybank. Algorithm-dependent gen-
eralization bounds for multi-task learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 39(2):227–241, 2017.
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APPENDIX
A ADDITIONAL RELATED WORK

Online Convex Optimization. In online convex optimization (OCO) setting where the loss func-
tions {`i}i∈[m] are convex, the regret is defined as Rm ,

∑m
i=1 `i(θi)− `i(θ∗), where θ∗ =

arg minθ∈Θ

∑m
i=1 `i(θ). The upper bound Um ≥ Rm on the regret is always called regret

bound. The goal of online learner is to choose a sequence of actions {θi}i∈[m] that will guar-
antee the vanishing regret, i.e. Rm = o(m) or Um = o(m). In OCO problem, two fa-
mous algorithms are Follow-The-Leader (FTL) and Follow-The-Regularized-Leader (FTRL). At
i-th round, FTL chooses the action θi = arg minθ∈Θ

∑i−1
j=1 `j(θ); and FTRL selects the action

θi = arg minθ∈Θ

∑i−1
j=1 `j(θ) + R(θ), where R : Θ 7→ R≥0 is always a strongly-convex regular-

ization function like `2-norm. When {`i}i∈[m] are convex and Lipschitz, FTRL achieves optimal
regret of O(

√
m) (see (Shalev-Shwartz, 2012, Thm 2.11) for upper bound and (Hazan, 2023, Thm

3.2) for lower bound). When {`i}i∈[m] are strongly-convex and Lipschitz, FTL achieves optimal
regret of O(logm) (see (Shalev-Shwartz & Kakade, 2008, Cor 1) for upper bound and (Takimoto &
Warmuth, 2000, Thm 4) for lower bound). We introduce FTRL and FTL in detail because these two
algorithms are utilized as the main components of our OWO meta learning algorithm in Section 4.

Online Non-Convex Optimization. However, in online non-convex optimization setting where the
loss functions {`i}i∈[m] are non-convex, minimizing regret is more difficult than that in convex case.
It has been demonstrated that all deterministic online algorithms (e.g. the aforementioned FTL and
FTRL for OCO) cannot obtain vanishing regret in the non-convex setting (see (Suggala & Netrapalli,
2020, Prop 3) and (Cesa-Bianchi & Lugosi, 2006, Sect 4.1) for details). Therefore, at i-th round we
need to add randomness into the algorithm, and choose the action drawn from certain probability
distribution ρi ∈ P(Θ). The corresponding regret is defined as Rm ,

∑m
i=1 Eθ∼ρi`i(θ)− `i(θ∗),

where θ∗ ∈ arg minθ∈Θ

∑m
i=1 `i(θ). If {`i}i∈[m] are Lipschitz, using Follow-The-Perturbed-Leader

algorithm allows to achieve the optimal regret O(
√
m) (see (Suggala & Netrapalli, 2020, Thm 1)).

Generalization Bounds for Statistical Multi-Task Learning. Statistical multi-task learning refers
to the multi-task setting where data within each task are assumed to be independently sampled from
the same distribution. The investigation of generalization bounds for statistical multi-task learning
has a long history and dates back to (Baxter, 1995). In the last decades, different generalization
bounds are proposed for multi-task learning, mostly based on model-capacity theory: for example,
the generalization bound based on covering number complexity (Ando & Zhang, 2005), the bounds
based on the VC-dimension of hypothesis space (Baxter, 2000; Ben-David & Borbely, 2008), the
bound based on Gaussian complexity (Maurer et al., 2016). Apart from them, there also exist gen-
eralization bounds for multi-task learning that are derived based on algorithmic stability analysis,
like (Maurer, 2005; Liu et al., 2017). Recent works also use localized Rademacher complexity anal-
ysis to obtain improved generalization bounds (Yousefi et al., 2018). However, little literature use
PAC-Bayes theory to prove bounds for multi-task learning, except for the PAC-Bayes generaliza-
tion bounds in statistical meta leaning that involves the multi-task generalization bounds (Pentina &
Lampert, 2014; Amit & Meir, 2018; Guan & Lu, 2022). But the PAC-Bayes multi-task generaliza-
tion bounds in meta learning theory assume the priors for different training tasks are the same and
are sampled from the same hyper-prior distribution. Therefore, to the best of our knowledge, there is
still no explicit PAC-Bayes generalization bound for standard statistical multi-task learning setting.

B EXPLICIT FORM OF REGRET BOUNDS FOR OWO META LEARNING

Remark B.1 (Limitations of the regret bound in Theorem 3) For any task t ∈ [T ], if we set
the distribution ρ∗t as Dirac measure δθ∗t that only has mass 1 at the minimizer θ∗t , the regret in
Theorem 3 degenerates to the regret defined in Eq. (1) (i.e. the regret in our Theorem 2). To let
KL(ρ∗t ||ρt1) (where ρt1 = 1/(t−1)

∑t−1
s=1 ρ

∗
s) make sense, there should exist at least one s ∈ [t−1],

such that ρ∗s({θ∗t }) > 0 (otherwise the RN derivative dρ∗t /d(
∑t−1
s=1 ρ

∗
s) =∞). However, the optimal

actions for the past tasks may not be the optimal one for future tasks. Hence the regret bound in
our Theorem 3 may be vacuous under the regret definition in Eq. (1). This also indicates to some
extent the limitation of the regret (defined as the gap between the cumulative loss w.r.t. {ρti}mi=1 and
the loss w.r.t. the optimal distribution ρ∗t ) and the f -divergence based regret upper bounds (which,
including the f -divergence between ρ∗t and the initial distribution ρt1, will become vacuous if we
set ρ∗t as a Dirac measure. See more details in (Alquier, 2021, Thm 2.1)) for EWA-type algorithm.
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Remark B.2 (Our Three Technical Novelties in Deriving Improved Regret Bounds for OWO meta
learning) (1) The first novelty lies in deriving improved regret bound for the online algorithm that
runs over the functions {ht(v) = v + ft(ρt1)/v}t∈[T ] on the domain [B2, D2] to learn the step size
vt of EWA algorithm. Throughout the whole paper, we choose the efficient Follow-The-Leader (FTL)
algorithm to learn the step size vt = arg minv∈[B2,D2]

∑t−1
s=1 hs(v) =

(∑t−1
s=1 fs(ρs1)/(t− 1)

)1/2
and use the primal-dual analysis from (Shalev-Shwartz & Kakade, 2008, Cor 1) to derive a logarith-
mic regret bound of O(log T ). The key step in obtaining the logarithmic regret O(log T ) is to show
that mint∈[T ] ft(ρt1) is strictly positive (i.e. B > 0) to guarantee the strong-convexity of ht(v) and
the boundedness of ∂ht(vt) (i.e. the Lipschitz property of ht(v) at the point vt). The positiveness
of mint∈[T ] ft(ρt1) is guaranteed for piecewise Lipschitz functions in Proposition 3 and for non-
Lipschitz functions in Proposition 5 respectively, via a fine-grained estimation of the lower bound
B2 of ft(ρt1). In contrast, existing works (Khodak et al., 2019, Prop B.2) and (Balcan et al., 2021,
Cor 3.2) both choose ε-FTL algorithm to optimize the functions {ht(v) = v+(ft(ρt1)+ε2)/v}t∈[T ]

on the domain [0, D2] (where D2 ≥ maxt ft(ρt1)) to learn the step size vt, and lead to the regret
O(Tε2 + (log T )/ε2), which is of O(

√
T log T ) if we set ε = 1/T 1/4 and is slower than our bound.

(2) The second novelty lies in deriving improved regret bound for the online algorithm that runs
over the functions {ft(ρ) = V (ρ, ρ∗t )}t∈[T ] in the piecewise Lipschitz case. We use Follow-The-
Regularized-Leader (FTRL) algorithm to achieve the regret of O(T 1/2+α), α ∈ (0, 1

2 ), and the
mixture parameter γ = mdβ/Tα is irrelevant to the optimal ρ∗ (hence γ can be set in advance).
Existing work (Balcan et al., 2021, Thm 3.2) also uses FTRL algorithm, but Balcan et al. (2021)
leverage a more complicated analysis, attaining a larger regret bound O(md/2T 3/4). Nevertheless,
the choice of γ in (Balcan et al., 2021) depends on the knowledge of optimal parameter ρ∗ that con-
tains information of T training tasks, which is unfeasible in the sequential online meta learning set-
ting. (3) The third novelty lies in deriving improved regret bound for the online algorithm that runs
over the functions {ft(ρ) = KL(ρ∗t ||ρ)}t∈[T ] in the non-Lipschitz case. Obtaining regret bounds for
FTL algorithm run over the functions {KL(ρ∗t ||ρ)}t∈[T ] is hard, because KL(ρ∗t ||ρ) is the functional
of the probability distribution ρ, and thus we are unable to use traditional regret analysis (e.g. the
gradient boundedness and strong convexity analysis of the functions) for the functions on Euclidean
space Shalev-Shwartz (2012). Instead, we leverage an insightful lemma from (Frigyik et al., 2008,
Thm II.1) to obtain the analytic form ρt1 = arg minρ∈P(θ)

∑t−1
s=1 KL(ρ∗s||ρ) = 1

t−1

∑t−1
s=1 ρ

∗
s of the

solution of FTL algorithm. Then, we use this analytic form, as well as the properties of RN deriva-
tive to estimate the upper bound of the regret and ultimately obtain a non-trivial logarithmic regret
O(log T ), achieving so far the tightest regret bound for learning the initialization of EWA algorithm.

Remark B.3 (Comparisons between our Task-Averaged Regret Bound and the Vanilla Averaged
Regret Bound for EWA Algorithm). Recall that in Theorem 3, G2 ≥ maxt∈[T ] χ

2(ρ∗t ||ρt1), D2≥
maxt∈[T ] KL(ρ∗t ||ρt1), mint∈[T ] KL(ρ∗t ||ρt1) ≥ B2, then our task-averaged regret upper bound is

1

T

T∑
t=1

m∑
i=1

〈ρti−ρ∗t , `ti〉≤
(D7(log T + 1)

4TB6
+min{G

2(log T + 1)

V T
, 2G

√
log T + 1

T
}+2V

)√
mM.

The vanilla averaged regret bound (Alquier, 2021, Thm 2.1) for EWA algorithm (with the step size
λt = 1/(M

√
m) and the initialization ρt1 for task t) across T tasks without knowledge transfer is

1

T

T∑
t=1

m∑
i=1

〈ρti − ρ∗t , `ti〉≤
1

T

T∑
t=1

(λtM
2m+

KL(ρ∗t ||ρt1)

λt
) =
√
mM(1 +

1

T

T∑
t=1

KL(ρ∗t ||ρt1)).

We can observe that: (1) If we assume the same upper bound D2 on KL(ρ∗t ||ρt1), the vanilla
averaged regret bound is of O(

√
mMD2), which is independent of T and could not decrease with

the increase of T . This demonstrates that we are unable to obtain tighter regret bound for multi-task
learning than that for single-task learning, if we do not share any knowledge across different tasks.
(2) When T is large enough, our task-averaged regret bound is of O(

√
mMV ). Such regret bound

is typically sharper than the vanilla averaged regret bound O(
√
mMD2) when V << D2, i.e.

when different tasks share a high degree of similarity. This indicates that, when T training tasks are
similar enough, leveraging knowledge from previous tasks can achieve better theoretical guarantee
than single-task learning, validating the advantages of OWO meta learning. (3) In our Theorem 3,
the proposed task similarity notion V 2 = minρ

1
T

∑T
t=1 KL(ρ∗t ||ρ) = 1

T

∑T
t=1 KL(ρ∗t || 1T

∑T
t=1 ρ

∗
t )

is actually the so-called generalized Jensen-Shannon divergence, which is always used to measure
the similarity among different distributions {ρ∗t }t∈[T ] in information theory (Lin, 1991, Section V).
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Remark B.4 (More Discussions between our Task-Averaged Bound for OWO Meta Learning and
the Task-Averaged Regret Bound obtained via Dynamic Regret Analysis). One of the anonymous
Reviewers suggest we make a comparison between our task-averaged regret in Theorem 3 and the
task-averaged regret obtained via dynamic regret analysis: (1) First, we need to derive a task-
averaged regret bound for OWO meta learning through the lens of dynamic regret analysis. Denote
φt(θ) =

∑m
i=1 `ti(θ), then the regret for OWO meta learning in our Eq.(1) can be rewritten roughly

as 1
T

∑T
t=1 Eθ∼ρ̄tφt(θ)−φt(θ∗t ) (actually, we think we cannot rigorously rewrite the task-averaged

regret as the equivalent form of dynamic regret, because we cannot write
∑m
i=1 Eθ∼ρti`ti(θ) as the

expectation of φt(θ) over a common distribution ρ ∈ P(Θ)), where ρ̄t = 1
m

∑m
i=1 ρti. Assume that∑T−1

t=1 ‖φt − φt+1‖ ≤ VT , then according to the latest dynamic regret bound in (Gao et al., 2018,
Thm 1) (to the best of our knowledge this is the latest dynamic regret bound for non-convex online
learning), the task-averaged regret is bounded by 1

T

∑T
t=1 Eθ∼ρ̄tφt(θ)− φt(θ∗t ) ≤ O(

√
T+VTT
T ) =

O(
√

1+VT√
T

). (2) Next, we compare our regretO(( log T
T +V )

√
m) and the regretO(

√
1+VT√
T

) obtained
via dynamic regret analysis, from 3 aspects: (i) Our regret analysis does not adopt the bounded total
variation assumption (i.e. VT is a bounded constant), when compared with dynamic regret analysis.
(ii) Our regret bound O(( log T

T + V )
√
m) is more informative, revealing the importance of task

similarity V to the generalization of OWO meta leaning algorithm. (iii) Our task-averaged regret
bound O(( log T

T + V )
√
m) has a faster convergence rate w.r.t. T when compared with O(

√
1+VT√
T

).

Remark B.5 (More Discussions on the Advantages of our Theorem 2 when compared with our
Theorem 3) One of the anonymous Reviewers suggest we discuss more the value/advantages of
the first improved regret bound when compared with the second improved regret bound. The
detailed explanations between their differences lie in the following 4 aspects: (1) The first im-
proved regret bound in our Theorem 2 is not a special case of our Theorem 3. The main rea-
son is that Theorem 2 uses V 2 = minρ:Θ7→R≥0,

∫
Θ
ρ(θ)dθ=1 − 1

T

∑T
t=1 log

∫
B(θ∗t ,m

−β)
ρ(θ)dθ

as the similarity notion between different tasks, but Theorem 3 uses the task similarity notion
V 2 = minρ∈P(Θ)

1
T

∑T
t=1 KL(ρ∗t ||ρ). Besides, the task similarity in Theorem 2 is defined ac-

cording to the specific property (i.e. ε-radius) of the piecewise-Lipschitz function, and hence is par-
ticularly applicable to the piecewise-Lipschitz setting. (2) The action-space-discretization technique
(described in Section 4.1 to obtain the first regret bound in Theorem 2) is of independent interest.
The defined task similarity in Theorem 2 also requires a novel action-space-discretization method
to translate the minimization problem minρ∈Θ ft(ρ) over the set of distributions into a tractable
online convex optimization problem. (3) At present, the first regret bound has higher application
value than the second regret bound. The Algorithm 1 (corresponding to the first regret bound in our
Theorem 2) can be applied in the continuum domain, but Algorithm 2 (corresponding to the second
regret bound in our Theorem 3) at the current stage is still not easy to be applied in the continuum
domain (see more explanations in our Remark H.1). (4) The first improved regret is obtained under
the same assumptions (i.e. piecewise Lipschitzness and bounded loss functions) as that in (Balcan
et al., 2021, Thm 3.3), via a more technical analysis. We list the improved regret in our paper to
make a fair comparison and show rigorous improvements over existing result (Balcan et al., 2021).

Remark B.6 (The Potential Improvement Space of our Theoretical Results). According to Theo-
rem 1, we decompose the task-averaged regret bound problem into two subproblems: (1) minimizing
{ft(ρ) = V (ρ, ρ∗t )

2}t∈[T ] to learn initialization ρ, and (2) minimizing {ht(v) = v+ft(ρt1)/v}t∈[T ]

to learn step size v. Combining the above two results leads to task-averaged regret bounds in our
Theorems 2-3, which are actually optimal w.r.t. m (i.e. of order O(

√
m)). Therefore, what we can

improve is the convergence rate w.r.t. T , and our explanations are three-fold: (1) For learning the
initialization ρ, our Proposition 4 achieves a logarithmic regret O(log T ). According to the related
work of OCO in Appendix A, the optimal regret for strongly-convex online optimization is O(log T ).
Therefore, we believe that our Proposition 4 achieves the optimal regret for learning the initializa-
tion. (2) For learning the step size v, our Propositions 3 and 5 actually achieve the (polynomial)
logarithmic regret O(log T ). Therefore, we also obtain optimal or near optimal regret for learning
the step size v. (3) Consider (1) and (2), if we still adopt the regret upper bound decomposition
framework, we should refine the proof in Theorem 1. For example, there seems to be some improve-
ment space in the 4-th inequality in the proof of our Theorem 1, since other inequalities in this proof
hold due to the definition of regret bound; If not, we should use other task-averaged regret analysis
to see whether we could achieve better convergence rate w.r.t. T or a smaller multiplier constant.
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C PROOFS OF THE TASK-AVERAGED REGRET BOUND FRAMEWORK FOR
NON-CONVEX OWO META LEARNING

Proof of Theorem 1.

1

T

T∑
t=1

m∑
i=1

〈ρti − ρ∗t , `ti〉

≤ 1

T

T∑
t=1

[
mbλt +

V (ρt1, ρ
∗
t )

2

λt
+ g(m)

]
=

1

T

T∑
t=1

Ut(ρt1, λt)

=
1

T

T∑
t=1

[√
mbλt +

V (ρt1, ρ
∗
t )

2

√
mbλt

]√
mb+ g(m)

=
1

T

T∑
t=1

[
vt +

ft(ρt1)

vt

]√
mb+ g(m) (vt =

√
mbλt)

≤min
v>0

√
mb
[ 1

T

T∑
t=1

(v +
ft(ρt1)

v
) +

HT (v)

T

]
+ g(m)

= min
v>0

√
mb
[
v +

∑T
t=1 ft(ρt1)

Tv
+
HT (v)

T

]
+ g(m)

≤ min
v>0,ρ∈P(Θ)

√
mb
[
v +

∑T
t=1 ft(ρ) + FT (ρ)

Tv
+
HT (v)

T

]
+ g(m)

≤min
v>0

√
mb
[
v +

∑T
t=1 ft(ρ

∗) + FT (ρ∗)

Tv
+
HT (v)

T

]
+ g(m)

= min
v>0

√
mb
[
v +

V 2

v
+
FT (ρ∗)

Tv
+
HT (v)

T

]
+ g(m)

≤
(HT (V )

T
+ min{FT (ρ∗)

V T
, 2

√
FT (ρ∗)

T
}+ 2V

)√
mb+ g(m),

where the last inequality holds by taking v = V or v =
√
V 2 + FT (ρ∗)/T . �

Lemma C.1 (Shalev-Shwartz & Kakade, 2008, Corollary 1) Let `1, ..., `T be a sequence of func-
tions such that for all t ∈ [T ], `t is σt-strongly convex. Assume that the FTL algorithm runs on this
sequence and for each t ∈ [T ], let gt be in ∂`t(θt). Then

T∑
t=1

`t(θt)−min
θ∈Θ

T∑
t=1

`t(θ) ≤
1

2

T∑
t=1

‖gt‖2

σ1:t
.

Furthermore, let L = maxt ‖gt‖ and assume that for all t ∈ [T ], σt ≥ σ. Then the regret is bounded
by L2

2σ (log T + 1).

Proof of Proposition 1. Notice that for all t ∈ [T ], dht(v)
dv = 1 − ft(ρt1)

v2 , d2ht(v)
dv2 = 2ft(ρt1)

v3 ≥
2ft(ρt1)
D3 . Therefore ht(v) is a 2ft(ρt1)

D3 -strongly convex function. Besides, since vt =

√∑t−1
s=1 fs(ρs1)
t−1 ,

then dht(v)
dv

∣∣∣
v=vt

= 1−
∑t−1
s=1 ft(ρt1)∑t−1
s=1 fs(ρs1)

, and applying Lemma C.1 obtains the first result. For the second
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result, using ft(ρt1) ∈ [B2, D2], we bound the above regret as follow:

D3

4

T∑
t=1

∣∣1−∑t−1
s=1 ft(ρt1)/

∑t−1
s=1 fs(ρs1)

∣∣2∑t
s=1 fs(ρs1)

≤ D3

4B2

T∑
t=1

[
max{1,

∑t−1
s=1 ft(ρt1)∑t−1
s=1 fs(ρs1)

}
]2

t

≤ D3

4B2

T∑
t=1

[
max{1, (t−1)D2

(t−1)B2 }
]2

t

=
D7

4B6

T∑
t=1

1

t
≤ D7

4B6

(
log T + 1

)
. �

D PROOFS OF THE REGRET BOUND FOR OWO META LEARNING WITH
BOUNDED PIECEWISE-LIPSCHITZ FUNCTIONS

Lemma D.1 Let `1, ..., `m : Θ 7→ [0,M ] be any sequence of piecewise L-Lipschitz functions that

are β-dispersed. Let θ∗ ∈ arg minθ∈Θ

∑m
i=1 `i(θ), and V (ρ, θ∗)2 = − log

∫
B(θ∗,m−β)

ρ(θ)dθ∫
Θ
ρ(θ)dθ

, where
ρ is the initial distribution over Θ in EWA Algorithm. Then EWA has the following regret bound:

m∑
i=1

Eθ∼ρi`i(θ)−
n∑
i=1

`i(θ
∗) ≤ λM2m+

V (ρ, θ∗)2

λ
+ Õ((L+ 1)m1−β).

Proof. The demonstration strategy is to upper bound Pm+1 and lower bound Pm+1 respectively. For
any i ∈ [m], define the utility function ui(θ) = M−`i(θ). It is not difficult to see that running EWA
algorithm on utility functions {ui}i∈[m] obtains the same sequence of actions {θi}i∈[m] as running
EWA on {`i}i∈[m]. For upper-bounding Pm+1, applying Jensen’s inequality and basic inequality
1 + x ≤ ex, we have:

Pi+1

Pi
=

∫
Θ
eλui(θ)ρi(θ)dθ

Pi

=

∫
Θ

eλui(θ)pi(θ)dθ

=

∫
Θ

eλM
ui(θ)

M +0(1−ui(θ)M )pi(θ)dθ

≤
∫

Θ

{ui(θ)
M

eλM + [1− ui(θ)

M
]e0
}
pi(θ)dθ

=

∫
Θ

{
1 +

ui(θ)

M
(eλM − 1)

}
pi(θ)dθ

= 1 +
eλM − 1

M

∫
Θ

ui(θ)pi(θ)dθ

≤ exp
{eλM − 1

M

∫
Θ

ui(θ)pi(θ)dθ
}
.

Then Pm+1

P1
=
∏m
i=1

Pi+1

Pi
≤ exp

{
eλM−1
M

∑m
i=1 Eθ∼piui(θ)

}
and we can upper-bound Pm+1 .

For lower-bounding Pm+1, let us first upper bound
∑m
i=1 ui(θ

∗) − ui(θ), ∀θ ∈ B(θ∗, ε), where
ε = m−β . Notice that the utility functions {ui}i∈[m] are also dispersed L-Lipschitz. Suppose there
exist at most k discontinuities w.r.t. to {ui}i∈[m] in the ball B(θ∗, ε), then for any θ ∈ B(θ∗, ε):

m∑
i=1

ui(θ
∗)− ui(θ) ≤ kmax

i
|ui(θ∗)− ui(θ)|+ (m− k)L‖θ − θ∗‖ ≤ kM +mLε. (4)
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With Eq. (4), we can lower-bound Pm+1:

Pm+1 =

∫
Θ

eλ
∑m
i=1 ui(θ)ρ1(θ)dθ

≥
∫
B(θ∗,ε)

eλ
∑m
i=1 ui(θ)ρ1(θ)dθ

≥
∫
B(θ∗,ε)

eλ
[∑m

i=1 ui(θ
∗)−kM−mLε

]
ρ1(θ)dθ

= eλ
[∑m

i=1 ui(θ
∗)−kM−mLε

] ∫
B(θ∗,ε)

ρ1(θ)dθ.

Combining the upper and lower bounds for Pm+1, we have:

exp
{
λ
[ m∑
i=1

ui(θ
∗)−kM−mLε

]} ∫
B(θ∗,ε)

ρ1(θ)dθ ≤ Pm+1 ≤ exp
{eλM − 1

M

m∑
i=1

Eθ∼piui(θ)
}∫

Θ

ρ1(θ)dθ

Rearranging the terms, we have

m∑
i=1

ui(θ
∗)−

m∑
i=1

Eθ∼piui(θ) ≤ kM +mLε+
eλM − 1− λM

λM

m∑
i=1

Eθ∼piui(θ) +
V (ρ1, θ

∗)2

λ

≤ kM +mLε+ λM2m+
V (ρ1, θ

∗)2

λ
,

where in the last inequality we use the fact that ∀x ∈ [0, 1], ex ≤ 1+x+x2 and ui(θ) ≤M . Taking
expectation of both sides w.r.t. the randomness of {ui}i∈[m] and noticing Ek ≤ Õ(εm) according
to Definition 1 gives the result. �

Corollary D.1 If the non-convex loss functions {`i}i∈[m] are uniformly L-Lipschitz over Θ, then
the number k of discontinuities in Eq. (4) becomes 0, and the expected regret Rm ≤ Lm1−β +

λmM2 + V (ρ1,θ
∗)2

λ .

Proof of Proposition 2. Note that ft(ρ) = − log 〈ρ∗t ,ρ〉 is a 1
γvol(Θt)

-Lipschitz function w.r.t. ‖ · ‖1
over the constraint simplex domain {ρ ∈ R|DT | : ‖ρ‖1 = 1,ρ ≥ γν̂}, since

max
‖ρ‖1=1,ρ≥γν̂

‖∇ft(ρ)‖∞ = max
‖ρ‖1=1,ρ≥γν̂

‖ ρ∗t
〈ρ∗t ,ρ〉

‖∞

= max
A,ρ≥γν̂

ρ∗t [A]

〈ρ∗t ,ρ〉
≤ max

ρ≥γν̂

1

〈ρ∗t ,ρ〉
≤ 1

〈ρ∗t , γν̂〉

=
1

γ
∑
A∈DT ,A⊂Θt

ν̂[A]
=

vol(Θ)

γvol(Θt)
.

Then applying the regret bound in (Shalev-Shwartz, 2012, Thm 2.11) for FTRL algorithm with
convex and Lipschitz functions, and noticing that KL(ρ∗||ν) is 1-strongly convex w.r.t. its first
argument, we can obtain

T∑
t=1

ft(ρt)− ft(ρ∗) ≤
KL(ρ∗||ν̂)

η
+ η

T∑
t=1

vol(Θ)2

γ2vol(Θt)2

≤G
2

η
+ ηTL2/γ2.

Setting η = Gγ/L
√
T gives the result. �

Proposition D.1 (Proposition 3 in the main paper) Assume that the FTL algorithm runs on
the sequence of functions {ht(v) = v + ft(ρt1)

v }t∈[T ] with ft(ρt1) = − log 〈ρ∗t ,ρt1〉 over
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the domain [0, D], where D2 = maxt∈[T ] log vol(Θ)
γvol(Θt)

≥ maxt∈[T ] ft(ρt1). Denote B2 =

log vol(Θ)
γvol(Θt)+(1−γ)vol(Θ) . Then we have

T∑
t=1

ht(vt)− min
v∈[0,D]

T∑
t=1

ht(v) ≤
D7
(

log T + 1
)

4B6
.

Furthermore, if we set γ = mdβ/Tα with α ∈ (0, 1/2), we have the regret bound
∑T
t=1 ht(vt) −

minv∈[0,D]

∑T
t=1 ht(v) ≤ (α log T+log (vol(Θ)/Vd))

7
2 (log T+1)

4B6 .

Proof. According to the proof of Proposition 2, the upper bound D2 of ft(ρt1) is: ft(ρt1) =

log 1
〈ρ∗t ,ρt1〉

≤ log vol(Θ)
γvol(Θt)

= D2. Then we need to derive the lower bound B2 of ft(ρt1).
Let us first consider the maximum of 〈ρ∗t ,ρ〉, under the conditions of ‖ρ‖1 = 1 and ρ ≥ γν̂.
Using the Hölder inequality, we can simply obtain that 〈ρ∗t ,ρ〉 ≤ ‖ρ∗t ‖∞‖ρ‖1 = 1. But this
means that log 1

〈ρ∗t ,ρ〉
≥ log 1 = 0, so the lower bound of log 1

〈ρ∗t ,ρ〉
is zero, and thus we can-

not use Lemma C.1. Actually, considering the additional condition ρ ≥ γν̂, we can use La-
grange multiplier method to calculate the maximum, or just simply achieve the maximum by
observing the fact that: apart from the measure γ

∑
A∈DT ν̂[A] = γ, the rest measure 1 − γ

of ρ should be assigned uniformly to the indices A ∈ DT where ρ∗t [A] = 1 (i.e. A ⊂ Θt)
to maximize 〈ρ∗t ,ρ〉 . Assuming the cardinality of the set {A

∣∣A ∈ DT , A ⊂ Θt} is n, then
maxρ≥γν̂〈ρ∗t ,ρ〉 = 1−γ

n n +
∑
A∈DT ,A⊂Θt

γν̂[A] = 1 − γ + γvol(Θt)
vol(Θ) , which is strictly less than

1. Thus we have log 1
〈ρ∗t ,ρ〉

≥ log 1

1−γ+
γvol(Θt)
vol(Θ)

= log vol(Θ)
γvol(Θt)+(1−γ)vol(Θ) . Applying this lower

bound and the upper bound D2 of ft(ρt1) into Lemma C.1, we obtain the first result. For the second
result, noticing D2 = log vol(Θ)

γvol(Θt)
= log mdβvol(Θ)

γVd
= log Tαvol(Θ)

Vd
completes the whole proof. �

Remark D.1 Assume that T is large enough. Then if α ∈ [ lnmdβ

lnT ,
ln
(
emdβ

e−1 −
Vd

(e−1)vol(Θ)

)
lnT ] ⊂ (0, 1

2 ),
we have mdβ

Tα ≤ 1 and B2 = log vol(Θ)
γvol(Θt)+(1−γ)vol(Θ) ≥ log e = 1. The regret bound for learning

the step size of EWA algorithm in Proposition 3 is of order O((log T )
9
2 )

Proof of Theorem 2. According to Lemma D.1, we know that the constant b in Theorem 1 is equal
to b = M2. Then setting the distribution ρ∗t in Theorem 1 as the Dirac measure on the optimal action
θ∗t , and applying the regret bound in Theorem 1, we have

1

T

T∑
t=1

m∑
i=1

E
[
〈ρti, `ti〉− `ti(θ∗t )

]
≤
(HT (V )

T
+min{FT (ρ∗)

V T
, 2

√
FT (ρ∗)

T
}+2V

)√
mM +g(m),

where the expectation in the left-hand side is taken over the randomness of loss functions {`ti}t,i≥1.
It remains to provide the regret bounds for learning the initialization and for learning the step size.
For learning the initialization, note that γ = mβd

Tα , L2 = 1
T

∑T
t=1

vol(Θ)2

vol(Θt)2 = m2βdvol(Θ)2

V 2
d

, then the
regret of FTRL in Proposition 2 for learning the initialization satisfies:

FT (ρ∗) =
KL(ρ∗||ν̂)

η
+
ηTL2

γ2

=
KL(ρ∗||ν̂)

η
+ ηT 1+2αvol(Θ)2/V 2

d

≤ T 1
2 +αvol(Θ)(KL(ρ∗||ν̂) + 1)/Vd,

where the last inequality holds by setting η = VdT
− 1+2α

2 vol(Θ)−1. For learning the step size, it
suffices to directly apply Proposition 3. Thus we can upper bound the task-averaged regret:

R̄T,m ≤g(m) +
{ (α log T + log (vol(Θ)/Vd))

7
2 (log T + 1)

4TB6

+ min
{vol(Θ)(KL(ρ∗||ν̂) + 1)

VdV T
1
2−α

, 2

√
vol(Θ)(KL(ρ∗||ν̂) + 1)

VdT
1
2−α

}
+ 2V

}√
mM.

�
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E PROOFS OF THE REGRET BOUND FOR OWO META LEARNING WITH
BOUNDED NON-LIPSCHITZ FUNCTIONS

Lemma E.1 (Minimizer of the Expected Bregman Divergence) (Frigyik et al., 2008, Thm II.1)
Let C be a set of functions that lie on a finite-dimensional manifold Ω, and have associated differ-
ential element dΩ. Suppose there is a probability distribution PF defined over the set C. Suppose
the function g∗ minimizes the expected Bregman divergence dφ between the random function F and
any function g ∈ A such that g∗ = arg infg∈A EPF [dφ(F, g)]. Then, if g∗ exists, it is given by
g∗ =

∫
Ω
fP (f)dΩ = EPF [F ].

Proof of Proposition 4. In the proof, we write ρt1 in the main text as ρt for brevity. According to
Lemma E.1, we have

ρt = arg min
ρ∈P(Θ)

t−1∑
s=1

KL(ρ∗t ||ρ) = arg min
ρ∈P(Θ)

1

t− 1

t−1∑
s=1

KL(ρ∗s||ρ) =
1

t− 1

t−1∑
s=1

ρ∗s.

The existence of ρt can be guaranteed by the convexity of KL-divergence w.r.t. its second argument.
We also have ρ∗ = arg minρ∈P(Θ)

∑T
t=1 KL(ρ∗t ||ρ) = 1

T

∑T
t=1 ρ

∗
t . Then we have

T∑
t=1

KL(ρ∗t ||ρt)−
T∑
t=1

KL(ρ∗t ||ρ∗)

≤
T∑
t=1

KL(ρ∗t ||ρt)−
T∑
t=1

KL(ρ∗t ||ρt+1)

=

T∑
t=1

∫
log

dρ∗t
dρt

ρ∗t (dθ)−
∫

log
dρ∗t

dρt+1
ρ∗t (dθ)

=

T∑
t=1

∫
log
[dρ∗t

dρt

/ dρ∗t
dρt+1

]
ρ∗t (dθ)

=

T∑
t=1

∫
log
[dρt+1

dρt

]
ρ∗t (dθ)

=

T∑
t=1

∫
log
[1

t

d
(
(t− 1)ρt + ρ∗t

)
dρt

]
ρ∗t (dθ)

=

T∑
t=1

∫
log
[ t− 1

t
+

1

t

dρ∗t
dρt

]
ρ∗t (dθ)

≤
T∑
t=1

log

∫ [ t− 1

t
+

1

t

dρ∗t
dρt

]
ρ∗t (dθ)

=

T∑
t=1

log
[ t− 1

t
+

1

t

∫
dρ∗t
dρt

ρ∗t (dθ)
]

=

T∑
t=1

log
[
1 +

1

t

∫ [
(
dρ∗t
dρt

)2 − 1
]
ρt(dθ)

]
=

T∑
t=1

log
[
1 +

1

t
χ2(ρ∗t ||ρt)

]
≤

T∑
t=1

χ2(ρ∗t ||ρt)
t

,

where the first inequality holds due to the the follow-the-leader lemma (i.e. (Shalev-Shwartz, 2012,
Lemma 2.1)), the second inequality holds due to Jensen’s inequality, and the last step due to the fact
that log (1 + x) ≤ x. �
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Proof of Proposition 5. Applying Lemma C.1 finishes the whole proof. It remains to verify that
the lower bound of ft(ρt1) is strictly greater that 0. Actually for each task t ∈ [T ], we use EWA
algorithm to learn posterior ρ∗t , then we have dρ∗t

dρt1
(θ) =

exp{−λt
∑m
i=1 `ti(θ)}∫

exp{−λt
∑m
i=1 `ti(θ)}ρt1(θ)

6≡ constant.
If not, then exp{−λt

∑m
i=1 `ti(θ)} ≡ constant and hence

∑m
i=1 `ti(θ) = constant for all θ ∈ Θ,

which is trivial. Therefore ρ∗t 6= ρt1 and KL(ρ∗t ||ρt1) > 0 for all t ∈ [T ]. �

Proof of Theorem 3. According to Lemma, set the positive constant b in Theorem 1 as M2, the
additional term g(m) = 0. Then integrating the regret bounds from Proposition 4 and Proposition 5
into the regret bound in Theorem 1, we finish the proof. �

F PROOFS OF THE TRANSFER RISK BOUND

Proposition F.1 Let a sequence of non-negative loss functions {`i : Θ 7→ R≥0}i∈[m] drawn i.i.d.
from some distribution µ be given to an online algorithm that generates a sequence of probability
distributions {ρi ∈ P(Θ)}i∈[m] (i.e. ρi = ρi({`j}i−1

j=1)). Assume the regret upper bound for the
online algorithm is Um. Then let ρ̄ = 1

m

∑m
i=1 ρi, for any ρ∗ ∈ P(Θ) that does not depend on the

choice of the sequence of loss functions {`i}i∈[m], we have the following bound:

E{`i}mi=1∼µmE`∼µEθ∼ρ̄`(θ) ≤
Um
m

+ E`∼µEθ∼ρ∗`(θ).

Proof.
E{`i}mi=1

E`∼µEθ∼ρ̄`(θ)

=E{`i}mi=1
E`∼µ

∫
`(θ)ρ̄(dθ)

=E{`i}mi=1
E`∼µ

1

m

m∑
i=1

∫
`(θ)ρi(dθ)

=E{`i}mi=1

1

m

m∑
i=1

∫
E`′i∼µ`

′
i(θ)ρi(dθ)

=E{`i}mi=1

1

m

m∑
i=1

[ ∫
E`′i∼µ`

′
i(θ)− `i(θ)ρi(dθ) +

∫
`i(θ)ρi(dθ)

]
=

1

m

m∑
i=1

E{`i}mi=1

[ ∫
E`′i∼µ`

′
i(θ)− `i(θ)ρi(dθ)

]
+ E{`i}mi=1

1

m

m∑
i=1

∫
`i(θ)ρi(dθ)

=
1

m

m∑
i=1

E{`j}i−1
j=1∼µi−1

[ ∫
E`′i∼µ`

′
i(θ)− E`i∼µ`i(θ)ρi(dθ)

]
+ E{`i}mi=1

1

m

m∑
i=1

∫
`i(θ)ρi(dθ)

=E{`i}mi=1

1

m

m∑
i=1

∫
`i(θ)ρi(dθ)

=E{`i}mi=1

1

m

m∑
i=1

[
Eθ∼ρi`i(θ)− Eθ∼ρ∗`i(θ)

]
+ E{`i}mi=1

1

m

m∑
i=1

Eθ∼ρ∗`i(θ)

≤Um
m

+ E{`i}mi=1

1

m

m∑
i=1

Eθ∼ρ∗`i(θ)

=
Um
m

+ E`∼µEθ∼ρ∗`(θ),

where the third equality holds due to the independence between ` ∼ µ and ρi, the Fubini-Tonelli
Theorem for changing the order of integrals of non-negative function, as well as the fact that `′i is
the i.i.d. copy of `i; in the six-th equality, {`j}i−1

j=1 ∼ µi−1 is the abbreviation for the notation
`j ∼ µ,∀j ∈ [i − 1]; and µi−1 = µ × · · · × µ is the product measure of i − 1 measures µ. Both
the six-th and the last equality hold due to the independence between ρ∗ and {`i}mi=1 (i.e. Fubini’s
Theorem for exchanging the order of integrals). �
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Proposition F.2

1

T

T∑
t=1

KL(ρ∗t ||
1

T

T∑
t=1

ρt1)− 1

T

T∑
t=1

KL(ρ∗t ||ρt1) ≤ 1

T

T∑
t=1

KL(ρ∗t ||
1

T

T∑
t=1

ρ∗t ) = V 2. (5)

Furthermore, assume G2 ≥ maxt∈[T ] χ
2(ρ∗t ||ρt1), we have

1

T

T∑
t=1

KL(ρ∗t ||
1

T

T∑
t=1

ρt1) ≤ 2V 2 +
G2(log T + 1)

T
. (6)

Proof. (1) For the first inequality. Using the joint convexity of KL-divergence w.r.t. its pair argument
and Jensen’s inequality, we have

KL(
1

T

T∑
t=1

ρ∗t ||
1

T

T∑
t=1

ρt1) ≤ 1

T

T∑
t=1
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Plug the above result into the left-hand-sight of inequality in proposition, we have
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(2) For the second inequality, notice the following decomposition
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Therefore, we can upper bound the first part of the right-hand-side of above equality by applying the
first inequality in this proposition (i.e. Eq. (5)), and upper bound the second part of the right-hand-
side of above equality by applying the regret bound in Proposition 4. Combining both upper bounds
yields the second inequality in this proposition (i.e. Eq. (6)). �

Proof of Theorem 4. Denote ρT+1,1 = 1
T

∑T
t=1 ρt1, λT+1 =

√∑T
t=1 KL(ρ∗t ||ρt1)

TmM2 for brevity, then
applying Proposition F.1, we have

Eµ∼τE{`i}mi=1∼µmE`∼µEθ∼ρ̄`(θ) ≤ Eµ∼τ
(
E`∼µEθ∼ρ∗`(θ) +

Um(ρT+1,1, λT+1)

m

)
.
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We next give an upper bound on Eµ∼τ Um(ρT+1,1,λT+1)
m . Actually,
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,

where the first inequality holds due to the regret bound in Proposition 4 , the second inequality due
to Hoeffding’s inequality holds with probability 1 − δ, the third inequality holds due to Eq. (6) in
Proposition F.2. Combining these results completes the whole proof. �

G PROOFS OF THE PAC-BAYESIAN GENERALIZATION BOUNDS FOR
STATISTICAL MULTI-TASK LEARNING

Lemma G.1 (Lugosi & Neu, 2023, Lemma 26) Let {Xt}nt=1 be a sequence of non-negative random
variables and for t ≥ 0, let Ft denote the σ-algebra generated by X1, . . . , Xt. Assume that Xt has
finite conditional mean µt = E[Xt|Ft−1] and second moment σ2

t = E[X2
t |Ft−1]. Then, for any

λ > 0, the following bound holds with probability at least 1− δ:

n∑
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2
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log 1
δ

λ
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σ2
t ) log

1

δ
.

Proof of Proposition6. For any t ∈ [T ], define the regret of online algorithm Πtm w.r.t. the
probability distribution ρ∗t as RΠtm(ρ∗t ) =

∑m
i=1〈ρti−ρ∗t , cti〉. According to (Lugosi & Neu, 2023,

Thm 1), for any task t ∈ [T ], we have gen(At, St) =
RΠtm (At(St))

m −MΠtm . Then we have

1
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Proof of Theorem 5. Notice that E[〈ρti, cti〉2|Ft,i−1] ≤ M2, then applying Lemma G.1 to bound
the sum of normalized martingale differences − 1

Tm

∑T
t=1

∑m
i=1〈ρti, cti〉 in Proposition6, we have

R̄T,m
m
− 1

T
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m
− 1
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2M2 log 1

δ
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,

where the last inequality holds with probability at least 1− δ. �

Remark G.1 (Two Technical Novelties of deriving our Generalization Bounds for Statistical
Meta Learning). The technical novelties of our generalization bounds for statistical meta learn-
ing lie in the following two aspects: (1) For the transfer risk bound in Theorem 4: the novelties of
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our online-to-batch technique lie in 2 aspects: (i) The first novelty lies in bounding KL(ρ∗||ρT+1,1)
with Proposition 4 and Proposition F.2, both of which require the technical analysis of the proper-
ties of the Radon-Nikodym derivative. To the best of our knowledge, such analysis does not exist
in the previous online-to-batch literature. (ii) We further use concentration inequality to bound
Eµ∼τ KL(ρ∗||ρT+1,1)

H , leading to the transfer risk bound in the non-convex setting. Such transfer risk
bound, as shown in our Remark 3, has almost the same convergence rate when compared with the
latest transfer risk bound in the convex setting (i.e. (Balcan et al., 2021, Thm E.1), which is obtained
by Jensen inequality of convex loss), demonstrating the novelty of the online-to-batch analysis de-
veloped in our Theorem 4. (2) For the PAC-Bayes generalization bound in Theorem 5: first we
need to admit that our Proposition 6 is a direct corollary of recent online-to-PAC result in (Lugosi
& Neu, 2023, Thm 1) (i.e. we extent the result from single-task learning (Lugosi & Neu, 2023) to
our multi-task learning setting), but the novelty of our Theorem 5 lies in the combination of the
online-to-PAC analysis and the task-averaged regret analysis developed in our Theorem 3. Such
combination pioneers a new research direction to demonstrating PAC-Bayes generalization error
bounds for statistical multi-task learning. If we do not combine the aforementioned two analysis
tools, but just use the online-to-PAC analysis in (Lugosi & Neu, 2023, Thm 1) and the traditional
regret analysis for single-task learning in (Alquier, 2021, Thm 2.1), we can only obtain the following
trivial (to some extent) PAC-Bayes generalization error bound for statistical multi-task learning:

1

T

T∑
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[
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1

m
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]
≤
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m
+M

√
2 log 1

δ

Tm
,

which is less informative than our PAC-Bayes bound for statistical multi-task learning in Theorem 5.

H EXPERIMENTS

We conduct k-center clustering experiment to verify the convergence performance of task-averaged
regret R̄T,m/m of our Algorithm 1 for non-convex OWO meta learning. We follow the existing work
(Balcan et al., 2021) and meta learn the hyper-parameter α in the α-Lloyd’s clustering algorithm.

Introduction of α-Lloyd’s Algorithm. α-Lloyd’s algorithm consists of two phases: seeding phase
and local search phase. The goal of the seeding phase is to output k initial centers with dα-sampling.
Concretely, each point v is sampled with probability proportional to minc∈C d(v, c)α, where d(·, ·)
is the distance metric and C is the set of centers updated so far. The goal of local search phase is
to run an iterative two-step procedure to output final centers. Specifically, the first step is to create
a Voronoi tiling of all points induced by the initial set of centers from seeding phase; then, the new
set of centers is updated by computing the centroid (e.g. median or mean) of each Voronoi tile. The
α-Lloyd’s algorithm family include popular clustering methods like randomly initialized k-means
(α = 0) and farthest-first traversal (α = ∞). The indicator used to measure the performance of
α-Lloyd’s algorithm is the Hamming loss between the outputted clustering and the optimal target
clustering (which is given in advance). The Hamming loss is a piecewise constant function of α and
hence is a piecewise Lipschitz function. More explanations for this algorithm family and proof for
the piecewise constant property of Hamming loss can be found in (Balcan et al., 2021, Section 4.1).

Experimental Setting. We conduct k-center clustering experiment on both synthetic and real-world
datasets, under the same settings as that in Balcan et al. (2021). On the one hand, we create a Gaus-
sian mixture binary classification dataset, where each class is a 2-dimensional diagonal Guassian
distribution with variance σ and 2σ, as well as the expectation (0, 0) and (bσ, 0). We set b ∈ [2, 3]
to generate different tasks. On the other hand, we utilize the split of the real-world Omniglot dataset
to create clustering tasks, by drawing random samples each composed of five characters among
which four are constant throughout. We set the number T ∈ [1, 10] of training tasks and the number
m ∈ [5, 50] of samples per task for online optimization. Analogous to Balcan et al. (2021), we
set the parameters γ = η = 0.01 (not hyper-parameter searched), and set the step size λ in EWA
algorithm to minimize the regret in Eq. (2) (not meta-learned). For any fixed T and m, we run our
non-convex OWO meta learning algorithm to learn the hyper-parameter α in the α-Lloyd’s algorith-
m, and calculate the normalized task-averaged regret R̄T,m/m over the T training tasks. In Figure 1,
we show the convergence performance of R̄T,m/m with respect to different number T ∈ [1, 10] of
training tasks, and validate the advantage of OWO meta learning over single-task learning. Each
training task has m samples and is called m-shot learning. In Figure 2, we exhibit the asymptotic
performance of averaged regret R̄T,m/mwith respect to different numberm of samples on one task.
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Figure 1: Task-averaged regret R̄T,mm with respect to the number T of training tasks.
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Figure 2: Task-averaged regret R̄T,mm with respect to the sample size m per training task.

Experimental Results in Figure 1. We can observe that: (1) On both synthetic and real-world clus-
tering dataset, running OWO meta learning algorithm can achieve sharper regret than that of online
single-task algorithm, indicating the advantage of online meta learning framework. (2) When the
training task number T ≥ 8, the task-averaged regret R̄T,m/m of ‘10-shot multi-task’ algorithm in
Figure 1(a) is smaller than the regret of ‘20-shot single-task’ algorithm. This shows that, leveraging
meta learning paradigm, even with less samples per task, can achieve the same or better performance
compared with the single-task learning paradigm where the task has more training samples, hence al-
leviating the cost of collecting labeled data. (3) On both synthetic and real-world clustering dataset,
the normalized task-averaged regret R̄T,m/m always decreases with the increase of the number T
of training tasks, empirically validating the convergence performance of our regret for OWO meta
learning. However, we need to point out that, in some cases of Figures 1(a)-(b),regret R̄T,m/m does
not decrease and even slightly increase when T becomes larger. We attribute the counter-intuitive
phenomenon to the encountering of a tough training task that is dissimilar to previous tasks and can
lead to the increase of the value V defined in Section 4. Therefore, the task-averaged regret bound
that involves the task similarity V in our Theorem 2 possibly becomes larger, and so does the regret.
(4) On the real-world dataset Omniglot, the phenomenon that R̄T,m/m slightly increases with the
larger T appears more frequently than on the synthetic Gaussian mixture dataset. This implies the
higher degree of similarity of Gaussian mixture clustering task than that of Omniglot splitting tasks,
and attaches great importance of task similarity to the success of online meta learning algorithms.

Experimental Results in Figure 2. We can observe that: (1) On both Gaussian mixture and
Omniglot datasets, for any fixed T , the normalized task-averaged regret R̄T,m/m decreases with
the increase of the number m of samples per task, verifying the vanishing regret property (i.e.
R̄T,m = o(m)) of our results. (2) Leveraging OWO meta learning paradigm (i.e. when T = 5
or T = 10) achieves sharper regret than online single-task learning paradigm (i.e. T = 1). (3)
When using more training tasks, the regret improvements on Gaussian mixture dataset are larger
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than that on Omniglot dataset. This is consistent with the observation in Figure 1 that Gaussian mix-
ture clustering tasks share a higher degree of task similarity than that of Omniglot splitting tasks,
revealing the great effect of task similarity to the performance of online meta learning algorithms.

Remark H.1 (More Discussions of our Algorithm 2) (1) The Limitation Aspect. We need to admit
that at the current stage we are unable to run our Algorithm 2 in practice, because it is hard to
compute the analytic form of RN derivative of ρt+1,m w.r.t. the Lebesgue measure ν (if we want to
implement our algorithm in real-life applications, we need to compute dρti

dν to let ρti be tractable
in Euclidean space). The computation problem actually lies in line 6 (i.e. the meta update step of
ρt+1,1 = 1

t

∑t
s=1 ρsm) in Algorithm 2, even though ρsm is the Lebesgue measure (i.e. correspond-

ing to uniform distribution) or Gaussian measure (i.e. corresponding to Gaussian distribution).
Concretely, consider the simplest case where ρ11 is the Lebesgue measure ν, and hence using EWA
obtains the Gaussian measure ρ1m (with density N (µ1, σ1)). Assume that ρ2m is also a Gaus-
sian measure (with density N (µ2, σ2)), then ρ31 = ρ1m+ρ2m

2 and the density of ρ3m w.r.t. to ν is
dρ3m

dν = dρ3m

dρ31
· d(ρ1m+ρ2m)

2dν ∝ exp{−
∑
i∈[m] `3i} · (N (µ1, σ1) +N (µ2, σ2)), indicating that ρ3m

is not a Gaussian measure and it is hard to compute the precise form of the density function dρ3m

dν .
Nevertheless, it will also be difficult to compute the precise form of the density function dρt+1,1

dν ,
as well as the precise value of the normalized constant

∫
exp{−λt+1

∑m
j=1 `t+1,j(θ)}ρt+1,1(dθ).

Therefore, it is also not easy to compute the precise form of dρt+1,m

dρt+1,1
over the continuous domain.

(2) The Potential Application Aspect. However, we point out that our Algorithm 2 is potentially ap-
plicable to the discrete domain where the updating rule ρt+1,1 =

∑t
s=1 ρsm/t of our Algorithm 2

corresponds to the averaging of previous t discrete probability density vectors, which is more feasi-
ble. Thus our algorithm may be utilized to the Expert Advice problem for online model selection (see
(Cesa-Bianchi & Lugosi, 2006, Sect 2)), and this serves as one of our ongoing research directions.

Remark H.2 (Detailed Comparisons between our Algorithm 1 and other Algorithms for Non-
Convex OWO Meta Learning) We discuss more differences between our Algorithm 1 and the state-
of-the-art algorithm from (Balcan et al., 2021, Alg 3) as well as other baseline for OWO meta
learning. The detailed explanations are three-fold: (1) The comparisons with the single-task al-
gorithm. Actually, we choose single-task EWA algorithm as our baseline in all experiments. In
both Figure 1 (m-shot multi-task method v.s. single-task baseline) and Figure 2 (T = 5 multi-task
method v.s. T = 1 single-task baseline), we show advantages of the meta-learning based EWA
algorithm over the single-task EWA algorithm baseline, and verify the convergence performance
of task-averaged regret of our meta learning algorithm. (2) The comparisons with the state-of-
the-art (Balcan et al., 2021, Alg 3) for non-convex piecewise-Lipschitz OWO meta learning. Our
Algorithm 1 is actually based on the modification of (Balcan et al., 2021, Alg 3), and the two
main differences are as follows: (i) For learning the initialization ρ, we use FTRL algorithm to
achieve the regret of O(T 1/2+α), α ∈ (0, 1

2 ), and the mixture parameter γ = mdβ/Tα is ir-
relevant to the optimal ρ∗ (hence γ can be set in advance). Existing work (Balcan et al., 2021)
also uses FTRL algorithm, but (Balcan et al., 2021) leverages a more complicated analysis, at-
taining a larger regret bound O(md/2T 3/4). Nevertheless, their choice of γ = KL(ρ∗||ν̂)1/4mdβ/2

T 1/4V
1/2
d

in (Balcan et al., 2021, Thm 3.2) depends on the knowledge of optimal distribution ρ∗ that con-
tains information of T training tasks, which is unfeasible in the sequential online meta learn-
ing setting. (ii) For learning the step size v, we choose FTL algorithm to learn the step size
vt = argminv∈[B2,D2]

∑t−1
s=1 hs(v) =

(∑t−1
s=1 fs(ρs1)/(t− 1)

)1/2
to derive a logarithmic regret

bound of O(log T ). In contrast, (Balcan et al., 2021) chooses ε-FTL algorithm to optimize the func-
tions {ht(v) = v + (ft(ρt1) + ε2)/v}t∈[T ] on the domain [0, D2] (where D2 ≥ maxt ft(ρt1)) to

learn the step size vt = arg minv∈[0,D2]

∑t−1
s=1 hs(v) =

(∑t−1
s=1 fs(ρs1)/(t− 1) + ε2

)1/2
, and lead

to the regret O(Tε2 + (log T )/ε2), which is of O(
√
T log T ) if we set ε = 1/T 1/4 and is slower

than our regret bound. (3) Practical implementation of meta learning algorithm. However, (Balcan
et al., 2021) uses a heuristic method to learn (instead of meta learn) the step size λt, so their imple-
mentation is not rigorously the same as their pseudo code in (Balcan et al., 2021, Alg 3). We follow
almost the same implementation details as (Balcan et al., 2021) (which is also explained in detail
in the Experimental Setting part), with the main difference being that we verify the regret bound
over training tasks but (Balcan et al., 2021) verify the regret bound over test tasks. Thus, we do not
compare the convergence performance of regret of (Balcan et al., 2021, Alg 3) in our experiments.
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