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ABSTRACT

Micro-batch clipping, a gradient clipping method, has recently shown potential
in enhancing auto-speech recognition (ASR) model performance. However, the
underlying mechanism behind this improvement remains mysterious, particularly
the observation that only certain micro-batch sizes are beneficial. In this paper, we
make the first attempt to explain this phenomenon. Inspired by recent data pruning
research, we assume that specific training samples may impede model convergence
during certain training phases. Under this assumption, the convergence analysis
shows that micro-batch clipping can improve the convergence rate asymptotically
at the cost of an additional constant bias that does not diminish with more training
iterations. The bias is dependent on a few factors and can be minimized at specific
micro-batch size, thereby elucidating the existence of the sweet-spot micro-batch
size observed previously. We also verify the effectiveness of micro-batch clipping
beyond speech models on vision and language models, and show promising perfor-
mance gains in these domains. An exploration of potential limitations shows that
micro-batch clipping is less effective when training data originates from multiple
distinct domains.

1 INTRODUCTION

Micro-batch clipping (McMahan et al., 2018; Ponomareva et al., 2023) was initially introduced
as a memory optimization technique for differentially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016). The method groups per-example gradients within a mini-batch into
smaller micro-batches, clips the average gradient of each micro-batch, and updates the model with
the mean of the clipped micro-batch gradients to avoid materializing all per-example gradients in
memory. Recent studies (Wang et al., 2024a;b) have surprisingly revealed that micro-batch clipping
can enhance the performance of automatic speech recognition (ASR) models when used outside DP-
SGD. This finding has sparked interest in exploring micro-batch clipping as a standalone optimization
technique, offering potential benefits in model performance. However, the underlying mechanism
driving this improvement remains poorly understood.

In this work, we aim to elucidate the behavior of micro-batch clipping through a combination of
theoretical analysis and empirical evaluation. Specifically, we conceptualize micro-batch clipping as
a specialized form of data pruning (Sorscher et al., 2022). Unlike traditional data pruning techniques,
which deterministically exclude redundant data, micro-batch clipping adaptively suppresses samples
that hinder convergence, referred to as “draggers”, recognizing that a data sample’s helpfulness
can change throughout training. Guided by this intuition, we introduce Assumption 4.4 to capture
certain properties of the draggers’ gradients, which are later empirically verified in Section 5.1.
Based on the assumption, we analyze the convergence-to-stationary-points rate for both standard
SGD and micro-batch clipping on smooth loss manifolds and summarize the results in in Table 1.
We can observe that the introduction of draggers slows down the convergence rate for SGD by a
constant factor, while the usage of micro-batch clipping asymptotically accelerates the convergence
rate, at the cost of an additional constant bias term. The bias term provides an explanation for
the phenomenon observed in prior works (Wang et al., 2024a;b) where performance improvements
are only seen with specific micro-batch sizes. Concretely, because this term does not vanish with
increasing iterations, the performance gain is contingent upon the magnitude of this term being
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Table 1: Convergence Rate

Dragger Clipping Convergence Rate

Thm 9 (Bu et al., 2024) 7 7 1
T 1/4

√
2L(L0 − L∗) +

σ2
b

B

Thm 4.1 3 7 1
T 1/4

√
4L

(1−ε)2 (L0 − L∗) + 2σ2

(1−ε)B
Thm 4.2 3 3 σ

(
√
bε−
√
ε(1−ε))·(1+c)

+ 1√
T
· O(L0 − L∗ + 1

2L )

sufficiently small. According to Theorem 4.2, only certain micro-batch sizes minimize the bias term,
thus explaining this effect.

To test the effectiveness of micro-batch clipping outside the speech domain, we apply it to vision and
language models and observe promising performance improvements. Another interesting observation
is that micro-batch clipping’s efficacy diminishes when facing multi-domain training data, particularly
when data sizes between domains are unbalanced. This may be attributed to the method hindering the
convergence of domains with fewer samples by treating them as draggers.

2 BACKGROUND

2.1 MICRO-BATCH CLIPPING

While originally introduced in (McMahan et al., 2018) as a transition from record-level differential
privacy to user-level differential privacy in federated learning, micro-batch clipping’s widespread
adoption in differential privacy libraries stems primarily from its memory efficiency (Ponomareva
et al., 2023; Wang et al., 2024a;b). By requiring fewer gradients to be materialized, it reduces memory
consumption, especially for large models, at the expense of a lower signal-to-noise ratio under the
same differential privacy budget. Notably, per-core clipping (where the micro-batch size equals the
per-core batch size) achieves complete memory parity with non-private training when data parallelism
is employed.

The potential of micro-batch clipping as an optimization technique to improve model performance
emerged from observations in (Wang et al., 2024a;b), where it’s shown to reduce word error rate
(WER) when training Conformer-based ASR models (Gulati et al., 2020). However, whether this
benefit generalizes beyond specific model architectures and datasets remains an open question that
this work seeks to address.

2.2 DATA PRUNING & ACTIVE LEARNING

A growing body of research (Toneva et al., 2018; Paul et al., 2021; Sorscher et al., 2022) highlights
the detrimental effect of unhelpful or even harmful training data on model performance, particularly
in large-scale datasets. Sorscher et al. (Sorscher et al., 2022) propose a metric-based approach to
prune such data and alleviate inefficient power law scaling in theory. Although the approach can
effectively reduce the size of the data to store, the method overlooks the dynamic nature of data utility,
which can evolve throughout the training process.

Active learning (Bordes et al., 2005; Settles, 2009; Sener & Savarese, 2017; Birodkar et al., 2019;
Mirzasoleiman et al., 2020; Emam et al., 2021; Karamcheti et al., 2021) offers an alternative approach
to address this challenge by actively selecting the most beneficial training samples. Our work shares
similarities with active learning in that data importance is determined dynamically during training
based on gradient information. However, our approach is more fine-grained, implicitly adjusting data
influence through adaptive gradient clipping rather than explicit sample selection.

3 METHODOLOGY: ADAPTIVE MICRO-BATCH CLIPPING

This section formally defines micro-batch clipping, focusing on the adaptive variant proposed
in (Wang et al., 2024b), where the minimal L2 norm of all average micro-batch gradients is used
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as the clipping bound, thus ensuring that all micro-batch gradients are clipped. We choose this
variant because it avoids introducing clipping bound as an extra hyper-parameter, which requires
further tuning, and (Wang et al., 2024b) shows that it performs comparably to clipping with manually
selected clipping bound. For brevity, subsequent references to "micro-batch clipping" will refer to
this adaptive variant.

Let D be the training set and we want to run stochastic gradient descent with adaptive micro-batch
clipping. The mini-batch size is B and learning rate is η. In each iteration, a mini-batch of training
examples are picked and sharded into micro-batches of size b. The average gradient on each micro-
batch will be calculated and clipped using the minimum L2 norm within all the micro-batch gradients.
Then the clipped micro-batch gradients are summed to get the mini-batch gradient which is then
used to update the model (or passed to the optimizer if adaptive optimizers are used.). The process is
formalized in Algorithm 1.

Algorithm 1 Pseudocode for SGD with adaptive micro-batch clipping. gt represents mini-batch
gradients in the tth iteration. ĝjt represents the jth micro-batch’s gradient in the tth iteration.
Input: initial parameters w0, loss function L, training data D, #iterations T , micro-batch size
b, #mini-batch size B, learning rate η.

1: for t = 1, 2, . . . T do
2: {dti}i∈{1,...,B} ← D . sample a mini-batch
3: for j = 1, 2, . . . B/b (parallelly) do
4: Load a micro-batch {dti}i∈{b(j−1)+1,...,bj}

5: ĝjt = ∇L(wt−1, {dti}i∈{b(j−1)+1,...,bj}) . obtain average gradient of a micro-batch
6: ρt = minj ||ĝjt ||2
7: for j = 1, 2, . . . B/b (parallelly) do
8: ĝjt = ρt

||ĝjt ||2
· ĝjt . adaptive clipping

9: gt =
∑
j∈{1,...,B/b} ĝ

j
t

10: wt = wt−1 − η · gt . update the model parameters

4 CONVERGENCE ANALYSIS

In this section, we provide the convergence-to-stationary-points analysis for SGD micro-batch
clipping following (Bu et al., 2024) and show that it achieves asymptotically faster convergence at
the cost of a constant bias under certain assumptions.

4.1 ASSUMPTIONS

Our analysis is based on a few assumptions, as listed below. Among these, Assumptions 4.1 and 4.2 are
standard assumptions adopted from previous work (Chen et al., 2020; Bu et al., 2024). Assumption
4.3 is based on prior research (Chen et al., 2020; Bu et al., 2024), with a slight modification to
accommodate Assumption 4.4, a new assumption that we introduce in this work to capture the
existence of dragger examples.
Assumption 4.1 (Lower bound of loss (Bu et al., 2024)). ∀w,∃ constant L∗, s.t. L(w) ≥ L∗.
Assumption 4.2 (Smoothness (Bu et al., 2024)). Define g(w) := ∂L(w)

∂w . Then ∀w, v,∃ constant
L ≥ 0 s.t.

L(v)− [L(w) + g(w)>(v−w)] ≤ L

2
‖w − v‖2. (1)

Assumption 4.3 (Gradient distribution (Bu et al., 2024)). With probability 1− ε, the per-example
gradient g̃ is an i.i.d. symmetric unbiased estimator of g with bounded variance σ2(Bu et al., 2024).

w.p. 1− ε,E[g̃] = g,E[‖g̃ − g‖2] ≤ σ2

With probability ε, the per-example gradient is a dragger
w.p. ε, g̃ = µ
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Assumption 4.4 is introduced to formalize the observation that certain gradients within the training
data may impede the model’s convergence. First, we assume that these “dragger” gradients are
orthogonal to the gradients of benign examples, following the intuition that the cosine similarity
between data from different domains should be low. The intuition is both motivated and supported
by empirical evidence presented in Section 5.1. Second, we assume the L2 norm of the dragger
gradient is both lower- and upper-bounded by the L2 norm of the expected benign gradient scaled
by a constant factor. The lower-bound captures the intuition that dragger gradients should be large
enough to slow down the convergence. Empirical evidence for the intuition is presented in Section 5.3.
The upper bound captures the fact that these detrimental gradients are not the result of adversarial
manipulation but arise naturally within the vast and diverse training dataset.

Assumption 4.4 (Dragger). The dragger gradients are orthogonal to the benign gradient subspace.
Furthermore, we assume that the ratio of the dragger’s norm to the expected benign gradient norm is
bounded both above and below.

µ ⊥ g̃, c‖g‖ ≤ ‖µ‖ ≤ C‖g‖

4.2 CONVERGENCE RATE OF STANDARD SGD WITH DRAGGER GRADIENTS

We first provide the convergence to stationary point of standard SGD result under the assumptions
above.

Theorem 4.1. Under Assumption 4.1, 4.2, 4.3 (without the symmetry assumption), 4.4, running SGD
for T iterations gives, for η = 1

L
√
T

,

min
t

E‖gt‖ ≤
1

T 1/4

√
4L

(1− ε)2
(L0 − L∗) +

2σ2

(1− ε)B

Proof. In the standard SGD,
wt+1 = wt −

η

B

∑
g̃t,i

where g̃t,i here represents ithper-example gradient sampled from the distribution described by
Assumption 4.3 and 4.4.

By Assumption 4.2,

Lt+1 − Lt ≤ g>t (wt+1 −wt) +
L

2
‖wt+1 −wt‖2

= −ηg
>
t

B
(
∑

benign

g̃t,i +
∑

dragger

g̃t,i) +
Lη2

2B2
‖
∑

benign

g̃t,i +
∑

dragger

g̃t,i‖2

The expected improvement at one iteration is

E[Lt+1 − Lt|wt] ≤ −(1− ε)ηg>t Ebenign[g̃t,i]− εηg>t Edragger[g̃t,i] +
Lη2

2B2
E‖
∑

benign

g̃t,i +
∑

dragger

g̃t,i‖2

= −(1− ε)η‖gt‖2 +
Lη2

2B2
E‖
∑

benign

g̃t,i‖2 +
Lη2

2B2
E‖

∑
dragger

g̃t,i‖2

≤ −(1− ε)η‖gt‖2 +
(1− ε)2Lη2

2
(‖gt‖2 +

σ2

(1− ε)B
) +

ε2Lη2

2
‖µt‖2

≤
( (1− ε)2Lη2

2
− (1− ε)η +

ε2Lη2C2

2

)
‖gt‖2 +

(1− ε)Lη2σ2

2B

The second equation follows from Assumption 4.4 that the benign gradients are perpendicular to the
dragger gradients. The fourth inequality is based on Assumption 4.4 that the dragger gradient norm
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is upper bounded. To make sure the coefficient is negative, we require that

(1− ε)2Lη2

2
− (1− ε)η +

ε2Lη2C2

2
< 0⇒ C <

√
2(1− ε)η − (1− ε)2Lη2

ε2Lη2

For arithmetic convenience, we choose C =
√

2(1−ε)η−(1−ε)2Lη2
2ε2Lη2 . Now we do a telescoping sum

over the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1)

≥
( (1− ε)η

2
− (1− ε)2Lη2

4

)
E(
∑
t

‖gt‖2)− (1− ε)Lη2σ2T

2B

We apply the same learning rate as in (Bu et al., 2024) η = 1
L
√
T

.

L0 − L∗ ≥ (
1− ε

2L
√
T
− (1− ε)2

4LT
)E(
∑
t

‖gt‖2)− (1− ε)σ2

2LB

≥ (1− ε)2

4L
√
T

E(
∑
t

‖gt‖2)− (1− ε)σ2

2LB

and finally

min
t

E‖gt‖2 ≤
1√
T

( 4L

(1− ε)2
(L0 − L∗) +

2σ2

(1− ε)B
)

Using Jensen’s inequality, we can have

min
t

E‖gt‖ ≤
1

T 1/4

√
4L

(1− ε)2
(L0 − L∗) +

2σ2

(1− ε)B

In comparison to Theorem 9 of (Bu et al., 2024), SGD with draggers demonstrates the same asymptotic
convergence rate, albeit with a larger constant coefficient. This observation aligns with our intuition
that the presence of dragger gradients can hinder the model’s convergence speed.

4.3 CONVERGENCE RATE OF MICRO-BATCH CLIPPED SGD WITH DRAGGER GRADIENTS

In this subsection, we present the convergence analysis for micro-batch clipping. To simplify the
algebra, we assume a uniform lower bound for the clipping bound (ρt) used in each iteration. Note
that this assumption doesn’t impact the asymptotic behavior. For conciseness, the proofs of the
supporting lemmas are provided in the appendix.

Theorem 4.2. Under Assumption 4.1, 4.2, 4.3, 4.4, running micro-batch clipped SGD for T iterations
gives, for η = 1

L
√
T

, micro-batch size b and dragger probability ε ≥ 1
b+1 ,

min
t

E‖gt‖ ≤
σ

(
√
bε−

√
ε(1− ε)) · (1 + c)

+
1√
T
·

√
bε√

bε−
√

1− ε
· 2L(1 + 2εC)

1− ε
· (L0 − L∗ +

1

2L
)

Proof Sketch. In the micro-batch clipped SGD with micro-batch size b, the update rule is as follow:

wt+1 = wt −
ηb

B

∑
i

ĝt,i
‖ĝt,i‖

(2)
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Note that here ĝt,i represents ith micro-batch gradient in the tth iteration. For notation simplicity, we
omit the subscripts if it’s clear from context.

By plugging in the update from Equation 2 in the smoothness assumption 4.2 and take conditional
expectation, the expected improvement at one iteration is

E[Lt+1 − Lt|wt] ≤ −ηg>t E
ĝt
‖ĝt‖

+
Lη2

2

Re-write ĝt = (1− ε)gt + εµt + ∆t, where ∆t is a zero-centered random variable whose expected
L2 norm is bounded as below. The proof can be found in Appendix A.

Lemma 4.3. The expected L2 norm of ∆t is upper-bounded by.

E‖∆t‖ ≤
√
ε(1− ε)‖gt‖2 + ε(1− ε)‖µt‖2 + (1− ε)σ2

b
.

To lower bound g>t E
ĝt
‖ĝt‖ , we follow (Bu et al., 2024) to use the hyperplane perpendicular to gt to

divide the support of ∆t into two half-spaces where denote the positive half as: H+ := {v : g>v > 0}.
Then using the symmetry assumption 4.3, we have

g>t E
ĝt
‖ĝt‖

= E
( (1− ε)‖gt‖2 + g>t ∆t

‖(1− ε)gt + εµt + ∆t‖
)

=
1

2
E
( (1− ε)‖gt‖2 + g>t ∆t

‖(1− ε)gt + εµt + ∆t‖
∣∣∆t ∈ H+

)
+

1

2
E
( (1− ε)‖gt‖2 − g>t ∆t

‖(1− ε)gt + εµt −∆t‖
∣∣∆t ∈ H+

)
=

1

2
E
( (1− ε)‖gt‖2 + g>t ∆t

‖(1− ε)gt + εµt + ∆t‖
+

(1− ε)‖gt‖2 − g>t ∆t

‖(1− ε)gt + εµt −∆t‖︸ ︷︷ ︸
?

∣∣∆t ∈ H+

)

=
1

2
E
(
?
∣∣∆t ∈ H+, ‖∆t‖ ≤ ε‖µt‖+ ε‖gt‖

)
P(‖∆‖ ≤ ε‖µt‖+ ε‖gt‖)

+
1

2
E
(
?
∣∣∆t ∈ H+, ‖∆t‖ > ε‖µt‖+ ‖gt‖

)
P(‖∆t‖ > ε‖µt‖+ ε‖gt‖)

Lemma 4.4 tells us that ? is always non-negative under Assumption 4.4, and thus we can only keep
the first term. The proof is provided in Appendix B.

Lemma 4.4. If ∆t ∈ H+ and µt ⊥ gt,µt ⊥ ∆t, then (1−ε)‖gt‖2+g>t ∆t

‖(1−ε)gt+εµt+∆t‖ +
(1−ε)‖gt‖2−g>t ∆t

‖(1−ε)gt+εµt−∆t‖ ≥ 0.

g>t E
ĝt
‖ĝt‖

≥ 1

2
E
(
?
∣∣∆t ∈ H+, ‖∆t‖ ≤ ε‖µt‖+ ε‖gt‖

)
P(‖∆t‖ ≤ ε‖µt‖+ ε‖gt‖)

≥ 1

2
E
( (1− ε)‖gt‖2

(1− ε)‖gt‖+ ε‖µt‖+ ‖∆t‖
∣∣∆t ∈ H+, ‖∆t‖ ≤ ε‖µt‖+ ε‖gt‖

)
(1− E‖∆t‖

ε‖µt‖+ ε‖gt‖
)

≥ 1

2
· (1− ε)‖gt‖2

‖gt‖+ 2ε‖µt‖
· (1− 1√

b
·
√
ε(1− ε)‖gt‖2 + ε(1− ε)‖µt‖2 + (1− ε)σ2

ε‖µt‖+ ε‖gt‖
)

≥ 1− ε
2(1 + 2εC)

·
(
(1−

√
1− ε
bε

)‖gt‖ −
1√
b
· σ

ε(1 + c)

)
, where the second inequality follows from Markov’s inequality.

Thus we have

E[Lt+1 − Lt|wt] ≤ −η ·
1− ε

2(1 + 2εC)
·
(
(1−

√
1− ε
bε

)‖gt‖ −
1√
b
· σ

ε(1 + c)

)
+
Lη2

2
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Now we do a telescoping sum over the iterations

L0 − L∗ ≥ L0 − ELT =
∑
t

E(Lt − Lt+1)

≥ η · 1− ε
2(1 + 2εC)

·
(
(1−

√
1− ε
bε

)‖gt‖ −
1√
b
· σ

ε(1 + c)

)
− Lη2T

2

We apply the same learning rate as in (Bu et al., 2024) η = 1
L
√
T

.

L0 − L∗ ≥
1− ε

2L
√
T (1 + 2εC)

·
(
(1−

√
1− ε
bε

)‖gt‖ −
1√
b
· σ

ε(1 + c)

)
− 1

2L

and finally

min
t

E‖gt‖ ≤ min
t

1

T
E
∑
t

‖gt‖ ≤
σ

(
√
bε−

√
ε(1− ε)) · (1 + c)

+
1√
T
·

√
bε√

bε−
√

1− ε
· 2L(1 + 2εC)

1− ε
· (L0 − L∗ +

1

2L
)

5 EMPIRICAL EVALUATION

In this section, we’d like to answer the following 3 questions: 1) Does Assumption 4.4 hold in
practice? 2) Does the hypothesis on c to explain the sweet spot of micro-batch size hold in practice?
3) Does micro-batch clipping help improve performance beyond speech tasks?

5.1 EMPIRICAL EVIDENCE FOR ASSUMPTION 4.4

Experiment Setup. To answer question 1), we adopt the experimental setup from Wang et
al. (Wang et al., 2024a). Specifically, we fine-tune 600M Conformer XL (Zhang et al., 2020)
models on the LibriSpeech dataset (Panayotov et al., 2015) and handcrafted canaries (Wang et al.,
2024b). The model’s encoder is pre-trained using BEST-RQ (Chiu et al., 2022) on the LibriLight
dataset (Kahn et al., 2020). The key advantage of this setup is the ability to treat the inserted canaries
as surrogate draggers, thereby circumventing the technical challenge of identifying natural draggers
in large models.

We compute the cosine similarity between 100 randomly selected pairs of dragger and benign
gradients. For calibration purposes, we also compute the cosine similarity between 100 pairs of
benign gradients.

Evaluation Results. The results are summarized in Figure 1. We observe that the magnitude of
the cosine similarity between dragger and benign gradients is significantly smaller than the cosine
similarity within benign gradients, with a negligible standard deviation. This observation supports
Assumption 4.4 that dragger gradients are orthogonal to the benign gradient subspace.

5.2 HOW c CHANGES WITH MICRO-BATCH SIZE?

Experiment Setup. Again we re-use the setup in (Wang et al., 2024a). First, we run micro-batch
clipping with micro-batch size 1, 4 (per-core batch size), 512 (mini-batch size) to substantiate the
existence of an optimal micro-batch size that yields maximum performance. Performance is assessed
using word error rate (WER) on two splits of the LibriSpeech test dataset: test-clean, consisting of
relatively clean utterances, and test-other, consisting of noisier utterances.

In the second step, the following proxy estimation is used to monitor the fluctuations in the value of c.

ĉ :=
mean(‖benign gradients‖)
mean(‖dragger gradients‖)
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Figure 1: Cosine Similarity between Crafted Dragger and Benign Examples.

To estimate the numerator, we use the mean norm of 100 LibriSpeech samples after trimming the
largest 10% to avoid the effect of hard-to-track natural draggers. To estimate the denominator, we
use the mean of the gradient norms of 100 inserted canaries. The proxy ĉ is computed for both
non-private training and micro-batch clipping scenarios with micro-batch sizes 1, 4 and 512.

2,510 3,980 6,310 10,000 15,800 25,100

0.0398

0.0631

0.1

# Iterations

W
E

R

Baseline
Ours, b=4

Figure 2: Convergence curve for LibriSpeech experiments. Both x-axis and y-axis are log-scale to
highlight the convergence speed advantage.

Evaluation Results. First, in Table 2, we can observe that when micro-batch size is 4, the model
achieves the best performance across all settings, improving test-other WER by 4.8% relatively and
test-clean by 4.1% relatively. Furthermore, we note that micro-batch clipping does not enhance
performance when the micro-batch size is either 1 or 512. Instead, these configurations degrade WER
on both the test-other and test-clean splits. As per Theorem 4.2, this degradation is attributed to the
presence of a large constant term when the micro-batch size is not optimally selected. Furthermore,
we note that micro-batch clipping does not enhance performance when the micro-batch size is either
1 or 512. Instead, these configurations degrade WER on both the test-other and test-clean splits. As
per Theorem 4.2, this degradation is attributed to the presence of a large constant term when the
micro-batch size is not optimally selected. Besides, from Figure 2, we can tell see the convergence
rate advantage as predicted.

Second, the values of ĉ for different micro-batch sizes are shown in Table 3. The results conform with
the conjecture that ĉ is decreasing with respect to the micro-batch size b. This observation provides a
strong evidence to support the explanation for the existence of the optimal micro-batch size.

Remark. We’d like to note that the difference in proxy ĉ is still not big enough to level out the
influence of b in the constant term in Theorem 4.2, and this might be attributed to the several factors
including the convergence rate bound not strictly tight, the noise in ĉ measurement, and systematic
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Table 2: Best WER on LibriSpeech within 20K fine-tuning steps. Mean and standard deviation are
calculated across 3 runs. Bold highlights best. The checkpoint is picked to optimize test-other split.

Test set Baseline Ours, b = 1 Ours, b = 4 Ours, b = 512

test-clean 1.93 ± 0.04 2.40 ± 0.13 1.85 ± 0.07 1.94 ± 0.00
test-other 3.99 ± 0.01 4.86 ± 0.24 3.80 ± 0.05 4.03 ± 0.03

bias between ĉ and c. However, we still believe that the trend of ĉ is promising as an evidence for
our explanation for sweet-spot micro-batch sizes, and we deem getting a stricter convergence bound
and more accurate relationship between b and c important future directions to guide the choice of
micro-batch sizes.

Table 3: The values of ĉ under different micro-batch sizes.

Micro-batch size b = 1 b = 4 b = 512

ĉ 6.18 5.74 4.42

5.3 IS MICRO-BATCH CLIPPING EFFECTIVE FOR MODELS BEYOND SPEECH?

To address question 3), we conduct an evaluation of micro-batch clipping on vision models and
language models. In accordance with the findings of (Wang et al., 2024b), we default to a micro-
batch size equivalent to the per-core batch size due to its memory efficiency. It is important to note
that alternative micro-batch sizes may necessitate careful adjustment to mitigate potential memory
overflow issues.

5.3.1 VISION TASKS

Experiment Setup: For vision tasks, we choose apply micro-batch clipping to the DeiT-B model
proposed in (Touvron et al., 2021). We train DeiT-B from scratch on the ImageNet dataset (Deng
et al., 2009) and achieves parity with the reported Top-1 accuracy in (Touvron et al., 2021). The
mini-batch size used is 4096 and the micro-batch size is 32, the same as the per-core batch size for
computational efficiency.

Evaluation Results: The results are summarized in Table 4. Adding micro-batch clipping im-
proves the Top-1 accuracy by 1.5% and Top-5 accuracy by 1.0%.

Table 4: ViT trained w/ or w/o adaptive micro-batch clipping.

Top-1 accuracy (%) Top-5 accuracy (%)

Baseline 81.8 95.8
Ours 83.3 96.8

5.3.2 LANGUAGE TASKS

Experiment Setup: For language tasks, we fine-tune a T5 model (Raffel et al., 2020) on the
superGlue dataset (Wang et al., 2019). The model is pre-trained on the C4 dataset (Raffel et al.,
2020) for 1M steps. The mini-batch size is 2048, and the mini-batch size is 16, the same as the
per-core batch size. Note that the test set for superGlue is private so we report the performance on the
validation set. Since we do not use any information of the validation set to improve the micro-batch
clipping part, the improvement shown is fair. Also we use accuracy across all subsets of superGlue to
be able to compute the weighted average accuracy as a unified metric to compare 2 models.

Evaluation Results: Table 5 summarizes our findings. While micro-batch clipping only marginally
improves average accuracy (0.1%), it significantly boosts performance on the largest, unbalanced
subset, ReCoRD (0.4%), while negatively impacting smaller datasets. This suggests varying gradient
distributions across subsets, with micro-batch clipping suppressing gradients from smaller subsets,
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which conforms with the observation that ReCoRD has lower accuracy when trained with other
data mixed (83.9%) than when trained alone (84.5%). Training solely on ReCoRD yields a 0.3%
improvement as shown in Table 6, reinforcing this hypothesis.

Table 5: T5 trained w/ or w/o adaptive micro-batch clipping.

Accuracy (%) wt avg BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

‖Train‖ - 9427 250 400 5100 101k 2500 6000 554

Baseline 85.9 93.4 97.8 88.9 93.4 83.9 97.6 89.5 70.3
Ours 86.0 91.8 95.6 88.3 91.6 84.3 95.7 88.5 70.3

These results highlight a crucial lesson: micro-batch clipping, while beneficial when data comes
from the same domain but is noisy, can be detrimental with unbalanced multi-domain data. In such
scenarios, micro-batch clipping may hinder certain domains to favor others and should be avoided.

Table 6: T5 trained w/ or w/o adaptive micro-batch clipping.

Accuracy (%) Baseline Ours

ReCoRD 84.5 84.8

6 CONCLUSION & DISCUSSION

In this paper, we revisit micro-batch clipping, originally proposed in the context of differential privacy,
from the lens of data pruning, inspired by recent observations made by (Wang et al., 2024a;b).

Our convergence analysis demonstrates that micro-batch clipping can asymptotically accelerate
the convergence rate for smooth loss functions. To elucidate the optimal micro-batch size falling
between 1 and the mini-batch size, we introduce the concept of "dragger gradients." Combining this
concept with our convergence analysis reveals a constant term minimized at a value between 1 and
the mini-batch size.

Our analysis and explanation hinge on two novel hypotheses, which we empirically verify. We also
extend the application of micro-batch clipping to vision and language models. We find that when the
input data is single-domain, micro-batch clipping can still enhance the performance of these models.

Limitations. Despite the demonstrated effectiveness of micro-batch clipping across speech, vision
and language models, our research reveals limitations that warrant further investigation. As evidenced
in Section 5.3.2, micro-batch clipping can adversely affect model performance when the input data
originates from multiple distinct domains. This constraint limits the applicability of micro-batch
clipping in scenarios where data diversity is prevalent.

Furthermore, this limitation may raise potential fairness concerns, akin to other data pruning methods
pointed out by (Vysogorets et al., 2024). The preferential treatment of specific data domains could
inadvertently introduce biases and inequities in model outcomes. These limitations underscore the
need for a refined micro-batch clipping approach that can effectively handle multi-domain data.

Future Work. Several intriguing avenues for future research emerge from this paper. Firstly, the
memory overhead introduced by micro-batch clipping remains a challenge. While data sharding with
a micro-batch size equal to the per-core batch size (Wang et al., 2024a;b) can mitigate this issue, the
growing size of modern models necessitates the development of alternative solutions to ensure the
computational efficiency of micro-batch clipping in training scenarios with model sharding alone.

Secondly, from a theoretical perspective, a more rigorous relationship between micro-batch size b and
c is needed, as it could guide the choice of the appropriate micro-batch size to optimize performance.

Finally, we are eager to explore a broader range of gradient-based data pruning methods. This includes
investigating different variations of clipping, as well as other innovative gradient manipulation
techniques based on diverse heuristics.
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A PROOF FOR LEMMA 4.3

Proof. First, we upper-bound the variance for the per-example gradients following the distribution
described in Assumption 4.3.

E‖g̃ − E[g̃]‖2 = E‖g̃‖2 − ‖Eg̃‖2

≤ (1− ε)
(
‖g‖2 + σ2

)
+ ε‖µ‖2 − ‖(1− ε)g + εµ‖2

= ε(1− ε)‖g‖2 + ε(1− ε)‖µ‖2 + (1− ε)σ2

Second, after the micro-batch averaging,

E‖ĝ − E[ĝ]‖2 =
1

b2
E
(
‖
∑

(g̃ − Eg̃)‖2
)

=
1

b2

∑
E
(
‖g̃ − Eg̃‖2

)
=
ε(1− ε)‖g‖2 + ε(1− ε)‖µ‖2 + (1− ε)σ2

b

, where the second equation follows from the fact that per-example gradients are independent from
each other.
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B PROOF FOR LEMMA 4.4

Proof. If g>t ∆t ≤ (1− ε)‖gt‖2, then the lemma obviously holds, so we only need to prove for the
case when g>t ∆t > (1− ε)‖gt‖2.

ε2‖gt‖2‖µt‖+ ‖gt‖2‖∆‖2 ≥ (g>t ∆t)
2

⇒ ((1− ε)‖gt‖2 + g>t ∆t)
2

(1− ε)2‖gt‖2 + ε2‖µ‖2 + ‖∆t‖2 + 2(1− ε)g>t ∆t

≥ ((1− ε)‖gt‖2 − g>t ∆t)
2

(1− ε)2‖gt‖2 + ε2‖µ‖2 + ‖∆t‖2 − 2(1− ε)g>t ∆t

⇔ (1− ε)‖gt‖2 + g>t ∆t

‖(1− ε)gt + εµt + ∆t‖
+

(1− ε)‖gt‖2 − g>t ∆t

‖(1− ε)gt + εµt −∆t‖
≥ 0
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