A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

All our code and model weights will be open-sourced post the conference anonymity period and will
be available to the larger community to use under open source licensing.

A.2 EQUAL OPPORTUNITY IN FAIRNESS

Equal Opportunity ensures that the True Positive Rates (TPR) are equal across demographic
groups. Mathematically:
TPRGroup 1= TPRGroup 2= ...

where:
True Positives (TP)

TPR = — ;
True Positives (TP) + False Negatives (FN)

EXAMPLE: LOAN APPROVAL

Consider a loan model evaluating two demographic groups with the following outcomes:

Group | True Positives (TP) | False Negatives (FN) TPR
A 80 20 o455 = 0.80
B 60 40 g = 060
The model violates Equal Opportunity because TPRa # TPRp.
F1x: THRESHOLD ADJUSTMENT
Adjusting decision thresholds can equalize the TPR:
* Group A: Keep the threshold at 0.5.
* Group B: Lower the threshold to 0.4.
After adjustment, the outcomes are:
Group | True Positives (TP) | False Negatives (FN) TPR
A 80 20 0.80
B 72 28 75 = 080

Now TPRs = TPRg = 0.80, satisfying Equal Opportunity.

FAIRNESS CONSTRAINT

During training, Equal Opportunity can be enforced as:
ITPRGroup A — TPRGrowp | < €
or by adding a penalty to the loss function:
Ltair = Loriginal + A+ [TPRGroup A — TPRGroup B

where A controls the trade-off between fairness and accuracy.

A.3 FRECHET INCEPTION DISTANCE (FID) SCORES - DISTRIBUTION SHIFT
The Fréchet Inception Distance (FID) is a widely-used metric to evaluate the quality of generated

images by comparing them to real images. It works by calculating the distance between the feature
distributions of two datasets (real and generated images) using the activations of the InceptionV3
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model. Specifically, the FID score is computed using the mean and covariance of these activations,
assuming a multivariate Gaussian distribution.

In our setup, we employed the Clean FID library Parmar et al.| (2022) to calculate the FID between
various datasets. For large datasets like LAION-5B, we sampled random subsets and computed the
FID on these smaller samples to manage computational constraints. For smaller datasets such as
Waterbirds, GeoDe, and Aircrafts, we used the entire dataset for the calculation.

Fine-Tuning Data | ImageNet | LAION

Aircrafts 181.98 229.72

Waterbirds 117.61 142.46
GeoDE 54.38 56.91

Table 4: FID comparison between the fine-tuning and pre-training data.

A.4 TRAINABLE PARAMETER RATIOS WITH LORA/FAIRLORA

The number of trainable parameter remain the same for LoRA as well as FairLoRA for the same
rank. All models have similar ratios for % of Trainable parameters.

Model Rank Trainable Params Total Params (% of Trainable)
8 325,672 86,155,088 0.38
16 666,724 86,155,088 0.77
DiNO 32 1,256,548 86,155,088 1.44
64 2,436,196 86,155,088 2.76
128 4,795,492 86,155,088 5.29

Table 5: Summary of model parameters for DiNO. The table includes the rank, number of trainable
parameters, total parameters, and the percentage of trainable parameters.

A.5 GRADIENT UPDATES IN LORA

The gradient updates in LoRA apply only to the low-rank matrices A and B, while the pre-trained
parameters 6y remain fixed. Given an objective function £, the gradients of the loss with respect to
A and B are computed as:

oL 0L,y 9L coc
0A 09~ ' 0B 00

Here, g—g is the gradient of the loss with respect to the full parameter matrix 6. These updates allow
the model to adapt to the downstream task with far fewer trainable parameters, preserving most of
the pre-trained knowledge while fine-tuning for the new task.

LoRA’s parameterization is particularly effective in large models where the parameter matrices are
high-dimensional, as it avoids the computational cost of updating the entire matrix. By focusing
on the low-rank updates, LoRA achieves a balance between fine-tuning flexibility and resource
efficiency.

For further details, the original LoRA formulation and its theoretical justification can be found in[Hu
et al. (2021).

A.6 GRADIENTS IN FAIRLORA

Let§ = 0p+ AB, where A@ = AB is the LoRA low-rank update. We need to compute the gradients
of J(0) with respect to both A and B.
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A.7 EMPIRICAL EVALUATIONS CONTINUED

FairLoRA
Aircrafts Dataset ;:_r;A
DiNO )
FairFFT

Recall Min

F1 Med

(a) Model: DiNO. We notice a dominant pattern for
FairLoRA across metrics apart from EOD, where it is
comparable to LoORA

FairLoRA
Waterbirds Dataset II;OF?A
DiINO .
FairFFT
Eod Max

Sensitive Acc

(b) Model: DiNO. We notice a dominant pattern for
FairLoRA across metrics.

Figure 6: All metrics are normalized to the same scale and adjusted such that higher is better.
Comparison of FairLoRA performance on DiNO model across datasets.
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(a) Model: DiNO. We notice a dominant pattern for
FairLoRA across metrics apart from EOD, where it is
comparable to LoORA
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(b) Model: ViT. We notice a dominant pattern for
FairFFT across metrics.

Figure 7: All metrics are normalized to the same scale and adjusted such that higher is better.
Comparison of FairLoRA performance on GeoDE across metrics on ViT and DiNO.
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(a) Model: ViT. We notice a dominant pattern for
FairFFT

LoRA
Waterbirds Dataset iﬁmm

ViT " FairFFT
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(b) Model: ViT. We notice a dominant pattern for
LoRA across metrics but FairLoRA achieves similar
scores.

Figure 8: All metrics are normalized to the same scale and adjusted such that higher is better.
Comparison of FairLoRA performance on ViT model across datasets.



Model Method Accuracy () F1Min (1) Recall Min (7) AF1(])

LoRA 8198 +1.38  17.60 +5.05 14.97 £5.10 80.92 +5.00
CLiP FairLoRA  86.67 £2.56 27.44+15.30 24.81+14.07 71.06 +13.78
FFT 81.92+1.21 21.28+£5.31 18.78 £ 3.14 77.21 £5.29
FairFFT  87.03 £2.81 22.82+1247 17.94+1030 76.17+10.72

LoRA 69.39 +£0.87 21.43+2381 19.99 + 4.57 77.59 £1.97

DIiNO FairLoRA 6828 +0.32  20.64 + 4.67 18.75+5.92 77.88 +£4.65
FFT 71.26 £ 0.06  20.37 £ 7.65 16.67 £ 6.79 79.15 £ 6.81

FairFFT  7095+0.95 23.46 +0.11 20.59 + 2.94 75.10 £1.32

LoRA 70.06 £0.92 2599 +3.11 24.24 +3.03 72.03 £2.28

VIiT FairLoRA  70.45+048 27.11+£2.11 25.49 +3.40 7241 £1.27
FFT 74.17 £ 0.31 32.18 +5.83 27.75 +6.28 66.34 + 5.80

FairFFT 7418 £0.64  35.36 +5.04 29.71 = 2.99 63.15 +4.99

Table 6: The table compares FFT vs LoRA and FairFFT vs FairLoRA for Aircrafts. Metrics include:
Accuracy, the mean classification accuracy; F1 Min, the minimum F1 score across classes; Recall
Min, the minimum Recall across classes; A F1, the difference between the maximum and minimum
F1 score across classes.

aircrafts - Accuracy vs LORA Rank aircrafts - Min F1 vs LoRA Rank

8 16 64 128 8 16 2 64 128
LoRA Rank

—k- clip- LoRA —#— dino-vitb16 - FairLoRA k- clip- LoRa —&— dino-vitb16 - FairLoRA

—4— clip - FairLoRA —- Vit-b16 - LoRA —4— clip - FairLoRA —%- vit-b16 - LoRA

—%- dino-vitb16 - LORA  —b— Vit-b16 - FairloRA ~¥- dino-vitb16 - LORA  —$— Vit-b16 - FairLoRA

Figure 9: Comparison on the impact of rank on performance as well as fairness across models for
Aircrafts. Higher value is better in both the graphs.

waterbirds - Accuracy vs LoRA Rank waterbirds - Min F1 vs LoRA Rank
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Figure 10: Comparison on the impact of rank on performance as well as fairness across models for
Waterbirds. Higher value is better in both the graphs.
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Figure 11: On the left, we plot the performance of the model with and without fairness regularizers
for both full finetuning (FFT) as well as LoORA. We notice that using the regularizer improves overall
performance as well in this particular example. On the right, we visualize the effect on the variance
of loss across classes and notice that this variance is lower for the ones with regularizer and the
combination of LoRA and the regularizer yeilds the best results.
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Figure 12: On the left, we plot the performance of the model with and without fairness regularizers
for both full finetuning (FFT) as well as LoRA. On the right, we visualize the effect on the variance
of loss across classes.
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