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ABSTRACT

Generative models in drug discovery have recently gained attention as efficient al-
ternatives to brute-force virtual screening. However, most existing models do not
account for synthesizability, limiting their practical use in real-world scenarios. In
this paper, we propose RXNFLOW, which sequentially assembles molecules using
predefined molecular building blocks and chemical reaction templates to constrain
the synthetic chemical pathway. We then train on this sequential generating pro-
cess with the objective of generative flow networks (GFlowNets) to generate both
highly rewarded and diverse molecules. To mitigate the large action space of syn-
thetic pathways in GFlowNets, we implement a novel action space subsampling
method. This enables RXNFLOW to learn generative flows over extensive action
spaces comprising combinations of 1.2 million building blocks and 71 reaction
templates without significant computational overhead. Additionally, RXNFLOW
can employ modified or expanded action spaces for generation without retraining,
allowing for the introduction of additional objectives or the incorporation of newly
discovered building blocks. We experimentally demonstrate that RXNFLOW out-
performs existing reaction-based and fragment-based models in pocket-specific
optimization across various target pockets. Furthermore, RXNFLOW achieves
state-of-the-art performance on CrossDocked2020 for pocket-conditional gener-
ation, with an average Vina score of –8.85 kcal/mol and 34.8% synthesizability.
Code is available at https://anonymous.4open.science/r/RxnFlow-B13E/.

1 INTRODUCTION

Structure-based drug discovery (SBDD) has emerged as a pivotal paradigm for early drug discov-
ery, facilitated by the increasing accessibility of protein structure prediction tools (Jumper et al.,
2021) and high-resolution crystallography (Liu et al., 2015). However, traditional brute-force vir-
tual screening is computationally expensive (Graff et al., 2021), prompting the development of deep
generative models that can bypass this inefficiency. In this context, various approaches such as deep
reinforcement learning (Zhavoronkov et al., 2019), variational autoencoders (Zhung et al., 2024)
generative adversarial network (Ragoza et al., 2022), and diffusion models (Guan et al., 2023a;b)
have been proposed to directly sample candidate molecules against a given protein structure.

While generative models have shown success in molecular discovery with desirable biological prop-
erties, most overlook synthesizability which is a crucial factor for wet-lab validation (Gao & Coley,
2020). One line to improve synthesizability is multi-objective optimization using cheap functions
to estimate the synthesizability (Ertl & Schuffenhauer, 2009), but this is too simplified to reflect
complex synthetic principles (Cretu et al., 2024). Other efforts aim to project molecules from gener-
ative models into a synthesizable space (Gao et al., 2022b; Luo et al., 2024; Gao et al., 2024b), but
chemical modifications in this process can degrade the optimized properties.

To address this issue, recent works formulate the generation of synthetic pathways as a Markov
decision process (MDP) for molecular design (Gottipati et al., 2020). These approaches return a
synthesizable molecule by assembling purchasable building blocks and reaction templates accord-
ing to the generated synthetic pathway. Notably, the emergence of virtual libraries—created by
combinatorially enumerating building blocks and reaction templates, such as Enamine REAL (Gry-
gorenko et al., 2020)—allows the generated molecules to be readily synthesizable on demand with
their synthetic pathways. Recent studies (Cretu et al., 2024; Koziarski et al., 2024) advanced this
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Figure 1: Overview of RXNFLOW. (a) Synthetic action space which is represented in a continuous
action space. Each colored box corresponds to a reaction template and the molecules in the box are
reactant blocks. (b) Policy estimation using the action space subsampling in a manner of importance
sampling. (c) Molecular generation process and model training.

approach by training the decision-making policy using the objective of generative flow networks
(GFlowNets; Bengio et al., 2021). This objective encourages the policy to sample in proportion to
the reward function, enabling the retrieval of samples from a diverse range of modes.

Unlike atom-based or fragment-based models, the synthetic action spaces are massive and composed
of millions of building blocks and tens of reaction templates. While the large action spaces offer
opportunities to discover novel hit candidates by expanding an explorable chemical space (Sady-
bekov et al., 2022), it incurs significant computational overhead. Thus, prior works have restricted
the action spaces to trade off the size of the search space for efficiency. However, reducing the
search space leads to a decrease in diversity and synthetic complexity. While one could compensate
for the reduced number of building block candidates by adding more reaction steps, this leads to
the increase in synthetic complexity, negatively influencing synthesizability, yield, and cost (Coley
et al., 2018; Kim et al., 2023).

In response to this challenge, we propose RXNFLOW, a synthesis-oriented generative framework
that allows training generative flows over a large action space to generate synthetic pathways for
drug design. The distinctive features of this method are as follows. First, we introduce an action
space subsampling (Figure 1) to handle massive action spaces without significant memory overhead,
enabling us to explore a broader chemical space with fewer reaction steps than existing models.
Then, we train the generative policy with a GFlowNet objective to sample both diverse and potent
molecules from the expanded search space. We demonstrate that RXNFLOW effectively generates
drug candidates, outperforming existing reaction-based, atom-based, and fragment-based baselines
across various SBDD tasks, while ensuring the synthesizability of generated drug candidates. We
also achieve a new state-of-the-art Vina score, drug-likeness, and synthesizability on the Cross-
Docked2020 pocket-conditional generation benchmark (Luo et al., 2021).

Furthermore, we formulate an adaptable MDP (Figure 2) for consistent flow estimation on modified
building block libraries, which can be highly practical in real-world applications. By combining the
proposed MDP with action embedding (Dulac-Arnold et al., 2015), which represents actions in a
continuous space instead of a discrete space, RXNFLOW can achieve further objectives or incorpo-
rate newly discovered building blocks without retraining. We experimentally show that RXNFLOW
can achieve an additional solubility objective and behave appropriately for unseen building blocks.
This capability makes RXNFLOW highly adaptable to real-world drug discovery pipeline, where
new objectives frequently arise (Fink et al., 2022) and building block libraries are continuously
expanding (Grygorenko et al., 2020).

2 RELATED WORKS

Structure-based drug discovery. The first type of SBDD involves pocket-specific optimization
methods to enhance docking scores against a single pocket, including evolutionary algorithms (Rei-
denbach, 2024), reinforcement learning (RL) (Zhavoronkov et al., 2019), and GFlowNets (Bengio
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et al., 2021). However, these require individual optimizations for each pocket, limiting scalability.
The second type is based on pocket-conditional generation, which generates molecules against
arbitrary given pockets without additional training. This can be achieved by distribution-based gen-
erative models (Ragoza et al., 2022; Peng et al., 2022; Guan et al., 2023b; Schneuing et al., 2023; Qu
et al., 2024) trained on protein-ligand complex datasets to model ligand distributions for given pock-
ets. On the other hand, Shen et al. (2023) formulated a pocket-conditioned policy for GFlowNets to
generate samples from reward-biased distributions in a zero-shot manner.

Syntheis-oriented generative models. To ensure the synthesizability of generated molecules,
synthesis-oriented de novo design approaches incorporate combinatorial chemistry principles into
generative models. Bradshaw et al. (2019) represented the synthetic pathways as directed acyclic
graphs (DAG) for generative modeling. Horwood & Noutahi (2020) formulated the synthetic path-
way generation as an MDP and optimize the molecules with RL. Similarly, Gao et al. (2022b)
employed a genetic algorithm to optimize synthesis trees to generate molecules with the desired
properties. Seo et al. (2023) proposed a conditional generative model to directly sample molecules
with desired properties without optimization. Recently, Cretu et al. (2024); Koziarski et al. (2024)
proposed the reaction-based GFlowNet to generate diverse and potent molecules.

Action embedding for large action spaces. To handle large action spaces in the synthesis-oriented
generation, Gottipati et al. (2020) employed action embedding (Dulac-Arnold et al., 2015) that rep-
resents building blocks in a continuous action space with their chemical information. Later, Seo
et al. (2023); Koziarski et al. (2024) experimentally demonstrated that it can enhance the model
training and generative performance. The continuous action space provides the benefit of reducing
the computational complexity for sampling from large space of actions and the memory requirement
for parameterizing the categorical distribution over the large action space.

Generative Flow Networks. GFlowNets are a learning framework for a stochastic generative policy
that constructs an object through a series of decisions, where the probability of generating each
object is proportional to a given reward associated with that object (Bengio et al., 2021). Unlike other
optimization methods that maximize rewards and often converge to a single solution, GFlowNets
aim to sample a diverse set of high-rewarded modes, which is vital for novel drug design (Shen et al.,
2023; Jain et al., 2022). To this end, the generative policy is trained using objectives such as flow
matching (Bengio et al., 2021), detailed balance (Bengio et al., 2023), and trajectory balance (Malkin
et al., 2022). Extending the GFlowNets to various applications is an active area of research, e.g.,
GFlowNets have been applied to designing crystal structures (Nguyen et al., 2023b), phylogenetic
inference (Zhou et al., 2023), finetuning diffusion models (Venkatraman et al., 2024), and causal
inference (Nguyen et al., 2023a).

3 METHOD

3.1 GFLOWNET PRELIMINARIES

GFlowNets (Bengio et al., 2021) are the class of generative models that learn to sample objects
x ∈ X proportional to a given reward function, i.e., p(x) ∝ R(x). This is achieved by sequentially
constructing a compositional object x through a series of state transitions s → s′, forming a trajec-
tory τ = (s0 → . . . → sn = x) ∈ T . The set of all complete trajectories from the initial state
s0 can be represented as a directed acyclic graph G = (S,A) with a reachable state space S and
an action space A. Each action a induces a transition from the state s to the state s′, expressed as
s′ = T (s, a) and represented as s → s′. Then, we define the trajectory flow F (τ), which flows
along the trajectory τ = (s0 → . . .→ sn = x), as the reward of the terminal state, R(x). The edge
flow F (s→ s′), or equivalently F (s, a), is defined as the total flow along the edge a : s→ s′:

F (s→ s′) = F (s, a) =
∑

τ∈T s.t. (s→s′)∈τ

F (τ). (1)

The state flow F (s) for the intermediate state is defined as the total flow through the state s:

F (s) =
∑

τ∈T s.t. s∈τ

F (τ) =
∑

(s′′→s)∈A

F (s′′ → s) =
∑

(s→s′)∈A

F (s→ s′).

︸ ︷︷ ︸
Intermediate flow matching condition

(2)
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In addition to the flow matching condition for intermediate states, there are two boundary conditions
for the states. First, the flow of a terminal state x must equal the reward of the objective: F (x) =
R(x). Second, the partition function, Z, is equivalent to the sum of all trajectory flows and the
sum of all rewards: Z = F (s0) =

∑
τ∈T F (τ) =

∑
x∈X R(x). These three conditions—one for

intermediate states and two for boundary states—are known as the flow matching conditions and
ensure that GFlowNets generate objectives proportional to their rewards.

To convert the flow network into a usable policy, we define the forward policy as the forward transi-
tion probability PF (s

′|s) and the backward policy as the backward transition probability PB(s|s′):

PF (s
′|s) := P (s→ s′|s) = F (s→ s′)

F (s)
, PB(s|s′) := P (s→ s′|s′) = F (s→ s′)

F (s′)
. (3)

3.2 ACTION SPACE FOR SYNTHETIC PATHWAY GENERATION

Following Cretu et al. (2024), we treated a chemical reaction as a forward transition and a synthetic
pathway as a trajectory for molecular generation. For the initial state s0, the model always chooses
AddFirstReactant to sample a building block b from the entire building block setB as a starting
molecule. For the later states s, the model samples actions among ReactUni, ReactBi, or Stop.
When the action type is ReactUni, the model performs in silico uni-molecular reactions with an
assigned reaction template r ∈ R1. When the action type is ReactBi, the model performs bi-
molecular reactions with a reaction template r ∈ R2 and a reactant block b in the possible reactant
set for the reaction template r: Br ⊆ B. If Stop is sampled, the trajectory is terminated. To sum
up, the allowable action space A(s) for the state s is:

A(s) =
{
B if s = s0
{Stop} ∪ R1 ∪ {(r, b)|r ∈ R2, b ∈ Br} otherwise

(4)

where unavailable reaction templates to the molecule of the state s are masked.

3.3 FLOW NETWORK ON ACTION SPACE SUBSAMPLING

We propose a novel memory-efficient technique called the action space subsampling, that estimates
the state flow Fθ(s) from a subset of the outgoing edge flows Fθ(s → s′) for forward policy esti-
mation. First, we implement an auxiliary policy, termed subsampling policy P(A), which samples a
subset of the action space A∗ ⊆ A. This reduces both the memory footprint and the computational
complexity from O(|B||R2|) to O(|B∗||R2|) with the controllable size |B∗|. We then estimate the
forward policy by importance sampling. In contrast to the parameterized forward policy, we formu-
late a fixed backward policy since it is hard to force invariance to molecule isomorphism (Malkin
et al., 2022). Theoretical backgrounds are provided in Sec. A.

Subsampling policy. Subsampling policy P(A) performs uniform sampling for the initial state and
importance sampling for the later states. For the initial state, the allowable action space A(s0) = B
is homogeneous since all of them are AddFirstReactant actions. For the later state, the action
space is comprised of one Stop, tens of ReactUni actions, and millions of ReactBi actions.
To capture rare-type actions in the inhomogeneous space, we use all Stop and ReactUni actions.
The partial action space A∗(s) ∼ P(A(s)) comprises the uniform subset B∗ ⊆ B or B∗r ⊆ Br:

A∗(s) =

{
B∗ if s = s0
{Stop} ∪ R1 ∪ {(r, b)|r ∈ R2, b ∈ B∗r} otherwise

(5)

Forward policy. To estimate the forward policy PF (s
′|s) = F (s → s′)/F (s) from the partial

action space A∗, we estimate the state flow F (s) with a subset of outgoing edge flows F (s → s′).
Since we introduce importance sampling for action types, we weight the edge flow F (s → s′) of
edge a : s→ s′ according to the subsampling ratio:

wa = w(s→s′) =


|B|/|B∗| if a ∈ B
|Br|/|B∗r | if a is (r, b) where r ∈ R2

1 if a is Stop or a ∈ R1

(6)
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Figure 2: Comparison of using modified building block library for the generation: (a) a hier-
archical MDP, and (b) a non-hierarchical MDP. More details are in Figure 8.

By weighting edge flows, we can estimate the state flow F̂θ(s;A∗) as:

F̂θ(s;A∗) =
∑

(s→s′)∈A∗(s)

w(s→s′)Fθ(s→ s′), (7)

which the estimated forward policy is P̂F (s
′|s;A∗; θ) = Fθ(s→ s′)/F̂θ(s;A∗).

Action embedding. In the standard implementation (Bengio et al., 2021) of the flow function Fθ

and its neural network ϕθ, the edge flow of the edge a : s→ s′ is computed with the corresponding
action-specific parameter θa: Fθ(s→ s′) = Fθ(s, a) = ϕflow

θa
(ϕstate

θ (s)).

However, large action spaces require numerous parameters which increase model complexity. To
address this, we use an additional network ϕblock

θ for AddFirstReactant and ReactBi, which
embeds the building block b into a continuous action space with its structural information, molecular
fingerprints (see Sec. B.3):

Fθ(s0, b) = ϕflow
θ (ϕstate

θ (s), ϕblock
θ (b)), Fθ(s, (r, b)) = ϕflow

θ (ϕstate
θ (s), δ(r), ϕblock

θ (b)) (8)

where δ(r) is the one-hot encoding for a bi-molecular reaction template r.

GFlowNet training. In this work, we use the trajectory balance (TB; Malkin et al., 2022) as the
training objective of GFlowNets from Eq. (9) and train models following Sec. B.4. The action space
subsampling is performed for each transition st → st+1: A∗

t ∼ P(A).

L̂TB(τ) =

(
log

Zθ

∏n
t=1 P̂F (st|st−1;A∗

t−1; θ)

R(x)
∏n

t=1 PB(st−1|st)

)2

(9)

For online training, we use the sampling policy πθ proportional to P̂F (−|−;A∗; θ), given by:

πθ(s
′|s;A∗) =

w(s→s′)Fθ(s→ s′)∑
(s→s′′)∈A∗(s) w(s→s′′)Fθ(s→ s′′)

(10)

3.4 JOINT SELECTION OF TEMPLATES AND BLOCKS

For bi-molecular reactions, existing synthesis-oriented methods (Gao et al., 2022b; Cretu et al.,
2024; Koziarski et al., 2024) formulated a hierarchical MDP which selects a reaction template r
first and then the corresponding reactant block b sequentially from Eq. (11). However, as shown in
Figure 2, the probability of selecting each reaction template r is fixed after training in a hierarchical
MDP, and this rigidity can lead to incorrect policy estimates in modified block libraries. Therefore,
we formulate a non-hierarchical MDP that jointly selects reaction templates and reactant blocks
(r, b) at once, as given by Eq. (12), resulting in more consistent estimates of forward policy PF .

PF (T (s, (r, b))|s; θ) =
Fθ(s, r)∑

r′∈R1∪R2∪{Stop} Fθ(s, r′)
× Fθ(s, (r, b))∑

b′∈Br
Fθ(s, (r, b′))

(11)

PF (T (s, (r, b))|s; θ) =
Fθ(s, (r, b))∑

r′∈R1∪{Stop} Fθ(s, r′) +
∑

r′∈R2

∑
b′∈Br′

Fθ(s, (r′, b′))
(12)
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4 EXPERIMENTS

Overview. We validate the effectiveness of RXNFLOW in two common SBDD tasks: pocket-specific
optimization (Sec. 4.1) and pocket-conditional generation (Sec. 4.2). To the best of our knowledge,
this is the first synthesis-oriented approach for pocket-conditional generation. We also investigate
the applicability of RXNFLOW in real-world drug discovery pipelines where new further objectives
may be introduced (Sec. 4.3) and the building block libraries are constantly expanded (Sec. 4.4).
Lastly, we conduct an ablation study in Sec. 4.5 and a theoretical analysis in Sec. D.8.

Setup. We use the reaction template set constructed by Cretu et al. (2024) including 13 uni- and
58 bi-molecular reaction templates. For the building blocks, we use 1.2M blocks from the Enamine
comprehensive catalog. We use up to 3 reaction steps for generation following Enamine REAL
Space (Grygorenko et al., 2020), while SynFlowNet and RGFN allow 4 steps. For the subsampling
policy, we set a sampling ratio of 1%. The experimental details are provided in Sec. C.

Synthesizability estimation. To assess the synthesizability of the generated compounds, we used
the computationally intensive retrosynthetic analysis tool AiZynthFinder (Genheden et al., 2020)
with the Enamine building block library. We note that the molecule is identified as synthesizable
only if it can be synthesized using the USPTO reactions (Lowe, 2017) and given building blocks.

4.1 POCKET-SPECIFIC OPTIMIZATION WITH GPU-ACCELERATED DOCKING

Setup. Since GFlowNets sample a large number of molecules for online training, we employed
a GPU-accelerated UniDock (Yu et al., 2023) with Vina scoring (Trott & Olson, 2010). It is well
known that docking can be hacked by increasing molecule size (Pan et al., 2003), so the appropriate
constraints are required. We select QED (Bickerton et al., 2012) as a comprehensive molecular prop-
erty constraint, QED>0.5, and set the reward function as R(x) = w1QED(x) + w2V̂ina(x) where
w1, w2 are used as the input of multi-objective GFlowNets (Jain et al., 2023) for all GFlowNets and
are set to 0.5 for non-GFlowNet baselines. V̂ina is a normalized docking score (Eq. (32)).

Each method generates up to 64,000 molecules for each of the 15 proteins in the LIT-PCBA dataset
(Tran-Nguyen et al., 2020). We then filter the molecules with the property constraint and select
the top 100 diverse candidates based on the docking score, using a Tanimoto distance threshold of
0.5 to ensure structural diversity. The selected molecules are evaluated with the following metrics:
Hit ratio (%) measures the fraction of hits, defined as the molecules that are identified as synthe-
sizable by AiZynthFinder and having better docking scores than known active ligands (Lee et al.,
2023). Vina (kcal/mol) measures the average docking score. Synthesizability (%) is the fraction
of synthesizable molecules. Synthetic complexity, which is highly correlated to yield and cost, is
evaluated as the average number of synthesis steps (Coley et al., 2018).

Baselines. We perform comparisons to various synthetic-oriented approaches: genetic algorithm
(SynNet) (Gao et al., 2022b), conditional generative model (BBAR1) (Seo et al., 2023), and
GFlowNets (SynFlowNet, RGFN) (Cretu et al., 2024; Koziarski et al., 2024). For SynFlowNet
and RGFN, we used 6,000 and 350 blocks, respectively, and set the maximum reaction step to 4
following the original papers. Moreover, we consider fragment-based GFlowNets (FragGFN) to
analyze the effects of synthetic constraints on the performance. For FragGFN, we also consider
additional synthesizability objectives with commonly-used synthetic accessibility score (SA; Ertl &
Schuffenhauer, 2009) (FragGFN+SA).

Results. The results for the first five targets are shown in Tables 1 and 2, and additional results for
the 10 remaining targets are reported in Sec. D.1. The property distribution for each target are re-
ported in Sec. D.2. RXNFLOW outperforms the baselines across all test proteins, demonstrating that
the expanded sample space with the large action space enabled the model to generate more potent
and diverse molecules. Additionally, as shown in Tables 3 and 4, RXNFLOW ensures the synthesiz-
ability of the generated molecules more effectively than the other synthesis-oriented methods and
GFlowNets which employ the same reactions as ours. These results support our primary assertion
that existing synthesis-oriented approaches using more synthetic steps with smaller building block
libraries can increase overall synthesis complexity and reduce synthesizability. Furthermore, Frag-

1Since BBAR requires labeled training data with QED and docking score, we perform docking with random
62,720 ZINC molecules for training and evaluate 1,280 samples according to the reported splitting ratio.
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Table 1: Hit ratio. Mean and standard deviation over 4 runs. The best results are in bold.
Hit Ratio (%, ↑)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 0.25 (± 0.43) 0.25 (± 0.43) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 4.00 (± 1.58) 0.25 (± 0.43) 0.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 45.83 (± 7.22) 25.00 (± 25.00) 0.00 (± 0.00) 0.00 (± 0.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 18.25 (± 1.92) 3.50 (± 1.12) 2.25 (± 1.09) 11.75 (± 2.59)
SynFlowNet 52.75 (± 1.09) 57.00 (± 6.04) 30.75 (± 10.03) 11.25 (± 1.48) 53.00 (± 8.92)
RGFN 46.75 (± 6.87) 39.75 (± 8.17) 4.50 (± 1.66) 1.25 (± 0.43) 19.75 (± 4.32)
RXNFLOW 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 46.00 (± 7.00) 65.50 (± 4.09)

Table 2: Vina. Mean and standard deviation over 4 runs. The best results are in bold.
Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71)
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10)

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09)
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07)
SynFlowNet -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02)
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06)
RXNFLOW -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02)

Table 3: Synthesizability. Mean and standard deviation over 4 runs. The best results are in bold.
Percentage of Synthesizable Molecules (%, ↑)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 1.00 (± 1.00) 3.75 (± 1.92) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 6.00 (± 2.55) 4.00 (± 2.24) 1.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 50.00 (± 0.00) 25.00 (± 25.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 19.50 (± 3.20) 17.50 (± 1.50) 19.50 (± 3.64) 20.00 (± 2.12)
SynFlowNet 52.75 (± 1.09) 57.00 (± 6.04) 53.75 (± 9.52) 56.50 (± 2.29) 53.00 (± 8.92)
RGFN 46.75 (± 6.86) 47.50 (± 4.06) 50.25 (± 2.17) 49.25 (± 4.38) 48.50 (± 6.58)
RXNFLOW 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 66.50 (± 4.03) 65.50 (± 4.09)

Table 4: Synthetic complexity. Mean and standard deviation over 4 runs. The best results are in
bold.

Average Number of Synthesis Steps (↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 3.60 (± 0.10) 3.83 (± 0.08) 3.76 (± 0.20) 3.76 (± 0.16) 3.34 (± 0.18)
FragGFN+SA 3.73 (± 0.09) 3.66 (± 0.04) 3.66 (± 0.07) 3.67 (± 0.21) 3.79 (± 0.19)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.00 (± 0.00) 4.13 (± 0.89) 3.50 (± 0.00)
BBAR 3.60 (± 0.17) 3.62 (± 0.19) 3.76 (± 0.04) 3.72 (± 0.11) 3.59 (± 0.14)
SynFlowNet 2.64 (± 0.07) 2.48 (± 0.07) 2.60 (± 0.25) 2.45 (± 0.09) 2.56 (± 0.29)
RGFN 2.88 (± 0.21) 2.65 (± 0.09) 2.78 (± 0.19) 2.91 (± 0.23) 2.76 (± 0.17)
RXNFLOW 2.42 (± 0.23) 2.19 (± 0.12) 1.95 (± 0.20) 2.15 (± 0.18) 2.23 (± 0.18)

GFN+SA does not show meaningful improvement in synthesizability, implying that optimization of
a cheap synthesizability estimation function is suboptimal.

Furthermore, it is noteworthy that RXNFLOW outperformed FragGFN which does not consider syn-
thesizability. This improvement can be attributed to two key factors. First, the Enamine building
block library is specifically curated for drug discovery, limiting the search space X to a drug-like
chemical space and simplifying the optimization complexity. Second, RXNFLOW needs shorter tra-
jectories compared to FragGFNs since it assembles molecules with large building blocks instead
of atoms or small fragments. This is beneficial for trajectory balance objectives where stochastic
gradient variance tends to increase over longer trajectories (Malkin et al., 2022).
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Table 5: CrossDocked2020 benchmark. We report the average and median values over the average
properties for each test pocket. The best results are in bold and the second ones are in underlined.
We denote the Generation Success as Succ., Synthesizability as Synthesiz., and Diversity as Div.
Reference means the known binding active molecules in the test set. MolCRAFT-large (Qu et al.,
2024) is the result when generating with more atoms than the reference ligands.

Succ. (↑) Vina (↓) QED (↑) Synthesiz. (↑) Div. (↑) Time (↓)
Category Model Avg. Avg. Med. Avg. Med. Avg. Med. Avg. Avg.

Reference - - -7.71 -7.80 0.48 0.47 36.1% - - -

Atom

Pocket2Mol 98.3% -7.60 -7.16 0.57 0.58 29.1% 22.0% 0.83 2504
TargetDiff 91.5% -7.37 -7.56 0.49 0.49 9.9% 3.2% 0.87 3428
DecompDiff 66.0% -8.35 -8.25 0.37 0.35 0.9% 0.0% 0.84 6189
DiffSBDD 76.0% -6.95 -7.10 0.47 0.48 2.9% 2.0% 0.88 135
MolCRAFT 96.7% -8.05 -8.05 0.50 0.50 16.5% 9.1% 0.84 141
MolCRAFT-large 70.8% -9.25 -9.24 0.45 0.44 3.9% 0.0% 0.82 >141

Fragment TacoGFN 100.0% -8.24 -8.44 0.67 0.67 1.3% 1.0% 0.67 4
Reaction RXNFLOW 100.0% -8.85 -9.03 0.67 0.67 34.8% 34.5% 0.81 4

Figure 3: Visualization of generated molecules in a zero-shot manner. (a-b) Docking results of
generated molecules and known reference ligands of TBK1 (PDB Id: 1FV, SU6). (c) Generative
trajectory, which is the generated synthetic pathway of the left molecule in (a).

4.2 ZERO-SHOT SAMPLING VIA POCKET CONDITIONING

Setup. We extend our works to a pocket-conditional generation problem to design binders for arbi-
trary pockets without additional training oracles (Ragoza et al., 2022; Liu et al., 2022; Peng et al.,
2022; Guan et al., 2023a;b; Schneuing et al., 2023). To address this challenge, we follow TacoGFN
(Shen et al., 2023), which is a fragment-based GFlowNet for pocket-conditional generation. Since
it requires more training oracles to learn pocket-conditional policies than target-specific genera-
tion, TacoGFN used pre-trained proxies that predict docking scores against arbitrary pockets using
pharmacophore representation (Seo & Kim, 2023). Since RXNFLOW explicitly considers synthesiz-
ability, we exclude the SA score from the TacoGFN’s reward function as described in Sec. C.2.

We generate 100 molecules for each of the 100 test pockets in the CrossDocked2020 benchmark
(Francoeur et al., 2020) and evaluate them with the following metrics: Vina (kcal/mol) measures the
average docking score from QuickVina (Alhossary et al., 2015). QED measures the average drug-
likeness of molecules. Synthesizability (%) is the fraction of synthesizable molecules. Diversity
measures an average pairwise Tanimoto distance of ECFP4 fingerprints. Moreover, we report the
Generation Success (%) which is the percentage of unique RDKit-readable molecules without
disconnected parts, and Time (sec.) which is the average sampling time to generate 100 molecules.

Baselines. We compare RXNFLOW with state-of-the-art distribution learning-based models trained
on a synthesizable drug set: an autoregressive model (Pocket2Mol (Peng et al., 2022)), diffusion
models (TargetDiff (Guan et al., 2023a), DiffSBDD (Schneuing et al., 2023), DecompDiff (Guan
et al., 2023b)), and bayesian flow network (MolCRAFT (Qu et al., 2024)). We also perform a
comparison with an optimization-based TacoGFN (Shen et al., 2023). For a fair comparison with
the distribution learning-based approaches, we used the docking proxy trained on CrossDocked2020.
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Figure 4: Property distribution of sampled
molecules with “all” building blocks and “low”-
TPSA building blocks. Vina score was calculated
against the KRAS-G12C target.

Figure 5: QED reward distribution
of generated molecules for each of the
“seen”, “unseen”, and “all” blocks. Ad-
ditional results are in Figure 14.

Result. As shown in Table 5, RXNFLOW achieves significant improvements in drug-related prop-
erties. In particular, RXNFLOW outperforms the docking score for TacoGFN and attains high drug-
likeness while showing a competitive docking score with the state-of-the-art model, MolCRAFT-
large. Moreover, RXNFLOW ensures the synthesizability comparable to known active ligands,
outperforming the fragment-based TacoGFN trained on the SA score objective and the distribu-
tional learning-based models trained on synthesizable drug molecules. Figure 3 illustrates generated
molecules against TANK-binding kinase 1 (TBK1) which is not included in the training set.

An important finding is that RXNFLOW maintains high structural diversity (0.81) despite the typ-
ical trade-off between optimization power and diversity (Gao et al., 2022a). This is a significant
improvement over the fragment-based TacoGFN, which scored 0.67 and is comparable to the distri-
butional learning-based models that range from 0.83 to 0.87. We attribute this enhancement to our
action space, which contains chemically diverse building blocks, in contrast to the small and lim-
ited fragment sets used in fragment-based GFlowNets. This suggests that our model can effectively
balance the potency and diversity of generated molecules.

4.3 INTRODUCING ADDITIONAL OBJECTIVE WITHOUT RETRAINING

In drug discovery, new objectives often arise during the research process, such as enhancing solubil-
ity, reducing toxicity, or improving selectivity (Fink et al., 2022; Joshi et al., 2021). These additional
objectives typically not only require retraining models but also increase the optimization complex-
ity. In this context, RXNFLOW can achieve some additional objectives by simply introducing con-
straints to MDP without retraining thanks to the non-hierarchical action space (Sec. 3.4). As shown
in Figure 4, we explore the scenario of adding a solubility objective to a pre-trained GFlowNet in
Sec. 4.2. Specifically, we target the generation of hydrophobic molecules by restricting the build-
ing blocks with topological polar surface area (TPSA) in the bottom 15% (“low”) and sampled 500
molecules for the KRAS-G12C mutant (PDB Id: 6oim). While there are slight differences in the
QED distributions due to the correlation between TPSA and QED, the generated molecules are more
hydrophobic and retain similar overall reward distributions. We also performed the ablation study
of non-hierarchical MDP in Sec. D.6.

4.4 SCALING ACTION SPACE WITHOUT RETRAINING

The building block libraries for drug discovery continue to grow, from 60,000 in 2020 to over 1.2
million blocks today, to enhance chemical diversity and novelty (Grygorenko et al., 2020). However,
existing generative models require retraining to accommodate newly discovered building blocks,
limiting their scalability and adaptability. On the other hand, RXNFLOW can integrate new building
blocks without retraining by understanding the chemical context of actions through action embed-
ding. We first divide the 1M-sized block library (“all”) into two sets: 500,000 blocks for training
(“seen”) and the remaining blocks (“unseen”). After training with the QED objective on various
reward exponent settings (Rβ), we generate 5,000 molecules from each set (“seen”, “unseen”, and
“all”). Figure 5 shows that the reward distributions of samples are nearly identical, demonstrating
that RXNFLOW performs robustly with unseen building blocks. This result highlights the general-
ization ability and scalability of RXNFLOW, a significant advantage for real-world applications.
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Figure 6: Optimization power, diversity, and generation time according to building block library
size. (a-c) Average and standard deviation of properties of the top-1000 high-affinity molecules over
4 runs on pocket-specific generation. (a) Average docking score. (b) The uniqueness of Bemis-
Murcko scaffolds. (c) Average Tanimoto distance. (d) Average runtime to generate 100 molecules
over the CrossDocked2020 test pockets in a zero-shot manner.

4.5 ABLATION STUDY: THE EFFECT OF BUILDING BLOCK LIBRARY SIZE

Expanding the size of building block libraries provides an opportunity to discover more diverse
and potent drug candidates (Grygorenko et al., 2020). In Sec. 4.1, RXNFLOW outperforms Syn-
FlowNet and RGFN which use smaller block libraries, but differences in model architectures may
have contributed to these results. To isolate the effect of the building block library size, we conduct
an ablation study using partial libraries with a pocket-specific optimization task against the kappa-
opioid receptor (PDB Id: 6b73), as illustrated in Figure 6(a-c). The results indicate that increasing
the library size enhances both optimization power, in terms of docking scores, and diversity, in terms
of a higher number of unique Bemis-Murcko scaffolds (Bemis & Murcko, 1996) and an increased
Tanimoto diversity of the generated molecules. Additionally, as shown in Figure 6(d), the genera-
tion time only doubles on the 100-fold larger action space, highlighting the efficiency of RXNFLOW.
These results demonstrate the forte of RXNFLOW in navigating a broader chemical space to discover
novel drug candidates by overcoming the computational limitations for expanding the action space.
We also investigated the scaling laws with other reaction-based GFlowNets in Sec. D.3.

4.6 TOWARDS FURTHER DEVELOPMENT

Figure 7: Affect of 3D inter-
action modeling. Mean and
standard error over 3 seeds

Our framework has room for improvement regarding more efficient
learning and sampling. First, the 3D interaction modeling can en-
hance the generative performance. Given the high correlation be-
tween binding affinity and conformation, such spatial relationships
could provide meaningful information for our generative model to
make a reasonable decision. In Figure 7, we observed that the 3D
interaction modeling using docking conformations boosts the dis-
covery of candidate molecules against the beta-2-adrenergic recep-
tor. Second, the current action space subsampling method forces
exploration due to uniform sampling to minimize bias. We can en-
hance the exploitation by prioritizing the building blocks of action
space subsampling instead of uniform subsampling.

5 CONCLUSION

In this work, we introduce RXNFLOW, a synthesis-oriented generative framework designed to ex-
plore broader chemical spaces, thereby enhancing both diversity and potency for drug discovery.
Our framework efficiently handles massive action spaces to expand the search space without signifi-
cant computational or memory overhead by employing a novel action space subsampling technique.
RXNFLOW can effectively identify diverse drug candidates with desired properties and synthetic
feasibility by learning the objective of generative flow networks on synthetic pathways. Addition-
ally, by formulating a non-hierarchical MDP, RXNFLOW can model generative flows on modified
action spaces, allowing it to achieve additional objectives and incorporate newly discovered build-
ing blocks without retraining. These results highlight the potential of RXNFLOW as a practical and
versatile solution for real-world drug discovery.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216, 2015.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
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A THEORETICAL ANALYSIS

In this section, we provide the theoretical background of action subsampling. We define U as the
uniform subsampling policy, i.e., B∗ ∼ Uniform({B∗ ⊆ B | |B∗| = k}).

Bias of log forward policy. In this section, we prove that the log forward policy estimation is
unbiased (Eq. (7)) with the following weights:

wa =


|B|/|B∗| if a ∈ B
|Br|/|B∗r | if a is (r, b) and r ∈ R2

1 if a is Stop or a ∈ R1

For readability, we express the edge flow F and forward policy PF where the action a is s → s′ as
follows:

Fθ(s→ s′; θ) = Fθ(s, a; θ), PF (s
′|s; θ) = PF (a|s; θ)

Then, the forward policy PF and the estimated policy P̂F (Eq. (7)) can be rewritten as follows:

PF (s
′|s; θ) = PF (a|s; θ) =

Fθ(s, a)

Fθ(s)
=

Fθ(s, a)∑
a′∈A(s) Fθ(s, a′)

P̂F (s
′|s;A∗; θ) = P̂F (a|s;A∗; θ) =

Fθ(s, a)

F̂θ(s;A∗)
=

Fθ(s, a)∑
a′∈A∗(s) wa′Fθ(s, a′)

The expectation of the estimated initial state flow F̂θ(s0;A∗) =
∑

a∈A∗ waFθ(s0, a) is given by

EA∗∼P(A)[F̂θ(s0;A∗)] = EB∗∼U(B)

[
|B|
|B∗|

∑
b∈B∗

Fθ(s0, b)

]
=
∑
b∈B

Fθ(s0, b) = Fθ(s0), (13)

For a later state s ̸= s0, the expectation of the state flow F̂θ(s;A∗) is given by

EA∗∼P(A)[F̂θ(s;A∗)] =
∑

a∈R1∪{Stop}

Fθ(s, a) +
∑
r∈R2

EB∗
r∼U(Br)

 |Br|
|B∗r |

∑
b∈B∗

r

Fθ(s, (r, b))


=

∑
a∈R1∪{Stop}

Fθ(s, a) +
∑
r∈R2

∑
b∈Br

Fθ(s, (r, b))

= PF (s
′|s; θ) (14)

Variance of log forward policy. We define the standard deviation of the probability PF (−|s; θ)
as σθ(−|s). For the initial state s0, the variance of log P̂F (s

′|s0;A∗; θ) is given by

VarA∗∼P(A)

[
log P̂F (s

′|s0;A∗; θ)
]

= VarB∗∼U(B)

[
(((((((
logFθ(s0 → s′) − log

(
�
�
�|B|

|B∗|
∑
b∈B∗

Fθ(s0, b)

)]

= VarB∗∼U(B)

[
log

∑
b∈B∗

PF (b|s0; θ)

]
(by normalizing with Fθ(s0))

≈ |B|
2(|B| − |B∗|)
|B∗|(|B| − 1)

σθ(−|s0)2 (by Eq. (24)) (15)
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For the later state s ̸= s0, the variance of log P̂F (s
′|s;A∗; θ) is:

VarA∗∼P(A)

[
log P̂F (s

′|s;A∗; θ)
]

= VarA∗∼P(A)

log
 ∑

a∈R1∪{Stop}

PF (a|s; θ) +
∑
r∈R2

|Br|
|B∗r |

∑
b∈B∗

r

PF ((r, b)|s; θ)


≈

VarA∗∼P(A)

[
(((((((((((∑

a∈R1∪{Stop} PF (a|s; θ) +
∑

r∈R2

|Br|
|B∗

r |
∑

b∈B∗
r
PF ((r, b)|s; θ)

]
EA∗∼P(A)

[∑
a∈R1∪{Stop} PF (a|s; θ) +

∑
r∈R2

|Br|
|B∗

r |
∑

b∈B∗
r
PF ((r, b)|s; θ)

]2
=

1

�����������(∑
a∈A(s) PF (a|s; θ)

)2 VarA∗∼P(A(s))

∑
r∈R2

|Br|
|B∗r |

∑
b∈B∗

r

PF ((r, b)|s; θ)


=
∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|s)2 (by Eq. (22)) (16)

Finally, we get the variance of log P̂F (τ ; θ) where τ = (s0 → ...→ sn = x):

VarA∗∼P(A)

[
log P̂F (τ ;A∗; θ)

]
≈|B|

2(|B| − |B∗|)
k|B∗|(|B| − 1)

σθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|st)2 (17)

Expectation of trajectory balance loss. Due to the variance of forward policy, there is a bias of
the trajectory balance loss equal to the variance of log P̂F (τ):

EA∗∼P(A)[L̂TB(τ)]

= EA∗∼P(A)

[
log

ZθP̂F (τ ; θ)

R(x)PB(τ |x)

]2
+ VarA∗∼P(A)

[
log

ZθP̂F (τ ; θ)

R(x)PB(τ |x)

]
= LTB(τ) + VarA∗∼P(A)

[
log P̂F (τ ; θ)

]
(18)

≈ LTB(τ) +
|B|2(|B| − |B∗|)
|B∗|(|B| − 1)

σθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
σθ((r,−)|st)2 (19)

Therefore, the gradient of trajectory balance loss is:

EA∗∼P(A)

[
∇θL̂TB(τ)

]
≈ ∇θLTB(τ) +

|B|2(|B| − |B∗|)
|B∗|(|B| − 1)

∇θσθ(−|s0)2 +
n−1∑
t=1

∑
r∈R2

|Br|2(|Br| − |B∗
r |)

|B∗r |(|Br| − 1)
∇θσθ((r,−)|st)2

(20)

Given that σθ(·), which is the standard deviation of probability to select actions, is inversely pro-
portional to |B| or |Br|, the bias is highly dependent on the subsampling size (e.g. |B∗|) rather than
the subsampling ratio (e.g. |B∗|/|B|). Moreover, we can decrease the bias by MC sampling for state
flow estimation, and the bias is reversely proportional to the number of samples k. However, in the
same computational cost (proportional to O(k ×

∑
r |B∗r |)), using the larger partial action spaces

without MC sampling is more precise than using smaller partial action spaces with multiple MC
samples. In Sec. D.8, we expermentally show that the bias is relatively small to trajectory balance
loss with the toy experiment.
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A.1 THEORETICAL BACKGROUNDS

Variance of uniformly sampled subset For the set X with a size of n, we define its uniformly
sampled subset with size m as X ′ ∼ P(X ). For the function F (X ) =

∑
x∈X f(x), we define the

unbiased estimation:
F̂ (X ) = n

m
F (X ′) =

n

m

∑
x∈X ′

f(x)

When the mean and standard deviation of f(x) is µf and σf , variance of F̂ (X ) is:

VarX ′∼P(X )

[
F̂ (X )

]
= EX ′∼P(X )

[
F̂ (X )2

]
− EX ′∼P(X )

[
F̂ (X )

]2
=

1
nCm

∑
X ′∈P(X )

(
n

m

∑
x∈X ′

f(x)

)2

− F (X )2

=
1

nCm

n2

m2

n−1Cm−1

n∑
i=1

f(bi)
2 +n−2 Cm−2

n∑
i=1

n∑
j>i

2f(bi)f(bj)

−(∑
x∈X

f(x)

)2

=
n

m

n∑
i=1

f(xi)
2 +

2n(m− 1)

m(n− 1)

n∑
i=1

n∑
j>i

f(xi)f(xj)−

 n∑
i=1

f(xi)
2 + 2

n∑
i=1

n∑
j>i

f(xi)f(xj)


=

n−m

m(n− 1)

(n− 1)

n∑
i=1

f(xi)
2 − 2

n∑
i=1

n∑
j>i

f(xi)f(xj)


=

n−m

m(n− 1)

n∑
i=1

n∑
j>i

(f(xi)− f(xj))
2

=
n2(n−m)

m(n− 1)
σ2
f (21)

For MC sampling with k samples, the variance is:

VarX ′∼P(X )

[
F̂ (X )

]
=

n2(n−m)

km(n− 1)
σ2
f (22)

The variance of log F̂ (X ) is:

VarX ′∼P(X )

[
log F̂ (X )

]
≈

VarX ′∼P(X )

[
F̂ (X )

]
EX ′∼P(X )

[
F̂ (X )

]2 =
(n−m)

km(n− 1)
(σf/µf )

2 (23)

When the F (X ) = 1, the variance is:

VarX ′∼P(X )

[
log F̂ (X )

]
≈ m2(n−m)

km(n− 1)
σ2
f (24)
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B RXNFLOW ARCHITECTURE

B.1 FORWARD POLICY

We use the model architecture inspired from Cretu et al. (2024); Koziarski et al. (2024). We used a
graph transformer (Yun et al., 2022) as the backbone fθ following Bengio et al. (2021) and a multi-
layer perceptron (MLP) for action embedding gθ. The graph embedding dimension is d1, and the
building block embedding dimension is d2. The molecular graph for a state is s, and the GFlowNet
condition vector is c which includes a reward exponent and multi-objective optimization weights
(Jain et al., 2023). a∥b means the concatenation of two feature vectors a and b.

Initial block selection. For the first action, the model always selects AddFirstReactant ac-
tion which selects b ∈ B for the starting molecule with MLPAddFirstReactant : Rd1+d2 → R.

Fθ(s0, b, c) = MLPAddFirstReactant(fθ(s0, c)∥gθ(b)) (25)

Reaction selection. For the later states s ̸= s0, the model calculates the logits for the Stop action,
ReactUni actions r1 ∈ R1, and ReactBi actions (r2, b) ∈ R2 × B.

The logit for Stop is calculated by MLPStop : Rd1 → R:
Fθ(s,Stop, c) = MLPStop(fθ(s, c)). (26)

The logit for a ReactUni action r1 ∈ R1 is calculated by MLPr1
ReactUni : Rd1 → R:

Fθ(s, r1, c) = MLPr1
ReactUni(fθ(s, c)). (27)

Finally, the logit for a ReactBi action (r2, b) is calculated by the one-hot embedding of reaction
template δ(r2) : {0, 1}|R2| and MLPReactBi : Rd1+|R2|+d2 → R:

Fθ(s, (r2, b), c) = MLPReactBi(fθ(s, c)∥δ(r2)∥gθ(b)). (28)

Pocket conditioning. For a pocket-conditional generation, the model uses a K-NN pocket residual
graph GP and encodes GVP-GNN (Jing et al., 2020) according to Shen et al. (2023). The pocket
conditions are included in the GFlowNet condition vector c.

3D interaction modeling. Instead of using a 2D molecular graph of the ligand, the model can
utilize a 3D binding complex graph to represent the state as the input of the graph transformer
backbone fθ. In this graph, each ligand atom connects to its K1 nearest protein atoms as well as to
its neighboring ligand atoms, while each protein atom connects to its K2 nearest protein atoms. The
edges encode spatial relationship information between the connected nodes.

Furthermore, we lightweight the MDP formulation to implement computationally intensive 3D in-
teraction modeling with modified layers MLP∗

AddFirstReactant : Rd1 → Rd2 and MLP∗
ReactBi :

Rd1+|R2| → Rd2 as follows:
Fθ(s0, b, c) = MLP∗

AddFirstReactant(fθ(s0, c))⊙ gθ(b), (29)
Fθ(s, (r2, b), c) = MLP∗

ReactBi(fθ(s, c)∥δ(r2))⊙ gθ(b), (30)

B.2 BACKWARD POLICY.

Malkin et al. (2022) introduced a uniform backward policy for small-scale drug discovery. However,
in a directed acyclic graph (DAG) on synthetic pathways, where each state has numerous outgoing
edges but few incoming ones, there is a significant imbalance in the number of trajectories along
each incoming edge, depending on the distance from the initial state. In a uniform backward policy,
where the flow of all incoming edges is equal, this imbalance diminishes the flow of trajectories that
reach a state via shorter routes, i.e., those with fewer reaction steps. To facilitate shorter synthetic
pathways as trajectories, we set the backward transition probability proportional to the expected
number of trajectories along each incoming edge of the state, a : s′′ → s:

PB(s
′′|s) = P ((s′′ → s) ∈ τ |s ∈ τ) =

∑
τ∈T :τ=(s0→...→s′′→s) |A(s)|N−|τ |∑

τ∈T :τ=(s0→...→s) |A(s)|N−|τ | (31)

where N is the maximum length of trajectories.
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B.3 BUILDING BLOCK REPRESENTATION FOR ACTION EMBEDDING.

To represent building blocks, we used both physicochemical properties, chemical structural prop-
erties, and topological properties. For physicochemical properties, we used 8 molecular features:
molecular weight, the number of atoms, the number of H-bond acceptors/donors (HBA, HBD), the
number of aromatic/non-aromatic rings, LogP, and TPSA. For chemical properties, we used the
MACCS fingerprint (Durant et al., 2002), which represents the composition of the chemical func-
tional groups in the molecule. For topological information, we used the Morgan ECFP4 fingerprint
(Morgan, 1965) with a dimension of 1024, which is widely used in fingerprint-based deep learning
researches. All properties are calculated with RDKit (Landrum et al., 2013).

B.4 GFLOWNET TRAINING.

The training algorithm with the trajectory balance objective is described at Algorithm 1. The nota-
tions are in Sec. 3.3.

Algorithm 1 Training GFlowNets with action space subsampling
1: input Entire action space A, Maximum trajectory length N
2: repeat
3: Sample partial action spaces A∗

0, A∗
1, ..., A∗

N−1 from subsampling policy P(A)
4: Sample trajectory τ from sampling policy πθ(−|−;A∗

(−))
5: Update model θ ← θ − η∇L̂TB(τ)
6: until model converges

B.5 COMPARISON BETWEEN THREE GFLOWNET METHODS

Table 6: Comparison with SynFlowNet and RGFN. If the method includes each technique, it is
denoted by an⃝, otherwise by an ×. RGFN investigates scaling up to 64,000 building blocks, but
their experimental validation and proof-of-principle implementations use only 350.

Methods Hierarchical Action Embedding ReactUni Num Blocks Max Reaction Steps

Enamine REAL - - ⃝ >1M 3

RGFN ⃝ ⃝ × 350-64,000 4
SynFlowNet ⃝ × ⃝ 6,000 4
SynFlowNet(upd) ⃝ ⃝ ⃝ 10,000-220,000 3/4
RXNFLOW × ⃝ ⃝ >1M 3

While RXNFLOW shares similar rules with SynFlowNet (Cretu et al., 2024) and RGFN (Koziarski
et al., 2024), there are several major differences as described in Table 6. Since, there are two versions
of SynFlowNet, the version presented t the ICLR 2024 GEM workshop and the version updated on
October 16, 2024, we refer to the updated version as SynFlowNet(upd). For the benchmark studies,
we use the workshop version of SynFlowNet.

Backward Trajectory. In contrast to the simple fragment-based or atom-based GFlowNet, some
backward transitions do not reach the initial state s0. While RGFN and SynFlowNet do not con-
sider the invalid transitions, SynFlowNet(upd) and RXNFLOW address this issue. To prevent the
invalid backward transition, SynFlowNet(upd) introduces additional maximum likelihood and RE-
INFORCE (Williams, 1992) training objectives for parameterized backward policy to prefer the
backward transitions which can reach the initial state. In contrast, we implement explicit retrosyn-
thetic analysis within maximum reaction steps for each state to collect valid backward trajectories.

Flow Network Framework. In contrast to SynFlowNet which uses discrete action space, RGFN,
SynFlowNet(upd), and RXNFLOW include the action embedding (Dulac-Arnold et al., 2015) for
chemical building blocks. While every building block must be sampled and trained at least once
to prevent unsafe actions in a discrete action space, action embedding expresses actions based on
structural information–domain knowledge. In particular, we formulate the non-hierarchical MDP
instead of the hierarchical MDP for bi-molecular reactions. It is adaptable to modified building
block libraries as described in Sec. B.6 but increases the computational cost and memory require-
ment dramatically. Thanks to action space subsampling, RXNFLOW can use non-hierarchical MDP
without a computational burden problem.
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Sampling algorithm. For each forward transition step, RGFN and SynFlowNet (both versions)
model the flow for the entire action space to estimate the forward transition probability. Therefore,
the computational cost and memory requirement is proportional to the number of using building
blocks B, i.e., O(|B|). Instead of modeling all actions, we propose an action space subsampling
technique, which is similar to the negative sampling technique (Mikolov et al., 2013) in natural
language processing, to estimate the forward transition probability from the subset of action space.
It makes a cost-variance trade-off to decrease the computational cost complexity to O(r|B|), where
r is a subsampling ratio. As a result, RXNFLOW can handle millions of building blocks on training
and inference with the computational cost of handling 10,000 building blocks.

B.6 NON-HIERARCHICAL MARKOV DECISION PROCESS

To describe the difference, we supposed the situation that the toxicity is observed in molecules
containing a functional group −NR3, thereby excluding blocks with the function group from the
building block library. In trained hierarchical MDP, the modification of the block library cannot
change the probability of reaction templates, leading to the overestimation or underestimation of
edge flows (the red color of Figure 8(a)). However, in the non-hierarchical MDP, the exclusion of
some reactants does not affect actions that share the same reaction template (Figure 8(b)).

Figure 8: Illustration of a situation where an additional objective is introduced: excluding building
blocks (reactants) containing the functional group −NR3. The Gray dashed lines mean masked
actions. (a) GFlowNet on hierarchical MDP. (b) GFlowNet on non-hierarchical MDP.
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C EXPERIMENTAL DETAILS

C.1 ACTION SPACE DETAILS

Reaction templates. In this work, we used the reaction template set constructed by Cretu et al.
(2024) from two public collections Hartenfeller et al. (2012); Button et al. (2019). The entire reaction
template set includes 71 reaction templates, 13 for uni-molecular reactions and 58 for bi-molecular
reactions. In in silico reactions with bi-molecular reaction templates, the products depend on the
order of the input reactants. To ensure the consistency of the action, we consider two templates for
each bi-molecular template according to the order of reactants, i.e. |R1| = 13, |R2| = 116. We note
that our template set does not contain templates that have the same first and second reactant patterns.

Building blocks. We used the Enamine comprehensive catalog with 1,309,385 building blocks
released on 2024.06.10 (Grygorenko et al., 2020). We filtered out building blocks that are not
RDKit-readable, have no possible reactions, or contain unallowable atoms2, resulting in 1,193,871
remaining blocks.

C.2 GFLOWNET TRAINING DETAILS

To minimize optimization performance influencing factors, we mostly followed the standard
GFlowNet’s model architecture and hyperparameters3 except for some parameters in Table 7. All
experiments were performed on a single NVIDIA RTX A4000 GPU.

Table 7: Default hyperparameters used in RXNFLOW training.
Hyperparameters Values

Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 4 (maximum reaction steps: 3)

GFN temperature β Uniform(0, 64)
Train random action probability 0.05 (5%)
Action space subsampling ratio 1%
Building block embedding size 64

For action space subsampling, we randomly subsample 1% actions for AddFirstReactant and
each bi-molecular reaction template r ∈ R2. However, for bi-molecular reactions with small pos-
sible reactant block sets Br ∈ B, the memory benefit from the action space subsampling is small
while a variance penalty is large. Therefore, we set the minimum subsampling size to 100 for each
bi-molecular reaction, and the action space subsampling is not performed when the number of ac-
tions is smaller than 100.

The number of actions for each action type is imbalanced, and the number of reactant blocks (Br) for
each bi-molecular reaction template r is also imbalanced. This can make some rare action categories
not being sampled during training. We empirically found that ReactBi action were only sampled
during 20,000 iterations (1.28M samples) in a toy experiment that uses one bi-molecular reaction
template and 10,000 building blocks in some random seeds. Therefore, we set the random action
probability as the default of 5%, and the model uniformly samples each action category in the
random action sampling. This prevents incorrect predictions by ensuring that the model experiences
trajectories including rare actions. We note that this random selection is only performed during
model training.

C.3 EXPERIMENTAL DETAILS

Pocket-specific optimization. For pocket-specific optimization with GPU-accelerated UniDock,
we normalize the Vina and SA scores for multi-objective optimization:

V̂ina(x) = −0.1max(Vina(x), 0), ŜA(x) = (10− SA(x))/9. (32)
2The allowable atom types are B, C, N, O, F, P, S, Cl, Br, I.
3Default hyperparameters in https://github.com/recursionpharma/gflownet/blob/

trunk/src/gflownet/tasks/seh_frag.py
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For FragGFN, we set the maximum trajectory length to 9, and for SynFlowNet and RGFN, we used
the same hyperparameters as our framework except for the maximum trajectory length and building
block library size. According to their default setting, we set a the maximum trajectory length to 5
rather than 4, and we randomly sampled 350 building blocks for RGFN and 6000 building blocks
for SynFlowNet. Moreover, we do not perform action subsampling for SynFlowNet and RGFN.

Pocket-conditional generation in a zero-shot manner. We used the modified version of the
TacoGFN’s reward function and training set. Since we don’t need to optimize SA (Ertl & Schuffen-
hauer, 2009), we excluded the SA term from the reward functions:

raffinity(x) =


0 if 0 ≤ Proxy(x)
−0.04× Proxy(x) if − 8 ≤ Proxy(x) ≤ 0

−0.2× Proxy(x)− 1.28 if − 13 ≤ Proxy(x) ≤ −8
1.32 if Proxy(x) ≤ −13

rQED(x) =

{
QED(x)/0.7 if QED(x) ≤ 0.7

1 otherwise

rSA(x) =

{
ŜA(x)/0.8 if ŜA(x) ≤ 0.8

1 otherwise

TacoGFN-Reward(x) =
raffinity(x)× rQED(x)× rSA(x)

3
√

HeavyAtomCounts(x)
(33)

RxnFlow-Reward(x) =
raffinity(x)× rQED(x)

3
√

HeavyAtomCounts(x)
(34)

For hyperparameters, we set the pocket embedding dimension to 128 and the training GFN tem-
perature to Uniform(0, 64) which are used in TacoGFN. We trained the model with 40,000 oracles
whereas TacoGFN is trained for 50,000 oracles.

Introducing further objectives without retraining. For the restricted block library (TPSA<30),
we set the action space subsampling ratio as 10% for both AddFirstReactant and ReactBi,
and we set that as 1% for an entire library.

Scaling action space without retraining. For action space subsampling, we set the subsampling
ratio as 2% for both AddFirstReactant and ReactBi for the “seen” and “unseen” libraries.
For the “all” library (“seen” + “unseen”), we set the subsampling ratio as 1%.

Ablation study. We set different subsampling ratios according to the building block library size.
For 100-sized, 1k-sized, and 10k-sized libraries, we do not perform the action space subsampling.
We set an action space subsampling ratio of 10% for a 100k-sized one and 1% for a 1M-sized one.

Further improvement with 3D interaction modeling. To better analyze the effects of interaction
modeling, we limit the maximum reaction step to 1. Since the initial state is an empty graph, we
can analyze the impact of interaction modeling on a single decision process for selecting a reaction
to perform. To obtain the 3D binding conformation, we used GPU-accelerated UniDock (Yu et al.,
2023) under the fast search mode. We used the same neural network structure for both 2D-based
generation and 3D-based generation. For the reward setting, we used the Vina docking score as a
reward function and filtered out molecules according to the Lipinski Rule.

C.4 SOFTWARES

Molecular docking software. For a fair comparison with the baseline model, we used UniDock (Yu
et al., 2023) for target-specific generation and QuickVina 2.1 (Alhossary et al., 2015) for SBDD. The
initial ligand conformer is generated with srETKDG3 (Wang et al., 2020) in RDKit (Landrum et al.,
2013). For QuickVina, we converted the molecule format to pdbqt with OpenBabel (O’Boyle et al.,
2011) and AutoDock Tools (Huey et al., 2012). To set up an exhaustive search, we set the search
mode to balance for UniDock and the exhaustiveness to 8 for QuickVina. We kept the seed fixed at
1 throughout the ETKDG and the whole docking process.
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Docking proxy. We used the QuickVina proxy proposed by Shen et al. (2023) which is implemented
in PharmacoNet (Seo & Kim, 2023). We used a proxy model trained on the CrossDocked2020
training set rather than the model trained on the ZINCDock15M training set.

Synthetic accessibility estimation. To evaluate the synthetic accessibility of molecules, we used
the retrosynthesis planning tool AiZynthFinder (Genheden et al., 2020). AiZynthFinder uses MCTS
to find synthesis paths and estimate the number of steps, search time, success rate, and synthetically
accessible score as metrics to indicate synthesis complexity or synthesizability.

C.5 BASELINES

SynNet. For SynNet (Gao et al., 2022b), we perform multi-objective optimization with the following
reward function:

R(x) = 0.5QED(x) + 0.5V̂ina(x). (35)
According to the standard setting for optimization, we set the number of offspring to 512 and the
number of oracles to 125. To use pre-trained models, we used SynNet’s template set (91 templates)
instead of a template set (71 templates) used in our work.

RGFN. Since the code of RGFN is not released, we reimplement the RGFN.

BBAR. Since BBAR (Seo et al., 2023) allows multi-conditional generation, we directly used QED
and docking scores without any processing. We split 64,000 ZINC20 molecules according to the
reported splitting of BBAR: 90% for the training set, 8% for the validation set, and 2% for the
test set (in our case, the number of sampling molecules). We performed UniDock for training and
validation set to prepare the label of the molecules. Since BBAR requires the desired property value,
we used the average docking score of the top 100 diverse modes from our model.

Pocket2Mol, TargetDiff, DecompDiff, TacoGFN. We followed the reported generative setting to
generate 100 molecules for each CrossDocked test pocket. We set the center of the pockets with
the reference ligands in the CrossDocked2020 database. We reuse reported runtime in Shen et al.
(2023), which is measured on NVIDIA A100 for Pocket2Mol, TargetDiff, and DecompDiff, and
NVIDIA RTX3090 for TacoGFN.

DiffSBDD, MolCRAFT. We used the generated samples from their official GitHub repository.

C.6 LIT-PCBA POCKETS

Table 8 describes the protein information used in pocket-specific optimization with UniDock, which
is performed on Sec. 4.1.

Table 8: The basic target information of the LIT-PCBA dataset and PDB entry used in this work.
Target PDB Id Target name

ADRB2 4ldo Beta2 adrenoceptor
ALDH1 5l2m Aldehyde dehydrogenase 1
ESR ago 2p15 Estrogen receptor α with agonist
ESR antago 2iok Estrogen receptor α with antagonist
FEN1 5fv7 FLAP Endonuclease 1
GBA 2v3d Acid Beta-Glucocerebrosidase
IDH1 4umx Isocitrate dehydrogenase 1
KAT2A 5h86 Histone acetyltransferase KAT2A
MAPK1 4zzn Mitogen-activated protein kinase 1
MTORC1 4dri PPIase domain of FKBP51, Rapamycin
OPRK1 6b73 Kappa opioid receptor
PKM2 4jpg Pyruvate kinase muscle isoform M1/M2
PPARG 5y2t Peroxisome proliferator-activated receptor γ
TP53 3zme Cellular tumor antigen p53
VDR 3a2i Vitamin D receptor
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D ADDITIONAL RESULTS

D.1 ADDITIONAL RESULTS FOR POCKET-SPECIFIC GENERATION TASK

We reported the additional results of Sec. 4.1 for the remaining 10 pockets on the LIT-PCBA bench-
mark.

Table 9: Hit ratio (%). Average and standard deviation for 4 runs. The best results are in bold.
Hit ratio (%, ↑)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 0.00 (± 0.00)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 2.00 (± 1.73) 0.00 (± 0.00)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 29.17 (± 18.16) 37.50 (± 21.65) 0.00 (± 0.00)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 0.00 (± 0.00)
SynFlowNet 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 0.00 (± 0.00)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 38.00 (± 4.12) 0.00 (± 0.00)
RXNFLOW 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 0.00 (± 0.00)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 0.50 (± 0.50) 7.25 (± 1.92) 0.75 (± 0.43) 4.25 (± 1.64) 0.00 (± 0.00)
FragGFN+SA 0.50 (± 0.87) 4.50 (± 1.50) 1.00 (± 0.71) 2.25 (± 1.92) 0.00 (± 0.00)

Reaction

SynNet 0.00 (± 0.00) 0.00 (± 0.00) 33.33 (± 20.41) 8.33 (± 14.43) 0.00 (± 0.00)
BBAR 2.50 (± 1.12) 20.00 (± 0.71) 10.50 (± 2.69) 14.00 (± 3.94) 0.00 (± 0.00)
SynFlowNet 23.50 (± 5.94) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 0.00 (± 0.00)
RGFN 2.50 (± 2.06) 34.75 (± 6.57) 29.00 (± 6.52) 37.00 (± 6.60) 0.00 (± 0.00)
RXNFLOW 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 1.75 (± 0.83)

Table 10: Vina. Average and standard deviation for 4 runs. The best results are in bold.
Average Vina Docking Score (kcal/mol, ↓)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN -8.76 (± 0.46) -9.91 (± 0.32) -9.27 (± 0.20) -8.93 (± 0.18) -10.51 (± 0.31)
FragGFN+SA -8.92 (± 0.27) -9.76 (± 0.64) -9.14 (± 0.43) -8.28 (± 0.40) -10.14 (± 0.30)

Reaction

SynNet -7.60 (± 0.09) -8.74 (± 0.08) -7.64 (± 0.38) -7.33 (± 0.14) -9.30 (± 0.45)
BBAR -8.70 (± 0.05) -9.84 (± 0.09) -8.54 (± 0.06) -8.49 (± 0.07) -10.07 (± 0.16)
SynFlowNet -9.27 (± 0.06) -10.40 (± 0.08) -9.41 (± 0.04) -8.92 (± 0.05) -10.84 (± 0.03)
RGFN -8.48 (± 0.06) -9.49 (± 0.13) -8.53 (± 0.11) -8.22 (± 0.15) -9.89 (± 0.06)
RXNFLOW -9.62 (± 0.04) -10.95 (± 0.05) -9.73 (± 0.03) -9.30 (± 0.01) -11.39 (± 0.09)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN -10.28 (± 0.15) -11.24 (± 0.27) -9.54 (± 0.12) -7.90 (± 0.02) -10.96 (± 0.06)
FragGFN+SA -9.58 (± 0.44) -10.83 (± 0.34) -9.19 (± 0.29) -7.61 (± 0.27) -10.66 (± 0.61)

Reaction

SynNet -8.70 (± 0.36) -9.55 (± 0.14) -7.47 (± 0.34) -5.34 (± 0.23) -10.98 (± 0.57)
BBAR -9.84 (± 0.10) -11.39 (± 0.08) -8.69 (± 0.10) -7.05 (± 0.09) -11.07 (± 0.04)
SynFlowNet -10.34 (± 0.07) -11.98 (± 0.12) -9.40 (± 0.05) -7.90 (± 0.10) -11.62 (± 0.13)
RGFN -9.61 (± 0.11) -10.96 (± 0.18) -8.53 (± 0.07) -7.07 (± 0.06) -10.86 (± 0.11)
RXNFLOW -10.84 (± 0.03) -12.53 (± 0.02) -9.73 (± 0.02) -8.09 (± 0.06) -12.30 (± 0.07)
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Table 11: Synthesizability. Average and standard deviation for 4 runs. The best results are in bold.
AiZynthFinder Success Rate (%, ↑)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 2.75 (± 1.30)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 3.25 (± 1.48) 3.50 (± 2.50)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 45.83 (± 27.32) 50.00 (± 0.00) 54.17 (± 7.22)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 18.75 (± 3.90)
SynFlowNet 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 57.00 (± 7.58)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 42.00 (± 3.00) 44.50 (± 4.03)
RXNFLOW 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 70.50 (± 2.87)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 2.50 (± 2.29) 8.75 (± 3.11) 0.75 (± 0.43) 4.25 (± 1.64) 3.50 (± 2.18)
FragGFN+SA 3.25 (± 1.79) 9.75 (± 2.28) 1.25 (± 1.09) 2.25 (± 1.92) 3.75 (± 2.77)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 54.17 (± 7.22) 29.17 (± 18.16) 45.83 (± 7.22)
BBAR 13.75 (± 3.11) 20.00 (± 0.71) 15.50 (± 2.29) 18.50 (± 3.28) 12.25 (± 3.34)
SynFlowNet 56.50 (± 7.63) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 53.50 (± 1.80)
RGFN 48.00 (± 2.55) 48.50 (± 3.20) 47.00 (± 5.83) 53.25 (± 3.63) 46.50 (± 2.69)
RXNFLOW 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 66.75 (± 2.28)

Table 12: Synthetic complexity. Average and standard deviation for 4 runs. The best results are in
bold.

Average Number of Synthesis Steps (↓)

Category Method GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 3.94 (± 0.11) 3.74 (± 0.10) 3.78 (± 0.09) 3.72 (± 0.18) 3.84 (± 0.18)
FragGFN+SA 3.94 (± 0.15) 3.84 (± 0.23) 3.66 (± 0.18) 3.69 (± 0.21) 3.94 (± 0.08)

Reaction

SynNet 3.38 (± 0.22) 3.38 (± 0.22) 3.46 (± 0.95) 3.50 (± 0.00) 3.29 (± 0.36)
BBAR 3.71 (± 0.12) 3.68 (± 0.02) 3.63 (± 0.05) 3.73 (± 0.05) 3.77 (± 0.09)
SynFlowNet 2.48 (± 0.18) 2.61 (± 0.13) 2.45 (± 0.37) 2.81 (± 0.24) 2.44 (± 0.27)
RGFN 2.77 (± 0.20) 2.97 (± 0.15) 2.78 (± 0.10) 2.86 (± 0.19) 2.92 (± 0.06)
RXNFLOW 2.10 (± 0.08) 2.16 (± 0.11) 2.29 (± 0.05) 2.29 (± 0.11) 2.05 (± 0.09)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 3.82 (± 0.13) 3.71 (± 0.12) 3.73 (± 0.24) 3.73 (± 0.23) 3.75 (± 0.06)
FragGFN+SA 3.62 (± 0.12) 3.84 (± 0.21) 3.71 (± 0.04) 3.66 (± 0.05) 3.67 (± 0.25)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.29 (± 0.36) 3.67 (± 0.91) 3.63 (± 0.22)
BBAR 3.70 (± 0.17) 3.61 (± 0.05) 3.72 (± 0.13) 3.65 (± 0.05) 3.77 (± 0.16)
SynFlowNet 2.49 (± 0.33) 2.62 (± 0.10) 2.56 (± 0.12) 2.51 (± 0.27) 2.55 (± 0.09)
RGFN 2.81 (± 0.12) 2.82 (± 0.10) 2.82 (± 0.18) 2.64 (± 0.10) 2.84 (± 0.18)
RXNFLOW 2.00 (± 0.09) 2.34 (± 0.19) 2.21 (± 0.06) 2.12 (± 0.12) 2.12 (± 0.12)
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D.2 PROPERTY DISTRIBUTION FOR POCKET-SPECIFIC GENERATION TASK

We reported the property distribution of the generated molecules for FragGFN, SynFlowNet, RGFN,
and RXNFLOW for each of 15 LIT-PCBA targets.

Figure 9: The property distribution of the generated samples for the first 10 LIT-PCBA targets.
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Figure 10: The property distribution of the generated samples for the last 5 LIT-PCBA targets.

D.3 SCALING LAWS WITH BASELINE GFLOWNETS

In this section, we investigate the scaling laws of our model and the baseline GFlowNets, Syn-
FlowNet and RGFN, focusing on performance (Figure 11) and computational cost (Figure 12). Our
action space subsampling method reduces the computational cost and memory consumption via
cost-variance trade-off and memory-variance trade-off.

Figure 11: Optimization power and diversity. Average of standard deviation over the 4 runs.
(a) Average docking score. (b) The uniqueness of Bemis-Murcko scaffolds. (c) Average Tanimoto
distance.
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Figure 12: Runtime according to the building block library size. Average of standard deviation
over the 100 batches. (a) The training runtime. (b) The sampling runtime without model training.

Performance. We conducted an optimization for the kappa-opioid receptor using RXNFLOW and
baseline GFlowNets. To prevent the hacking of docking by increasing the molecular size, we
performed Vina-QED multi-objective using the multi-objective GFlowNet framework (Jain et al.,
2023). As shown in Figure 11, all three models exhibit similar trends in docking score optimiza-
tion. However, conventional GFlowNets face memory resource constraints that scale with the action
space size. As a result, SynFlowNet and RGFN were restricted to library sizes up to 100,000 and
500,000 sizes, respectively, due to memory limitations. In contrast, RXNFLOW can accommodate
larger action spaces leveraging the memory-variance trade-off.

Speed. While SynFlowNet and RGFN consider all actions in the massive action space to estimate
the forward transition probability, our architecture estimate Our architecture estimates forward tran-
sition probabilities over a subset of the action space, unlike SynFlowNet and RGFN, which compute
all flows for the entire action space. This design allows RXNFLOW to handle larger action spaces
without encountering computational bottlenecks. To evaluate the cost-efficiency of our technique,
we measured runtime during both training and generation. To unify the generation environments
across different methods, we used a constant reward function R(x) = 1 and a maximum reaction
step of 1. Training times were measured on random trajectories, and sampling times were measured
with initialized models, according to the building block library size. Due to memory limitations,
SynFlowNet was restricted to library sizes up to 400,000.

For RXNFLOW, we tested two configurations: RXNFLOW (1k) and RXNFLOW (10k), which sample
up to 1,000 and 10,000 building blocks, respectively. As demonstrated in Figure 12, RXNFLOW
achieves significantly better cost efficiency in both training and generation compared to the base-
line models. Additionally, computational costs can be easily reduced by adjusting the action-space
subsampling ratio.
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D.4 STATISTICAL INFORMATION FOR POCKET-CONDITIONAL GENERATION TASK

Table 13: Statistical Information for pocket-conditional generative models. Mean and standard
deviation for 5 sample sets.

Vina (↓) QED (↑)

Category Model Avg. Std. Avg. Std.

Atom

Pocket2Mol -7.603 0.087 0.567 0.007
TargetDiff -7.367 0.028 0.487 0.006
DiffSBDD -6.949 0.079 0.467 0.002
DecompDiff -8.350 0.033 0.368 0.004
MolCRAFT -8.053 0.033 0.500 0.004
MolCRAFT-large -9.302 0.033 0.448 0.002

Fragment TacoGFN -8.237 0.268 0.671 0.002

Reaction RXNFLOW -8.851 0.031 0.666 0.001

D.5 TARGET SPECIFICITY OF GENERATED SAMPLES

To investigate the target specificity of pocket-conditional generation, we measured delta score (Gao
et al., 2024a) for the top-10 molecules for each pocket. The delta score evaluates the pocket speci-
ficity of a proposed molecule by comparing the docking scores difference in how well each molecule
binds to other proteins compared to the target protein.

Table 14: Delta Score for each methods.
Category Model Delta Score

Atom DecompDiff -1.29
Fragment TacoGFN -1.13
Reaction RXNFLOW -1.13

D.6 ABLATION STUDY FOR NON-HIERARCHICAL MARKOV DECISION PROCESS STRUCTURE

Figure 13: Reward distribution of generated molecules under different building block libraries:
a randomly sampled building block (General) and a nonaromatic building block set (Nonaromatic).
(a) The non-hierarchical MDP. (b) The hierarchical MDP.

k
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To investigate the effectiveness of the non-hierarchical MDP structure, we performed an ablation
study. We randomly selected 100,000 general building blocks from the Enamine building block
library for model training (general). To simulate a scenario where specific functional groups are
unallowed, we filtered out all aromatic building blocks to create a nonaromatic building block set.
We trained the GFlowNets under Vina-QED multi-objective settings (Jain et al., 2023) against the
beta-2 adrenergic receptor for 1,000 training oracles. After training, we generated 100 molecules
using both the general block set and the nonaromatic block set without additional training.

As shown in Figure 13, the proposed non-hierarchical MDPs closely align with the identified reward
distributions for both objectives, Vina and QED, on the general and nonaromatic building block
sets. In contrast, hierarchical MDPs, as utilized in existing methodologies, demonstrate a shift in
the reward distribution when the building block set is restricted. This indicates that non-hierarchical
MDPs are more robust in changes in the building block set compared to hierarchical MDPs.

D.7 ADDITIONAL RESULTS FOR SCALING ACTION SPACE WITHOUT RETRAINING

We reported the additional results for additional reward exponent settings (Rβ).

Figure 14: QED reward distribution of generated molecules.

Moreover, we investigated the generalization ability of our method to structurally different building
blocks under the Vina-QED objectives against the beta-2 adrenergic receptor. For model training,
we randomly selected 100,000 building blocks from the entire library (seen). Additionally, we
selected 100,000 building blocks with a Tanimoto similarity of less than 0.5 to all training building
blocks (unseen). The model was trained using the seen blocks first, and then the trained model
subsequently generate molecules with seen blocks, unseen blocks, and a combination of both sets
(all), respectively. As illustrated in Figure 15, the model can also generate samples with similar
reward distributions from building blocks with different distributions than the ones used for training.

Figure 15: Reward distribution of generated molecules.
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D.8 THEORETICAL ANALYSIS

To assess the impact of action space subsampling in GFlowNet training, we conduct a toy experiment
using a simplified setup with 10,000 blocks, one uni-molecular reaction template, one bi-molecular
reaction template, and the QED objective. We used the Hell-Volhard-Zelinsky reaction as a uni-
molecular reaction and the Amide reaction as a bi-molecular reaction, which are illustrated in Fig.
16. We used a minimum trajectory length of 1, max trajectory length of 2, constant GFN temperature
of 1.0, and learning rate decay of 3,000 for PF and logZ. For the GFlowNet sampler, we used the
same weights of the proxy model, i.e. EMA factor of 0. We performed optimization for 30,000
oracles with a batch size of 64.

As shown in Figures 17(a) and 17(b), we compare a baseline GFlowNet trained without subsam-
pling (“base”) to models using various subsampling ratios and Monte Carlo (MC) sampling. The
differences in logZθ are relatively small (<0.005) across all settings, and increasing MC samples
for state flow estimation Fθ further reduced the bias. In Figures 17(c) and 17(d), we also evaluate
the bias in the trajectory balance loss (L̂TB) and its gradient norm (∥∇θL̂TB∥) during training, find-
ing negligible differences compared to the true values. These results indicate that our importance
sampling reweighting approach effectively mitigates bias from action space subsampling, enabling
efficient and accurate policy estimation.

Figure 16: Reaction templates employed in toy experiments. (a) Hell-Volhard-Zelinsky reaction.
(b) Amide reaction.

Figure 17: Bias estimation. (a) logZθ according to the action space subsampling ratio (left) and
the number of MC samples where the subsampling ratio is 1/9 (right). (b) The trajectory balance
loss (LTB, L̂TB) where the subsampling ratio is 1/9 under 4 MC samples. (c) The loss gradient norms
(∥∇θLTB∥, ∥∇θL̂TB∥) where the subsampling ratio is 1/9 under 4 MC samples.
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