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Appendix

A ADDITIONAL LITERATURE ON GRAPH REPRESENTATION LEARNING

After the success of convolutional neural networks (CNN) on image-based tasks, graph neural
networks (GNNs) have emerged as a powerful tool for graph classification and representation learning.
Based on the spectral graph theory, |Bruna et al. (2014) introduced a graph-based convolution in
Fourier domain. However, complexity of this model is very high since all Laplacian eigenvectors are
needed. To tackle this problem, ChebNet Defferrard et al. (2016) integrated spectral graph convolution
with Chebyshev polynomials. Then, Graph Convolutional Networks (GCNs) of [Kipf & Welling
(2017a) simplified the graph convolution with a localized first-order approximation. More recently,
there have been proposed various approaches based on accumulation of the graph information from
a wider neighborhood, using diffusion aggregation and random walks. Such higher-order methods
include approximate personalized propagation of neural predictions (APPNP) Klicpera et al.|(2019),
higher-order graph convolutional architectures (MixHop) |Abu-El-Haija et al. (2019), multi-scale
graph convolution (N-GCN) |Abu-El-Haija et al. (2020), and Lévy Flights Graph Convolutional
Networks (LFGCN) |Chen et al.| (2020). In addition to random walks, other recent approaches
include GNNs on directed graphs (MotifNet) Monti et al. (2018), graph convolutional networks
with attention mechanism (GAT, SPAGAN) Velickovic et al. (2018); | Yang et al.|(2019), and graph
Markov neural network (GMNN) [Qu et al. (2019). Most recently, Liu et al. [Liu et al. (2020) consider
utilizing information on the node neighbors’ features in GNN, proposing Deep Adaptive Graph
Neural Network (DAGNN). However, DAGNN, and other state-of-the-art approaches, does not
account for the important information on the shapes of the node neighborhoods.

B FURTHER BACKGROUND ON SINGLE PERSISTENT HOMOLOGY

Here, we give further details on single parameter persistent homology. To sum up, PH machinery is a
3-step process. The first step is the filtration step, where one can integrate the domain information into
the process. The second step is the persistence diagrams, where the machinery records the evolution
of topological features (birth/death times) in the filtration sequence of the simplicial complexes. The
final step is the vectorization (fingerprinting), where one can convert these records to a function or
vector to be used in suitable ML models.

i. Constructing Filtrations: As PH is the machinery to keep track of the evolution of topological
features in a sequence, the most important step is inducing this nested sequence of simplicial
complexes, Ag C Ay C --- C A,,. This is the key step where one can inject valuable domain
information into the PH process by using important domain functions. Two most common methods
are Sublevel/superlevel filtration and Vietoris-Rips (VR) filtration. We already described sublevel
filtration in Section 3.1}

VR filtration is another common method especially used for point clouds, where coarse geometry
of the data set X play key role (Chazal & Michel, 2017). Let X = {x1,za,...,2n} be the given
data set. For a given threshold ¢;, one forms a Vietoris-Rips complex A; by adding a k-simplex
to X for any subset {Z,, Tn,, ..., Tn, },» Where the pairwise distances are all d(zy,,, T,,) < €. In
particular, if a pair of points x,,, ,, has distance < ¢;, then in the induced simplicial complex
A;, we add an edge e,,,,, between the corresponding vertices x,,, and z,,. If three such points
ZTng, Tn, > Tn, have pairwise distances < ¢;, then we fill the triangle ey, U €nyn, U €nyn, With a
2-simplex, and so on. For each ¢;, one obtains a simplicial complex A; by using this procedure.
Changing threshold values €; < €2 < ... < €, results in a hierarchical nested sequence of simplicial
complexes A; C Ay C --- C A,, that is termed the Vietoris-Rips filtration of the data set X'. Note
that VR filtration can also be considered as a sublevel filtration for the distance function to X’ from
the ambient space RY, i.e., f : R? — R with f(y) = d(y, X') where X C R,

ii. Persistence Diagrams: The second step in PH process is to obtain persistence diagrams (PD)
for the filtration Ag C A; C --- C A,,. As explained in Section PDs are collection of
2-tuples, marking the birth and death times of the topological features appearing in the filtration, i.e.
PDk(X) = {(bo,ds) | 0 € H(A;) forb, < i < d,}. This step is pretty standard and there are
various software libraries for this task (Otter et al., 2017).
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iii. Vectorizations: While PH extracts hidden shape patterns from data as persistence diagrams (PD),
PDs, a collection of points in R? by itself, are not very practical for statistical and ML purposes.
Instead, the common techniques are faithfully representing PDs as kernels (Kriege et al., [2020) or
vectorizations (Hensel et al., 2021). One can consider this step as converting PDs into a useful format
to be used in the ML process as fingerprints of the dataset. This provides a practical way to use
the outputs of PH in real-life applications. Single Persistence Vectorizations transform obtained PH
information (PDs) into a function or a feature vector form which is much more suitable for ML tools
than PDs. Common single persistence (SP) vectorization methods are Persistence Images (Adams
et al., 2017), Persistence Landscapes (Bubenik, 2015), Silhouettes (Chazal et al., 2014), Betti Curves
and various Persistence Curves (Chung & Lawson, 2019). These vectorizations define a single
variable or multivariable function out of PDs, which can be used as fixed-size 1D or 2D vectors
in applications, i.e., 1 X n vectors or m X n vectors. For example, a Betti curve for a PD with n
thresholds can also be expressed as 1 x n size vectors. Similarly, Persistence Images is an example of
2D vectors with the chosen resolution (grid) size. See the examples given in Section [4.2]for further
details.

C STABILITY

C.1 STABILITY OF SINGLE PERSISTENCE SUMMARIES

For a given PD vectorization, the stability is one of the most important properties for statistical
purposes. Intuitively, stability question is whether a small perturbation in PD cause a big change
in the vectorization or not. To make this question meaningful, one needs to define what "small"
and “big" means in this context. Therefore, we need to define distance notion, i.e., metric in the
space of persistence diagrams. The most common such metric is called Wasserstein distance (or
matching distance) which is defined as follows. Let PD(X ™) and PD(X ™) be persistence diagrams
two datasets X' and X~ (We omit the dimensions in PDs). Let PD(X*) = {¢; } U AT and
PD(X~) = {q; } UA~ where A represents the diagonal (representing trivial cycles) with infinite
multiplicity. Here, ¢/ = (b, d}) € PD(X) represents the birth and death times of a hole o
in X*. Let¢ : PD(Xt) — PD(X ™) represent a bijection (matching). With the existence of the

diagonal AT in both sides, we make sure the existence of these bijections even if the cardinalities
|{q]+}\ and |{g; }| are different. Then, the p'" Wasserstein distance W, defined as

(PO ). D) =min( 5 laf — ola ). vz

Then, a vectorization (function) ¢(PD(X)) is called stable if d(eT,o7) < C -
W,(PD(X1), PD(X ™)) where p* = o(PD(X*)) and d(.,.) is a suitable metric on the space
of vectorizations used. Here, the constant C' > 0 is independent of X'*. This stability inequality
interprets as the changes in the vectorizations are bounded by the changes in PDs. Two nearby
persistence diagrams are represented by nearby vectorizations. If a given vectorization ¢ holds such
a stability inequality for some d and W,,, we call ¢ a stable vectorization Atienza et al.| (2020).
Persistence Landscapes Bubenik (2015), Persistence Images|/Adams et al. (2017), Stabilized Betti
Curves Johnson & Jung|(2021) and several Persistence curves|Chung & Lawson (2019) are among
well-known examples of stable vectorizations.

C.2 PROOF OF THEOREM 4.1: STABILITY OF EMP SUMMARIES

Proof. As ¢ is a stable SP vectorization, for any 1 < i < m, we have d(¢(G"),¢(G;)) <

Cy Wy, (PD(G}"), PD(G; ")) for some Cy, > 0 by Equation (Il), where W, is Wasserstein-p
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distance. Notice that the constant C,, > 0 is independent of ¢. Hence,

m

> Cy W, (PD(G})), PD(G;))

i=1

Co YW, (PD(G}), PDIG; )
G, D, (UPDEHLPDE)Y)

where the first and last equalities are due to Equation (2) and Equation (3), while the inequality
follows from Equation (I)) which is true for any 4. This concludes the proof of the theorem. O

DML (G")M,(G7) = > d(@(G),2(97))

IN

D EMP FRAMEWORK

D.1 EMP FOR OTHER TYPES OF DATA

So far, to keep the exposition simple, we described our construction in the graph setup. However,
our framework is suitable for various types of data. Let X be a an image data or a point cloud. Let
f: X =>Randg: X — R be two filtering functions on X'. For example, it can be grayscale
function for image data, or density function on point cloud data.

Let f : X — R be the filtering function with threshold set {;}*. Let X; = f~1((—o0, a;)).
Then, we get a filtering of X’ as nested subspaces X; C Xy C --- C X,;, = X. By using the
second filtering function, we obtain finer filtrations for each subspace &; where 1 < ¢ < m. In
particular, fix 1 < 45 < m and let {Bj 3—1:1 be the threshold set for the second filtering function
g. Then, by restricting g to &;,, we get a filtering function on X, i.e., g : &;;, — R which
produces filtering X1 C &j2 C -+ C Xy = Aj,. By inducing a simplicial complex Q/Eioj
for each &j ;, we get a filtration X1 C X0 C --- C &, = Xj,. This filtration results in a
persistence diagram (PD) PD(X),, g). For each 1 < i < m, we obtain PD(X, g). Note that after
getting {X;}1", via f, instead of using second filtering function g, one can apply power filtration
or Vietoris-Rips construction based on distance for each X, in order to get a different filtration

Xio1 C Xjg2 C -+ C Xy = &y

By using m PDs, we follow a similar route to define our EMP summaries. Let ¢ be a single
persistence vectorization. By applying the chosen SP vectorization ¢ to each PD, we obtain a
function ¢; = p(PD(X;, g)) on the threshold domain [S1, 5,,], which can be expresses as a 1D (or
2D) vector in most cases (Section[4.2). Let ; be the corresponding 1 x k vector for the function ¢;.
Define the corresponding EMP M, as M, = 3; where ML, is the i’" row of M. In particular, M,
is a 2D-vector (a matrix) of size m x k where m is the number of thresholds for the first filtering
function f, and k is the length of the vector .

D.2 EMP WITH OTHER FILTRATIONS

Weight filtration For a given weighted graph G = (V, £, W), it is common to use edge weights
W = {w,s € Rt | s € &} to describe filtration. By choosing the threshold set similarly
7 = {o;}7 with @1 = min{w,s € W} < a3 < ... < ay, = max{w,s € W}. For o; € Z, let
E = {ers €V | wrs < ;). Let G be a subgraph of G induced by V;. This induces a nested
sequence of subgraphs G; C Gy C --- C G,,, = G (See top row in Figure 2)).

In the case of weighted graphs, one can apply the EMP framework just by replacing the first filtering
(via f) with weight filtering. In particular, let g : ¥V — R be a filtering function with threshold set
{B;j}}_1. Then, one can first apply weight filtering to get G; C --- C G,, = G as above, and then
apply f to each G; to get a bilfiltration {G;; } (m x n resolution). One gets m PDs as PD(G;, g) and
induce the corresponding M. Alternatively, one can change the order by applying g first, and get
a different filtering G; C Go C --- C G, = G induced by g. Then, apply to edge weight filtration
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Figure 2: Multidimensional persistence on a graph network (original graph: left). Black numbers denote the
degree values of each node whilst red numbers show the edge weights of the network. Hence, shape properties
are computed on two filtering functions (i.e., degree and edge weight). While each row filters by degree, each
column filters the corresponding subgraph using its edge weights. For each cell, lower left corners represent the
corresponding threshold values. For each cell, By and B; represent the corresponding Betti numbers.

to any G;, one gets a bifiltration {G};} (n x m resolution) this time. As a result, one gets n PDs
as PD(G;,w) and induce the corresponding M.,. The difference is that in the first case (first apply
weights, then g), the filtering function plays more important role as M, uses PD(G;, g) while in the
second case (first apply g, then apply weights) weights have more important role as M., is induced by
PD(G;,w). Note also that there is a very different filtration method for weighted graphs by applying
the following the following VR-complexes method.

Power (Vietoris-Rips) Filtration There is a highly different filtration technique using distances
between the data points in the dataset. The technique is called power filtration for unweighted
graphs|Aktas et al. (2019), while it is called Vietoris-Rips filtration for other types of data|Edelsbrunner
& Harer (2010). The idea is for a point cloud X = {x1, x2, ..., 2N}, one uses the pairwise distances
d(z,,xs) to construct the simplicial complexes in the filtration. In particular, for a threshold set
€1 < €3 < --- < €, = diam(X), one forms a Vietoris-Rips complex A; by adding a k-simplex to
X for any subset {x,, Z,,, ..., Zr, }, Where the pairwise distances are all < ¢;. If a pair of points
Zr, , Ty, has distance < ¢;, then in the induced simplicial complex A;, we add an edge between the
corresponding vertices z, and x. If three such points z,. , ,,, x,, have pairwise distances < ¢,
then we fill the triangle e, ., U €., U €r,, With a 2-simplex, and so on. This procedure induces
in a hierarchical nested sequence of simplicial complexes A; C As C ... C A,, that is termed
Vietoris-Rips filtration induced by the point cloud X. For unweighted graphs, one takes the vertex set
V as the point cloud, and defines the distances d(v;, v;) as the shortest distance in the graph where
each edge has length 1. For weighted graphs, one can do the same by defining edge lengths induced
by the weights.

One can adapt Vietoris-Rips filtrations to our EMP setting as follows. Start with a filtering function
f :+ X — R with threshold set {«;}7* and obtain X} C Xy C -+ C X, = X where &; =
7 ((—o0, a;]). Then, apply Vietoris-Rips filtration to each X;, for threshold set {e; 7_; which
produces a filtration X;;; C X2 C --- C &j,, where &} ; is the Vietoris-Rips complex of X,
for threshold €;. Construct PD(X;, V R) of these filtrations for each 1 < ¢ < m. The following
steps are same Section4.2] For a given SP vectorization ¢, let ; be the corresponding 1 x k vector
induced by ¢(PD(X;, V R)) with domain [e}, €,]. Then, define EMP M, as M, = 5; where M,
is the it" row of M,,. Again, M, is a 2D-vector (a matrix) of size m X k where m is the number of
thresholds for the filtering function f, and k is the length of the vector (.
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D.3 MULTIPARAMETER PERSISTENCE THEORY

Multipersistence theory is under intense research because of its promise to significantly improve the
performance and robustness properties of single persistence theory. While single persistence theory
obtains the topological fingerprint of single filtration, a multidimensional filtration with more than
one parameter should deliver a much finer summary of the data to be used with ML models. However,
multipersistence virtually has not reached any applications yet and remains largely unexplored by the
ML community because of the technical problems. Here, we provide a short summary of these issues.
For further details, Botnan & Lesnick (2022) gives a nice outline of current state of the theory and
major obstacles.

In single persistence, the threshold space {«;} being a subset of R, is totally ordered, i.e., birth
time < death time for any topological feature appearing in the filtration sequence {A;}. By using
this property, it was shown that “barcode decomposition” is well-defined in single persistence
theory in 1950s [Krull-Schmidt-Azumaya Theorem Botnan & Lesnick|(2022)-Theorem 4.2]. This
decomposition makes the persistence module M = {Hg(A;)};-,; uniquely decomposable into
barcodes. This barcode decomposition is exactly what we call a PD.

However, when one goes to higher dimensions, i.e. d = 2, then the threshold set {(a;, 5;)} is
no longer totally ordered, but becomes partially ordered (Poset). In other words, some indices
have ordering relation (1,2) < (4,7), while some do not, e.g., (2,3) vs. (1,5). Hence, if one
has a multipersistence grid {A;;}, we no longer can talk about birth time or death time as there
is no ordering anymore. Furthermore, Krull-Schmidt-Azumaya Theorem is no longer true for
upper dimensions Botnan & Lesnick (2022)—Section 4.2. Hence, for general multipersistence
modules barcode decomposition is not possible, and the direct generalization of single persistence to
multipersistence fails. On the other hand, even if the multipersistence module has a good barcode
decomposition, because of partial ordering, representing these barcodes faithfully is another major
problem. Multipersistence modules are an important subject in commutative algebra, where one can
find the details of the topic in Eisenbud|(2013).

While complete generalization is out of reach for now, several attempts have been tried to utilize MP
idea by using one dimensional slices in the MP grid in recent |Carriere & Blumberg|(2020); |Vipond
(2020). Slicing techniques use the persistence diagrams of predetermined one-dimensional slices in
the multipersistence grid, and then combine (compress) them as one dimensional output Botnan &
Lesnick|(2022). In that respect, one major issue is that the topological summary highly depends on
the predetermined slicing directions in this approach. The other problem is the loss of information
when compressing the information in various persistence diagrams.

As explained above, MP approach does not have theoretical foundations yet, and there are several
attempts to utilize this idea. In this paper, we do not claim to solve theoretical problems of multi-
persistence homology, but offer a novel, highly practical multidimensional topological summary by
advancing the existing methods. We use the grid directions in the multipersistence module as natural
slicing directions and produce mutidimensional topological summary of the data. As a result, these
multidimensional topological fingerprints are capable of capturing very fine topological information
hidden in the data. Furthermore, in the case the data provides more than two very important filtering
functions, our framework easily accommodates these functions and induces corresponding substruc-
tures. Then, our EMP model capture the evolving topological patterns of these substructures and
summarize them in matrices and arrays which are highly practical output format to be used with
various ML models.

E FURTHER DETAILS ON EXPERIMENTS

E.1 BENCHMARK DATASETS AND EXPERIMENTAL SETUP

In our experiments, we use 11 benchmark datasets for graph classification tasks (see Table[2). We
have run our models for graph classification tasks on an 8-core DO droplet machine with Intel Xeon
Scalable processors at a base frequency of 2.5 Ghz. Table 2] summarize the statistics of the datasets in
our experiments.

The resolution of vectorization is the most significant parameter, which may impact the computational
performance and results. As such, we use a fixed resolution to get consistent results in all experiments
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Figure 3: Illustration of the EMP framework for networks. Using the pair of filtering functions f,
g we define non-decreasing thresholds {a; }1* and {8, }7, respectively, based on node features, red,
and edge features, blue. Both, filtrations and vectorizations run in parallel to better use computational
resources and produce EMP representations in a timely manner.

Table 2: Summary statistics of the datasets.

Dataset # Graphs Avg. |V| Avg. |£] # Class Node Attr. (Dim.) Edge Attr. (Dim.)
BZR_MD 306 21.30 225.06 2 3 -
COX2_MD 303 26.28 335.12 2 3 -
DHFR_MD 393 23.87 283.02 2 - 1
MUTAG 188 17.93 19.79 2 - -
PROTEINS 1113 39.06 72.82 2 1 -
IMDB-B 1000 19.77  96.53 2 - -
IMDB-M 1500 13.00 6594 3 - -
REDDIT-B 2000 429.63 497.75 2 - -
REDDIT-M-5K 4999 508.82 594.87 2 - -

and consider time constraints on server usage. We use resolution size of 50x50 for each summary
function, and the standard parameters set by the Gudhi library in Python|’| The order of landscape
summary function is set to 1 (max), whilst the power of weights is set to 1 for silhouette summaries.

F COMPUTATIONAL COMPLEXITY

Computational complexity (CC) of persistence diagram PDy (A) is O(N?3), where A is the number
of k-simplices in A (Otter et al., 2017). CC of EMP summary M‘j, depends on the vectorization
o used and the number d of the filtering functions one uses. If r is the resolution size of the
multipersistence grid, then one needs r(¢~1) single persistence diagrams to obtain MZ. Therefore,
cec(Ml) = O(r\@=1 . 3. C,(m)) where C,,(m) is CC for o and m is the number of barcodes
in PDy, e.g., if ¢ is persistence landscape, then C,(m) = m? and hence CC for EMP Landscape

withd = 2is O(r SNB m2). In practice, 7 is a constant and m is small compared to NV, hence the
complexity is again reduced to O(N3). On the other hand, as Betti numbers do not need PDy to be

https://gudhi.inria.fr/python/latest/
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computed, it is possible to obtain much faster algorithms for EMP Betti Summary (Edelsbrunner &
Parsal, |2014). Recently, Lesnick & Wright| (2022) introduced a quite fast algorithm for EMP Betti
summaries with O(M?) time where M is the rank of the multipersistence module with minimal
representation.

G ABLATION STUDY

Furthermore, to evaluate the performance of different types of EMP summaries (i.e., EMP Silhouette
(EMP-S), EMP Entropy (EMP-E), and EMP Betti (EMP-B) with different dimensions (i.e., Hy:
0-dimensional topology, and //,: 1-dimensional topology) and graph-based features (i.e., fy: node
features, and f¢: edge features; see more details in Section [5.2] and Appendix [E.1). We include
comparative statistics using all combinations of input variables, i.e. ablation study, for 3 datasets in
our analysis: BZR-MD (Table 3)), DHFR-MD (Tabled)), and REDDIT-BINARY (Table [3).

Each cell shows the classification accuracy (in % =+ standard deviation) when using different combi-
nations of variables. The best accuracy result is highlighted using bold font. A row/column named as
’none’ means that either graph-based features, or EMP summaries where not used to compute the
experiments. As such, the top row shows all the accuracy results without using any EMP topological
features. The first/left column shows the results only using EMP topological features. The cell in the
bottom right corner, of each EMP group, contains the accuracy results using all graph-extracted/EMP
features available.

We can observe that: (i) best results contains 1-dimensional EMP summaries, demonstrating the
necessity of capturing higher-order structures (e.g., triangles/cycles), (ii) the choice of the EMP
summary can significantly affect the performance, and (iii) the addition of EMP topological features
generally improves accuracy of versions without EMP summaries, thus, demonstrating the importance
of modeling global and topological graph structures.

Table 3: Ablation Study on BZR_MD dataset.

none fv fe fv+fe
none - 67.124 = 1.959 58.714 £0.520 67.642 £ 1.724
EMP-B H, 67.870 = 1.677 68.499 +1.962 67.514 +1.868 68.037 £+ 2.035
EMP-B H; 69.205 +£1.239 69.157 £1.220 68.935 £0.818 69.223 + 1.058
EMP-B Hy + H; 68.100 £ 1.171 68.492 +1.245 68.335 4+ 1.445 69.077 £1.470
EMP-E H, 65.190 + 1.484 64.930 & 2.045 64.962 £ 1.682 65.288 + 1.754
EMP-E H, 77469 + 1.144 77.438 +0.727 77.441 +0.830 77.766 + 0.952
EMP-E Hy + H; 73.023 £0.818 72.963 +1.014 73.057 & 1.284 73.324 £+ 1.086
EMP-S Hy, 68.135 + 1.294 68.525 + 0.865 68.426 4+ 1.235 68.232 4+ 0.969
EMP-S H; 71.068 = 1.417 71.071 =1.167 70.906 +1.416 70.743 £+ 1.275
EMP-S Hy + Hy 72282 +£1.012 72246 +0.883 72.682 +0.913 72.904 + 0.901
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Table 4: Ablation Study on DHFR_MD dataset.

none

v

fe

v+ fe

none

68.333 £ 0.874

60.707 £ 1.455

68.058 £ 1.159

EMP-B H, 71.872 £0.804 72.097 £ 0.876 71.794 £+ 0.541 72.121 £0.943
EMP-B H; 66.638 + 0.690 68.190 +0.933 67.072 £ 0.705 68.774 £ 1.028
EMP-B Hy + H; 73.959 +0.746  74.087 + 0.820 74.085 £ 0.671 74.213 4+ 0.905
EMP-E H, 74.906 + 0.968 74.550 + 0.867 74.521 £ 1.066 74.523 £+ 1.027
EMP-E H; 66.218 +1.499 66.424 + 1.304 66.067 + 1.152  66.397 £+ 0.899
EMP-E Hy + H; 74947 + 0.663 74.849 £ 0.819 74.667 +£0.922 74.796 + 0.960
EMP-S H, 78.434 +0.344 78.028 +0.597 78.537 £ 0.677 78.309 £+ 0.681
EMP-S H; 75.053 £0.909 74.953 +0.930 75.056 +£0.785 75.259 £+ 1.051
EMP-S Hy + H; 80.174 = 1.081 80.503 + 1.066 80.174 = 0.864 80.126 4+ 0.939
Table 5: Ablation Study on REDDIT-B dataset.
none fv fe v+ /e
none - 89.680 + 0.300 79.590 £ 0.394 90.125 4+ 0.277
EMP-B H, 88.925 £0.168 90.400 £+ 0.145 89.145 +0.193  90.520 +£ 0.204
EMP-B H; 80.715 £0.235 87.090 £ 0.217 84.620 + 0.160 88.225 + 0.280
EMP-B Hy + H; 89.970 +0.309 90.945 4+ 0.184 90.025 4+ 0.234  91.025 + 0.221
EMP-E H, 88.140 £ 0.265 89.8754+0.185 88.400 +0.210 89.945 + 0.177
EMP-E H; 79.850 £ 0.365 87.670 +0.303 84.600 + 0.214  88.640 £+ 0.156
EMP-E Hy + H; 89.285+0.234 90.010 +£0.234 89.240 +£0.202 90.045 £+ 0.221
EMP-S Hy 86.150 £ 0.261 87.925 +£0.162 86.940 + 0.206 88.415 + 0.241
EMP-S H, 77.580 £ 0.186 85.435+0.332 81.580 £ 0.222 86.960 £ 0.346
EMP-S Hy + H; 86.790 + 0.385 88.250 + 0.266 87.410 £0.315 88.590 4+ 0.377
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