
Supplementary Material
Latent Space Translation via Semantic Alignment

Anonymous Author(s)
Affiliation
Address
email

1 Additional results1

In Figure 1, we present the outcomes of the multimodal experiment with an MLP employed as the2

classification head. The findings highlight the MLP’s capability to leverage cross-modal informa-3

tion, leading to improved performance. However, the underlying mechanisms responsible for this4

enhancement remain unclear and warrant further investigation.5

D
ec

od
er

Encoder

Encoder Score Scale

V
is

io
n

ViT-base-224 0.46 90.45
RexNet 0.38 13.46
ViT-base-384 0.47 89.66
ViT-small 0.40 50.17
ViT-ResNet50 0.44 32.10
DarkNet 0.37 11.62

Te
xt

BERT-cased 0.40 15.43
BERT-uncased 0.39 14.54
Electra 0.27 11.94
RoBERTa 0.51 11.06
ALBERT 0.30 32.27
XLM-R 0.41 18.75

Figure 1: Performance comparison between different encoders and data modalities on the N24News
multimodal dataset. On the right, the accuracy of models trained end-to-end on a single data modality
(Score) and their average norm (Scale). On the left the stitching performance between pairs of
encoders and decoder. This shows the importance of translating from good encoders, that can even
improve unimodal decoder performances. Results obtained with 2000 anchors and SVD, with a MLP
as classification head.

In Tables 2 and 3 quantitative results for stitching of MLP classifiers (differently from the main6

manuscript where SVMs are used) trained on top of pre-trained feature extractors, with and without7

additional L2 normalization, respectively.8

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



In Figures 2 and 3, there are additional reconstruction examples with the same autoencoding setting9

as in the main manuscript, and with additional L2 normalization, respectively.10

In Table 1 more quantitative results for stitching of autoencoders, with added L2 normalization (at11

training time) to the decoders of the reconstruction setting of the main manuscript.12
S

OL
SS

LS
S

Ab
s.

SV
D

Figure 2: Reconstruction examples grouped by dataset. Each column is a different image, from top to
bottom: original image, absolute stitching, LSS stitching, OLSS stitching, and SVD stitching. An L2
normalization is applied to the decoder input.

S
OL

SS
LS

S
Ab

s.
SV

D
S

OL
SS

LS
S

Ab
s.

SV
D

Figure 3: Additional reconstruction examples grouped by dataset. Each column is a different image,
from top to bottom: original image, absolute stitching, LSS stitching, OLSS stitching, and SVD
stitching. In the first row, no additional normalization is applied on the decoder input; in the second
row there is an L2 normalization instead.

Table 1: Zero-shot stitching for generation. With SVD for estimating R and standard scaling as σ. An
L2 normalization is applied to the decoder input. We report the latent cosine similarity (lcos) and
MSE (lmse) between the target encoding and the translated one, but also the reconstruction MSE
(rmse) between the input and the output.

MNIST Fashion MNIST CIFAR-10 CIFAR-100

lcos lmse rmse lcos lmse rmse lcos lmse rmse lcos lmse rmse

abs 0.39 0.98 0.28 0.53 0.97 0.33 0.62 1.23 0.46 0.59 1.17 0.38
LLS 0.98 0.17 0.01 0.98 0.18 0.03 0.99 0.16 0.04 0.99 0.13 0.05
OLLS 0.89 0.41 0.02 0.91 0.41 0.04 0.96 0.39 0.05 0.93 0.30 0.08
SVD 0.97 0.21 0.02 0.97 0.23 0.03 0.99 0.21 0.05 0.96 0.22 0.07

2



Table 2: Cross-architecture stitching with various methods for estimating R and employing standard
scaling as σ. The stitched decoders are simple MLPs. 5 runs for each encoder-decoder pair. (C) and
(F) next to CIFAR-100 indicate, respectively, coarse-grained and fine-grained.

dataset original absolute LSS OLSS SVD

CIFAR-10 0.95± 0.03 0.16± 0.22 0.89± 0.11 0.90± 0.09 0.93± 0.04
CIFAR100 (C) 0.82± 0.07 0.11± 0.21 0.71± 0.15 0.74± 0.11 0.78± 0.07
CIFAR100 (F) 0.68± 0.13 0.06± 0.20 0.55± 0.18 0.56± 0.17 0.62± 0.12
DBpedia 0.64± 0.18 0.07± 0.02 0.53± 0.19 0.44± 0.21 0.56± 0.17
Fashion MNIST 0.87± 0.02 0.14± 0.20 0.83± 0.05 0.80± 0.06 0.84± 0.02
MNIST 0.92± 0.03 0.15± 0.20 0.87± 0.08 0.74± 0.12 0.88± 0.03
N24News Image 0.42± 0.04 0.08± 0.10 0.35± 0.07 0.36± 0.06 0.39± 0.03
N24News Text 0.33± 0.14 0.05± 0.01 0.21± 0.13 0.19± 0.10 0.34± 0.13
TREC 0.41± 0.07 0.15± 0.04 0.37± 0.11 0.23± 0.08 0.41± 0.09

Table 3: Cross-architecture stitching with various methods for estimating R and employing L2 as
normalization. The stitched decoders are simple MLPs. 5 runs for each encoder-decoder pair. (C)
and (F) next to CIFAR-100 indicate, respectively, coarse-grained and fine-grained.

dataset original absolute LSS OLSS SVD

CIFAR-10 0.95± 0.03 0.16± 0.22 0.89± 0.11 0.89± 0.11 0.93± 0.04
CIFAR100 (C) 0.82± 0.07 0.11± 0.21 0.71± 0.15 0.75± 0.13 0.78± 0.06
CIFAR100 (F) 0.68± 0.13 0.06± 0.20 0.54± 0.18 0.57± 0.18 0.61± 0.12
DBpedia 0.64± 0.18 0.07± 0.02 0.51± 0.18 0.53± 0.21 0.49± 0.15
Fashion MNIST 0.87± 0.02 0.14± 0.20 0.83± 0.05 0.79± 0.09 0.84± 0.02
MNIST 0.92± 0.03 0.15± 0.20 0.86± 0.08 0.80± 0.17 0.86± 0.04
N24News Image 0.42± 0.04 0.08± 0.10 0.35± 0.07 0.36± 0.08 0.40± 0.04
N24News Text 0.33± 0.14 0.05± 0.01 0.22± 0.13 0.26± 0.14 0.25± 0.16
TREC 0.41± 0.07 0.15± 0.04 0.47± 0.13 0.27± 0.10 0.49± 0.06

1.1 Scale invariance13

In this section, we delve into the concept of scale invariance in neural networks and its implications14

for model compositionality. We start by focusing on the effect of rescaling operations on the latent15

input encodings and demonstrate that, by construction, certain classifiers exhibit scale-invariance16

properties without the need for additional priors. Then, by examining the behavior of networks when17

subjected to a specific type of input manipulation, rescaling injection, we aim to demonstrate the18

robustness and versatility of neural networks in handling different scales of input data. As illustrated19

in the main manuscript, this is a key advantage in improving the adaptability of our method.20

The softmax function, commonly used in neural classifiers, is known to be a temperature-controlled21

variant of the maximum function:22

softmax(x)i =
e

yi
T∑N

j e
yj
T

. (1)

This means that the softmax temperature can be used to control the level of confidence of the23

classifier’s predictions. In this study, we show that a similar effect can also be achieved by rescaling24

the latent encodings given as input to a trained (and frozen) classifier.25

In order to demonstrate this, we first note that the rescaling factor, α, can be factored out of the26

matrix multiplication in the Linear layers of the classifier. This can be represented mathematically as:27

y = αWx+ b, where x is the input latent encoding, W is the weight matrix, b is the bias vector, α28

is the rescaling factor, and y is the output of the linear layer. This implies that the rescaling operation29

can be “pushed through” the classifier without affecting its final prediction as it becomes equivalent30

to some temperature value applied at the softmax level.31

Furthermore, we investigate the effect of rescaling when non-linear activation functions are involved32

and posit that as long as the function has a monotonic interval, if we rescale all the dimensions by an33

3



amount similar to the mean scale of the encodings on which the classifier was trained, we end up in34

the monotonic interval, without losing the scale-invariance property.35

In summary, our study provides empirical evidence that neural classifiers that utilize the softmax36

activation function can, in practice, maintain their scale-invariance properties when the input latent37

encodings are rescaled. This property is essential to our method, as it allows us to ignore the exact38

scale when decoding toward an L2-normalized absolute space.39

Pre-trained models and scale-invariance We observed that large pre-trained models, such as40

transformers and resnets, are robust to internal rescaling of the encodings. Although we do not41

have a strong theoretical explanation for this phenomenon, we hypothesize that normalization layers42

and the linear separability of the information encoded in the angles instead of the norms may play43

a significant role. In Figure 4, we demonstrate the invariance a large transformer exhibits when44

the rescaling injection is applied at different layers: surprisingly, when the rescaling surpasses a45

certain threshold, the performance difference becomes negligible. These results further emphasize46

the robustness of these pre-trained models to the rescaling injection and suggest that the scale of the47

embedding is not a critical factor in their performance.48

0 1 2 3 4 5 6 7 8 9 10 11 12
-2.00
-1.83
-1.67
-1.50
-1.33
-1.17
-1.00
-0.83
-0.67
-0.50
1.00
1.47
1.95
2.42
2.90
3.37
3.84
4.32
4.79
5.26
5.74
6.21
6.68
7.16
7.63
8.11
8.58
9.05
9.53

10.00
11.44
1e+02
1e+03
1e+04
1e+05
1e+06
1e+07
1e+08

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rescaled layer

R
es

ca
lin

g
fa

ct
or

α
A

ccuracy

Figure 4: Scale invariance of RoBERTa according to the performance of a downstream classifier
trained on the encodings of the last attention layer. At each layer (with 0 being the embedding layer
and 12 the output one), one for each run, we rescale the encodings by the specified α and measure its
effect on the final accuracy. The performance without any rescaling is 0.92.

Rescale Injection We define the rescaling injection as the operation of artificially altering the49

scale of the features produced at a specific layer of the network. This is achieved by normalizing the50

embeddings to unit norm and then rescaling them by a factor of α. By varying the value of α, we51

can observe how the network’s performance is affected at different scales. Through this empirical52

analysis, we aim to provide insight into the scale invariance properties of neural networks and their53

potential for use in model compositionality.54

In Figure 5, we present experimental results investigating the scale invariance properties of neu-55

ral networks. We trained simple multi-layer perceptrons (MLPs) composed of two hidden lay-56

ers, with no normalization layers, using encodings produced by the Clip Vision transformer57

(clip-vit-base-patch32) on the CIFAR-100 (fine) dataset. The MLPs were evaluated using58

different activation functions: cosine (blue), tanh (orange), and ReLU (green). The rescaling injection59

technique was applied directly to the input embeddings, rescaling them by α.60

4



A
cc

ur
ac

y

Rescale Factor
Figure 5: Performance comparison of three Multilayer Perceptrons (MLPs) with different activation
functions, namely cosine (blue), ReLU (orange), and tanh (green) at different rescaling factors α. The
ReLU and tanh MLPs exhibit scale invariance, while the cosine activation function is only invariant
on the mean data scale and its periodic cycles.

We can observe that the scale of the embeddings does not significantly impact the MLPs’ performance61

when using monotone activation functions that do not flip signs. This is a non-trivial result, as the62

nonlinearity of the activation function, the presence of bias terms b, and the absence of normalization63

layers make it difficult to predict the effect of an input rescaling on the performance of the network. It64

is particularly interesting to see that the cosine activation function shows an oscillatory performance,65

comparable to the original embeddings when rescaled by the mean embeddings scale (vertical red66

line) or its opposite since it is symmetric.67

Our findings indicate that, surprisingly, even the internal layers of large deep learning models exhibit68

a positive scale invariance, as illustrated in Figure 4. The underlying mechanism for this behavior is69

not straightforward, but we hypothesize that it may result from the interplay between various factors,70

such as the choice of activation function, the use of normalization layers, the optimization objective71

and regularization techniques employed during the training phase. Further research is needed to72

understand and explain this phenomenon fully.73

2 Implementation Details74

The experiments were conducted using a machine equipped with an Intel Core i7-9700k CPU, 64 GB75

of RAM, and an NVIDIA 2080TI GPU.76

Decoder structure The full implementation details can be found in the attached code. The various77

experiments can be run by their corresponding notebook, while the source code for the package they78

are built on can be found under the "src" folder.79

• Autoencoding. Since the autoencoders were used only on image data, the architecture was a80

simple sequence of convolutions (in the encoder part) and deconvolutions (in the decoder81

part). Each interleaved with nonlinear activations.82

• Classification. The main manuscript refers to "SVM" as the standard SVM implementation83

in scikit-learn [Pedregosa et al., 2011], with default parameters. The experiments with84

"MLP" as a classifier refer to a simple stack of 3 linear layers, interleaved by nonlinear85

activations.86

Software and Technologies The research of this study was facilitated by the use of various87

technologies and tools, which include:88

• NN-Template [GrokAI, 2021], was used to kick-start the project while also ensuring best89

practices were adhered to;90

• DVC [Kuprieiev et al., 2022], was implemented for data versioning;91

• PyTorch Lightning [Falcon and The PyTorch Lightning team, 2019], contributed to main-92

taining the integrity of the results and promoting clean, modular code;93

• Weights and Biases [Biewald, 2020], were employed for logging experiments, running94

comparisons over extensive sweeps, and sharing models;95

5



• Transformers by HuggingFace [Wolf et al., 2020], provided pre-configured transformers for96

processing both image and text data;97

• Datasets by HuggingFace [Lhoest et al., 2021], facilitated access to a majority of NLP98

datasets and ImageNet for computer vision purposes;99

Pre-trained encoders All the pre-trained encoders used come from HuggingFace and are listed in100

Table 4. They are various both in terms of architecture and encoding size.

Table 4: HuggingFace models used as encoders (feature extractors) in the various experiments, with
their encoding dimensionality.

Modality HuggingFace model name Encoding Dim
L

an
gu

ag
e

bert-base-cased 768
bert-base-uncased 768
google/electra-base-discriminator 768
roberta-base 768
albert-base-v2 768
xlm-roberta-base 768
openai/clip-vit-base-patch32 768

V
is

io
n

rexnet_100 1280
cspdarknet53 768
vit_small_patch16_224 384
vit_base_patch16_224 768
vit_base_patch16_384 768
vit_base_resnet50_384 768
openai/clip-vit-base-patch32 768

101

6



References102

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-103

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and104

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,105

12:2825–2830, 2011.106

GrokAI. nn-template bootstraps pytorch projects by advocating reproducibility & best practices in107

deep learning, 2021. URL https://github.com/grok-ai/nn-template. Software available108

from https://github.com/grok-ai/.109

Ruslan Kuprieiev, skshetry, Dmitry Petrov, Paweł Redzyński, Peter Rowlands, Casper da Costa-110

Luis, Alexander Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Gao, Jorge Orpinel, David111

de la Iglesia Castro, Fábio Santos, Aman Sharma, Dave Berenbaum, Zhanibek, Dani Hodovic,112

daniele, Nikita Kodenko, Andrew Grigorev, Earl, Nabanita Dash, George Vyshnya, Ronan Lamy,113

maykulkarni, Max Hora, Vera, and Sanidhya Mangal. Dvc: Data version control - git for data &114

models, 2022. URL https://doi.org/10.5281/zenodo.7083378.115

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019. URL https://github.116

com/Lightning-AI/lightning.117

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.118

com/. Software available from wandb.com.119

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,120

Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von121

Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama122

Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language123

processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language124

Processing: System Demonstrations, pages 38–45, Online, 2020. Association for Computational125

Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.126

emnlp-demos.6.127

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,128

Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario129

Šaško, Gunjan Chhablani, Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen130

Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,131

Théo Matussière, Lysandre Debut, Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor132

Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library133

for natural language processing. In Proceedings of the 2021 Conference on Empirical Methods in134

Natural Language Processing: System Demonstrations, pages 175–184, Online and Punta Cana,135

Dominican Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.136

emnlp-demo.21. URL https://aclanthology.org/2021.emnlp-demo.21.137

7

https://github.com/grok-ai/nn-template
https://doi.org/10.5281/zenodo.7083378
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2021.emnlp-demo.21

	Additional results
	Scale invariance

	Implementation Details

