Enhanced Bilevel Optimization via Bregman Distance

Feihu Huang!-2, Junyi Li', Shangqgian Gao', Heng Huang'

'Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
2College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics,
Nanjing, China
huangfeihu2018@gmail.com, junyili.ai@gmail.com, shg84@pitt.edu, heng.huang@pitt.edu

Abstract

Bilevel optimization has been recently used in many machine learning problems
such as hyperparameter optimization, policy optimization, and meta learning. Al-
though many bilevel optimization methods have been proposed, they still suffer
from the high computational complexities and do not consider the more general
bilevel problems with nonsmooth regularization. In the paper, thus, we propose a
class of enhanced bilevel optimization methods with using Bregman distance to
solve bilevel optimization problems, where the outer subproblem is nonconvex and
possibly nonsmooth, and the inner subproblem is strongly convex. Specifically,
we propose a bilevel optimization method based on Bregman distance (BiO-BreD)
to solve deterministic bilevel problems, which achieves a lower computational
complexity than the best known results. Meanwhile, we also propose a stochastic
bilevel optimization method (SBiO-BreD) to solve stochastic bilevel problems
based on stochastic approximated gradients and Bregman distance. Moreover, we
further propose an accelerated version of SBiO-BreD method (ASBiO-BreD) using
the variance-reduced technique, which can achieve a lower computational com-
plexity than the best known computational complexities with respect to condition
number « and target accuracy e for finding an e-stationary point. We conduct data
hyper-cleaning task and hyper-representation learning task to demonstrate that our
new algorithms outperform related bilevel optimization approaches.

1 Introduction

Bilevel optimization can effectively solve the problems with a hierarchical structure, thus it recently
has been widely used in many machine learning tasks such as hyper-parameter optimization [37, |20,
9, 138]], meta learning [9, 131} 22]], neural network architecture search [30], reinforcement learning
[15], and image processing [31]. In the paper, we consider solving the following nonconvex-strongly-
convex bilevel optimization problem:

min - f(z,y*(z)) + h(z), (Outer) (1
zeXCRY
s.t. y*(z) € arg min g(x,y), (Inner)
yeR2

where function F'(z) = f(z,y*(z)) : X — R is smooth and possibly nonconvex, and function
h(z) is convex and possibly nonsmooth, and function g(x, %) : X x R% — R is u-strongly convex
iny € R%. The constraint set X C R% is compact and convex. Problem covers a rich
class of nonconvex objective functions with nonsmooth regularization, and is more general than
the existing nonconvex bilevel optimization formulation in [11} [22] that does not consider any
nonsmooth regularization. Here the function h(x) can be the nonsmooth regularization term such as
h(z) = Al
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Table 1: Comparisons of the representative bilevel optimization algorithms for finding an e-stationary
point of the deterministic nonconvex-strongly-convex Problem (1)) with h(z) or without h(z), i.e.,
|[VE(x)||> < € or its equivalent variants. Gc(f,¢€) and Ge(g, €) denote the number of gradient
evaluations w.r.t. f(x,y) and g(x,y); JV (g, €) denotes the number of Jacobian-vector products;
HYV (g, €) is the number of Hessian-vector products; £ = L/ is the conditional number. / means
that the algorithms solve both the smooth and nonsmooth bilevel optimizations.

Algorithm | Reference | Gc(f,e) Ge(g, €) JV(g,€) HV(g,e) | Nonsmooth
AID-BiO (1] O(k*e ) | O(KPe %) | O(k*e ) | O(k*Pe )

AID-BiO 22] O3 1) | O(k* 1) | O3 1) | O3S )

ITD-BiO 22] O(k 3 eH | Ok*e™) | Ok 4 —1) O(k*e™)

BiO-BreD Ours O(k?2e ) | O3 ) | O3 | O(rde?) V.

Table 2: Comparisons of the representative bilevel optimization algorithms for finding an e-stationary
point of the stochastic nonconvex-strongly-convex problem () with h(z) or without h(z), i.e.,
E||VF(z)||* < € or its equivalent variants. Since some algorithms do not provide the explicit
dependence on «, we use p(k).

Algorithm | Reference Ge(f,€) Gc(g, €) JV (g, e€) HV(g,e) Nonsmooth
TTSA [15] O(p(k)e=27) | O(p(k)e=25) | O(p(k)e=%?) | O(p(r)e=27)
STABLE [5] O(p(r)e™2) | O(p(k)e 2 O(p(r)e %) | O(p(k)e~?)
SMB [13] O(p(r)e?) | O(p(r)e?) | O(p(r)e?) [ Op(k)e™?)
VRBO [41] O(p(r)e 1) | O(p(k e_l‘f) O(p(k)e=12) | O(p(r)e~19)
SUSTAIN [23] O(p(r)e 1) | O(p(k)e 1%) | O(p(k)e 1) | O(p(k)e~ 1)
VR-saBiAdam [18] O(p(r)e 1) | O(p(k)e %) | O(p(k)e 1) | O(p(k)e~ 1)
BSA [11] O(k%¢2) O(K%3) O(k5¢72) O(r%¢72)
stocBiO [22] O(rk%e7?) O(x%2) O(kPe7?) O(r%¢72)
SBiO-BreD Ours O(rk°e2) O(rk°e2) O(Kk%e2 O(rk%2) v
ASBiO-BreD Ours O(k%e=1?) O(K°e1?) O(K> e~ 1) O(KSe=12) Vv

Many recent machine learning research problems utilize the stochastic loss functions. Thus, we also
consider the following stochastic bilevel optimization problem:

min = E¢op [f(x,y*(x);f)} + h(x), (Outer) 2)
zEXCRU
s.t.y*(z) € arg mHiQn Ecp [9(,y; )], (Inner)
yER2

where function F(z) = E¢ [F(x;€)] = E¢ [ f(z,y*(x); €)] is smooth and possibly nonconvex, and
function h(x) is convex and possibly nonsmooth, and function g(z,y) = E¢ [g(z,y; ()] : X xR%= —

R is p-strongly convex in y € R92. ¢ and ¢ are random variables following unknown distributions D
and D', respectively. Both Problem (I)) and Problem (2) have been used in many machine learning
tasks with a hierarchical structure, such as hyper-parameter meta-learning [9} 22] and neural network
architecture search [30].

Many bilevel optimization methods recently have been developed to solve these problems. For
example, [11,122] introduced a class of effective methods to solve the above deterministic Problem
and stochastic Problem (2) with h(z) = 0. However, these methods suffer from high computational
complexity issue. More recently, multiple accelerated methods were designed for stochastic Problem
() with h(z) = 0. Specifically, [3] 23] [14] 41]] proposed accelerated bilevel optimization algorithms
via using the variance reduced techniques of SARAH/SPIDER/SNVRG [36/ 18, 140} 43] and STORM
[6]]. However, these accelerated methods obtain a lower computational complexity without considering
the condition number, which also accounts for an important part of the computational complexity
(please see Tables [I|and [2). Meanwhile, these accelerated methods only focus on the special case of
the stochastic bilevel optimization Problem (2)) with h(z) = 0.

To fill in the gaps, in the paper, we propose a class of efficient bilevel optimization methods with
lower computational complexity to solve the bilevel optimization Problems (T)) and (2)), where the
outer subproblem is nonconvex and possibly nonsmooth, and the inner subproblem is strongly convex.
Specifically, we use the mirror decent iteration to update the variable x based on the Bregman distance.
Our main contributions are summarized as follows:
(i) We propose a class of enhanced bilevel optimization methods based on Bregman distance to
solve the nonconvex-strongly-convex bilevel optimization problems. Moreover, we provide
a comprehensive convergence analysis framework for our proposed methods.



(ii) An efficient bilevel optimization method based on Bregman distances (BiO-BreD) is pro-
posed to solve the deterministic bilevel Problem (I)). We prove that our BiO-BreD achieves
a lower sample complexity than the best known results (please see Table [I).

(iii)) We introduce an efficient bilevel optimization method based on adaptive Bregman distances
(SBiO-BreD) to solve the stochastic bilevel Problem (2). Moreover, we design an accelerated
version of SBiO-BreD algorithm (ASBiO-BreD) via using the variance reduced technique,
which achieves a lower sample complexity than the best known results (please see Table [2).

Note that our methods can solve the constrained bilevel optimization with nonsmooth regularization
but not rely on any form of constraint set and nonsmooth regularization. In the other words, our
methods can solve the unconstrained bilevel optimization without nonsmooth regularization studied
in [[11} 22]. Naturally, our convergence analysis can be applied to both the constrained bilevel
optimization with nonsmooth regularization and the unconstrained bilevel optimization without
nonsmooth regularization.

2 Related Works

In this section, we will revisit the existing bilevel optimization algorithms and Bregman distance
based methods.

2.1 Bilevel Optimization Methods

Bilevel optimization recently has attracted increasing interest in many machine learning applications
such as model-agnostic meta-learning, neural network architecture search, and policy optimization.
Thus, recently many algorithms [9, [111 15} 134, 135} 22, [28]] have been proposed to solve the bilevel
optimization problems. Specifically, [[11]] proposed a class of approximation methods for bilevel
optimization and studied convergence properties of the proposed methods under convexity assumption.
[34,135] developed the gradient-based descent aggregation methods for convex bilevel optimization.
[37] presented a nonlinear primal—dual algorithm for nonsmooth convex bilevel optimization in
parameter learning problems.

In parallel, [[15]] introduced a two-timescale stochastic algorithm framework for nonconvex stochastic
bilevel optimization in reinforcement learning. Multiple accelerated bilevel approximation methods
were developed later. Specifically, [22] proposed faster bilevel optimization methods based on
the approximated implicit differentiation (AID) and iterative differentiation (ITD), respectively.
(50123114} 141] presented several accelerated bilevel methods for the stochastic bilevel problems using
variance-reduced techniques. More recently, [[18] proposed a class of efficient adaptive methods for
nonconvex-strongly-convex bilevel optimization problems. At the same time, the lower bound of
bilevel optimization methods has been studied in [21] for these nonconvex-strongly-convex bilevel
optimization problems. In addition, [34} 27,132, |33]] designed a class of value-function-based and
gradient-based bilevel methods for nonconvex bilevel optimization problems and studied asymptotic
convergence properties of these methods. [38] analyzed a class of special nonconvex nonsmooth
bilevel optimization methods for selecting the best hyperparameter value for the nonsmooth 7,
regularization with 0 < p < 1.

2.2 Bregman Distance-Based Methods

Bregman distance-based method (a.k.a, mirror descent method) [4}[1]] is a powerful optimization tool
because it uses the Bregman distance to fit the geometry of optimization problems. Bregman distance
was first proposed in [2], and later extended in [3]. [4] introduced the first proximal minimization al-
gorithm with Bregman function. [1] studied the mirror descent for convex optimization. [[7]] presented
an effective variant of mirror descent, i.e. composite objective mirror descent, for regularized convex
optimization. Subsequently, [42] studied the convergence properties of mirror descent algorithm
for solving nonsmooth nonconvex problems. [26] integrated the variance reduced technique to
the mirror descent algorithm for stochastic convex optimization. The variance-reduced adaptive
stochastic mirror descent algorithm [29] was proposed to solve the nonsmooth nonconvex finite-sum
optimization. More recently, [16] studied Bregman gradient methods for policy optimization.

3 Preliminaries

3.1 Notations

Let I; denote a d-dimensional identity matrix. ¢/{1,2, - -- , K} denotes a uniform distribution over
a discrete set {1,2,--- , K}. || - || denotes the ¢2-norm for vectors and spectral norm for matrices,



respectively. For two vectors x and y, (z,y) denotes their inner product. V f(x,y) and V f (x,y)
are the partial derlvatlves w.r.t. variables x and y. Given the mini-batch samples B = {¢'}?_,, we

define Vf(x;B) = 3 Zi:l V f(z; £%). For two sequences {an, b, }™ 1, a, = O(b,,) denotes that
a, < Cb, for some constant C' > 0. The notation O() hides logarithmic terms. Given a convex
closed set X', we define a projection operation Px (xg) = argmingey ||z — xo||?. Oh(z) is the
subgradient set of function h(zx).

3.2 Some Mild Assumptions

Assumption 1. Function F(z) = f(x,y*(x)) is possibly nonconvex w.r.t. x, and function g(z,vy)
is p-strongly convex w.r.t. y. For stochastic case, the same assumptions hold for f(z,y*(x); &) and
g(z,y;C), respectively.

Assumption 2. Functions f(x,y) and g(x,y) satisfy
1) 19, 7@, 9)]| < Cry and V2,902, )| < Couy for any s € X andy € R%;

2) The partial derivatives V. f(z,y), Vy f(z,y), Vag(z,y) and Vyg(z,y) are L-Lipschitz,
e.g. forx,x1,x9 € X and y,y1,ys € R%,

IVaf(z1,y) = Ve f(22,y)ll < Lllzy = 22|, [[Vaf(@,91) = Vo f (2, 42) [ < Lllys — w2l

For stochastic case, the same assumptions hold for f(x,y; &) and g(x,y; C) for any € and (.

Assumption 3. The partial derivatives meg(:r y) and szg(x, y) are Lggy-Lipschitz and Lg,,-
Lipschitz, e.g., for all x,x1, x5 € X and y,y1,y2 € R%

1V2,9(21,9) = Va,9(x2,9)ll < Loayllzr — 2], V2,92, 91) = Va,9(z, 92)ll < Loayllyr — v2|-
For stochastic case, the same assumptions hold for wag(x y;¢) and V? +9(x,y; Q) for any .

Assumption 4. Function h(x) for any x € X is convex but possibly nonsmooth.
Assumption 5. Function ®(x) = F(x) + h(z) is bounded below, i.e., ®* = inf,cx ®(x) > —o0.

Assumptions 1-3 are commonly used in bilevel optimization methods [[11} 22} [23]]. According to
Assumption 1, [|f(z,y1) — f(z.y2)ll = [V, f (@50 (w1 — y2)l| < IV (o, y)lllyr — wall <
Ctyllyr — y2||, where y, = 791 + (1 — 7)y2 and 7 € [0,1]. Thus ||V, f(z,y)| < Cy, is similar
to the assumption that the function f is M-Lipschitz in [22]]. From the proofs in [22]], we can find
that they still use the norm bounded partial derivative ||V, f(z,y)|| < M. Similarly, according
to Assumption 1, we have ||Vyg(z1,y) — Vyg(z2,y)|| < Lljz1 — 22| Since ||Vyg(z1,y) —
Vyg(a2, y)l| = ||V§yg(x7uy)(x1 —z2)|| < IVi,g9(r y)lllzr — 22| < Cyayllz1 — 22|, Where
zp =721+ (1 —7")z2 and 7’ € [0, 1], we can let Cyqy = L as in [22]]. From the proofs in [22],
we can find that they still use the norm bounded partial derivative ||V2, g(x,y)|| < L for all z,y.
Throughout the paper, we let C'y,,, = L. Assumption 4 is generally used for regularization such as
h(z) = ||z||1. Assumption 5 ensures the feasibility of Problems (I)) and (2).

When we use the first-order methods to solve the above bilevel optimization Problems (IJ) and (2)), we
can easily obtain the partial (stochastic) derivative V,g(z,y) or V,g(z,y; ¢) to update variable y.

However, it is hard to get the (stochastic) gradlent VF(z)= W or VF(x;€) = W
when there is no closed form solution for the inner problem of Problems (I)) and (Z). Thus, a key
point of solving the Problems (T)) and (2)) is to estimate the gradient V F'(x). The following lemma
provides one gradient estimator of VF'(x).

Lemma 1. (Lemma 2.1 in [I1|]) Under the above Assumptions (I} 2] B), we have, for any x € X

VE(z) = Vo f(z,y" (@) + Vy* ()" Vy f(z, 5" (@)
= Vo f(,y" (@) = Viyg(a,y" (2))[Vy,9(z,y" (2))] 7' Vy f (2,5 (@) )

Lemmaprovides a natural estimator of V F'(x), defined as, for all z € X,y € R%

= —1
Vi, y) = Vef(@,y) — Vi, g9z, ) (Vi,g(z,y)  Vyf(z,y). (4)
Next, we show some properties of VF(z), y*(z) and V f(x, y) in the following lemma:



Algorithm 1 Deterministic BiO-BreD Algorithm
1: Input: T, K > 1, learning rates v > 0, A > 0;
2: initialize: o € X and y®*| = yy € R%;

3: f0rt—0,1,~-~7 —1do
4 Lety) = yt 15
5 fork=1,--- , Kdo
. k_ k=1 k—1y.
6: Update y =y, — AVyg(xe, ¥ )s
7:  end for p
8:  Compute partial derivative w;, = % via backpropagation w.r.t. xy;

9:  Given a p-strongly convex mirror function /;;

10:  Update w441 = arg mingex {(wy, ) + h(z) + = Dy, (z,74) };
11: end for
12: Output: Uniformly and randomly choose from {x, y; }7 ;.

Lemma 2. (Lemma 2. 2 in [11l]) Under the Assumptions (I I I) forall x,x1,29 € X andy € R%,
we have ||V f(z,y) — VF(z)|| < Ly[ly*(z) - y||

ly™(21) = y* (@) || < Kllzr — 22, [[VF(21) = VF(z2)|| < L2y — a2,

2 C c 202+ L0y C?
where Ly = L+%+ fy gzy gyy syl T %’ and Lp = L + l;uy v 4
LyyycfyL+L3+ngycfyL Lyyycfy
u? + 3

4 Bilevel Optimization via Bregman Distance Methods

In this section, we propose a class of enhanced bilevel optimization methods based on Bregman
distance to solve the deterministic Problem (TJ) and the stochastic Problem (@), respectively.

4.1 Deterministic BiO-BreD Algorithm

In this subsection, we propose an efficient deterministic bilevel optimization method via Bregman
distances (BiO-BreD) to solve the deterministic Problem (I)). Algorithm[T|summarizes the algorithmic
framework of our BiO-BreD method.

Given a p-strongly convex and continuously-differentiable function ¢ (z), i.e., (x1 — z2, Vip(x1) —
Vi(z)) > pllx: 2, we define a Bregman distance [3, 4] for any x1, 15 € X:

Dy(x1,22) = Y(x1) — P(22) — (V(22), 21 — 2).

In Algorithm 1| we use the mirror descent iteration to update the variable  at ¢t + 1-th step:

. 1
Ti+1 = argmin {(wt, x) + h(z) + ;Dwt (x, xt)}, ®)

where v > 0 is stepsize, and w; is an estimator of VF'(x;). Here the mirror function ¢, can be
dynamic as the algorithm is running. Let ¢ (z) = 1|z, we have Dy, (z,z;) = %[z — 2%
When X' = R9, the above subproblem (@) is equivalent to the proximal gradient descent. When
X CR% and h( ) = 0, the above subproblem (3)) is equivalent to the projection gradient descent.
Let ¢y (x) = 3o’ Hyx, we have Dy, (z, a:t) 3(x — x4)"Hy(z — x;). When H, is an approximated
Hessian matrlx the above subproblem (3)) is equivalent to the pr0x1mal quasi-Newton decent. When
H; is an adaptive matrix as used in [19], the above subproblem (5) is equivalent to the proximal
adaptive gradient decent.

0f(wnyt

In Algorithml we use gradient estimator w; = ) to estimate VF (2+), where the partial

derivative w, = 2L(Zee) (Iat’yf )
4.2 SBiO-BreD Algorithm

In this subsection, we introduce an efficient stochastic bilevel optimization method via Bregman
distance (SBiO-BreD) to solve the stochastic bilevel optimization Problem (2). Algorithm 2]describes
the algorithmic framework of our SBiO-BreD method.

is obtained by the backpropagatlon W.EL Xy



Algorithm 2 Stochastic BiO-BreD (SBiO-BreD) Algorithm

1: Input: T, K > 1, stepsizes v > 0, A > 0, {n:}7_;;

2: initialize: zo € X and 3y € R%;

3: fort=0,1,--- ;T —1do

4:  Draw randomly b independent samples B; = {({}?_,, and compute stochastic partial deriva-
tives v, = Vyg(2e, ys; Br);

Update Yt+1 = Yt — /\ntvt; B

Draw randomly b(K + 1) independent samples By = {&i,¢{; -+ t{(fl b_,, and compute
stochastic partial derivatives w; = V f (¢, ys; By);

7 Given a p-strongly convex mirror function ;

8: Update z;41 = arg mingex { (wy, z) + h(z) + %qu (z,20)};
9: end for

0: Output: Uniformly and randomly choose from {z;,y; } ;.

AN

Given K > 1 and draw K + 1 independent samples £ = {¢,¢°,--- ,¢%~1}, as in [15] 23], we
definite a stochastic gradient estimator:

k
Vi@, y,&) = Vaf(z,y:£)—Va,g(x,y;:¢°) { I (e, - 7 V9,5 () |V f (@, 9:8), (6)
i=1

where k ~ U {0,1,--- ,K—1}isa uniform random variable independent on €. Itis easy to verify that
Vf(x,y,§) is a biased estimator of V f(z,y), i.e. Eg [Vf(ac, Y; 5)] # Vf(z,y). For the gradient
estimator (G), thus we define a bias R(z,y) = V f(z,y) — Eg [?f(x, y; 5_)} X xR2 5 R.

Lemma 3. ( Lemma 2.1 in [23] ) Under the about Assumptions B), for any K > 1, the gradient
estimator in (0) satisfies

LC UK

IRyl < =2 (1= 1)

Lemmal 5| shows that the bias R(z,y) decays exponentially fast with number K, and with choosing

=1L - log(LCpy T/ ), wehave || R(z, y)|| < 7. Let ch” (1—%)1( < 7., we have K log(1 —ﬁ) <

1og(LnyT) Due to p < L, we have K > log(cfyLT)/log( ) Further due to £ < log(+%- )
let K = ﬁ log(LC#,T /1), we have ||R(z,y)|| < % Note that here we use Cypy = L.

To simplify notations, let f_é = {&., (2 PR ,(tli_l}. In Algorithm we use mini-batch stochastic
gradient estimator wy = V f (x4, y; By) = ¢ Ei’,l Vf (s, ys; €, where V f (4, ys; €)

= me(ilfmyt;ft,i) - viyg(xtayt;Ct i { H La, — yy9($t7yta Q 2)>]vyf($tayt§ft,i)7

with k ~ 1{0,1,--- , K — 1}. Let R(z¢,y¢) = wy — V f(x,y0) = V(20,9 By) = ?f(xt,yt)
we have B[V f (¢, ys; Bt)] R(z¢,y:) + V f(xt,y:). According to the above Lemmal it is easy to

verify that | R(z, yi)|| < chy (1 - Z)K

4.3 ASBiO-BreD Algorithm

In this subsection, we propose an accelerated version of SBiO-BreD method (ASBiO-BreD) to
solve the stochastic bilevel optimization Problem (2) via using variance reduced technique of
SARAH/SPIDER/SNVRG [36 18} 140} 43]]. Algorithm E] shows the algorithmic framework of the
ASBiO-BreD method.

In Algorithm[3] we use the variance reduced technique of SPIDER to accelerate SBiO-BreD algorithm.
When mod (t,q) = 0, we draw a relative large batch samples B; = {¢{}?_, and B; = {&i}b_,
to estimate our stochastic partial derivatives v; and wy, respectlvely When mod (t,q) # 0,

we draw a mini-batch samples Z, = {£/}?, and Z, = {£/}?, (b > b)) to estimate v; and
wy, respectively. Let R(x¢,y:) = Vf(xt,yt,It) Vf(xe,ye) when mod (¢,q) # 0, we have

E[Vf(ae, g T)] = R(xe,ye) + Vf e, ye) and || Rz, yy)| < 2Cn (1 — )"

6



Algorithm 3 Accelerated Stochastic BiO-BreD (ASBiO-BreD) Algorithm

1: Input: T, K > 1, g, stepsizes v > 0, A > 0, {n;}1_,, mini-batch sizes b and b;;
2: initialize: zo € X and 1o € R%;

3: fort=0,1,---,T—1do

4: if mod (¢,¢) = 0 then

5: Draw randomly b independent samples B; = {(/}?_;, and compute stochastic partial
derivative v, = Vyg(x¢, y1; Br);

6: Draw randomly b( K + 1) independent samples B; = {&; ;, Cgi cee Cf;_l b_,, and compute
stochastic partial derivative w; = V f (x4, ys; Bt);

7.  else

8: Generate randomly b; independent samples Z; = {(} }Z 1> and compute stochastic partial
derivative ve = Vyg(x, y;Ze) — Vyg(@e—1, ye—15L1) + ve-1;

9: Generate randomly by (K + 1) independent samples Zy = {&.5, ¢, -+ - , K b 101 and

compute stochastic partial derivative wy; = V f (2, y1;Z;) — Vf (z¢_1, yt_l,l}) + wy_1;
10:  end if
11:  Update yir1 = y¢ — Anpvy;
12:  Given a p-strongly convex mirror function ;
13:  Update 2,41 = argmingex {(wy, ) + h(z) + %Dlpt (z,20) }s
14: end for
15: Output: Uniformly and randomly choose from {x;, y; }71_;.

S Convergence Analysis
In this section, we study the convergence properties of our new algorithms (i.e., BiO-BreD, SBiO-
BreD, and ASBiO-BreD) under mild conditions. All proofs are provided in the Appendix

We begin with introducing a useful convergence metric ||G;||? or E||G¢||? to measure convergence
properties of our algorithms. Given the generated parameter vector x; at the ¢-th iteration in our
algorithms, as in [10, [29], we define the generalized gradient at the ¢-th iteration as:

1 . 1
G, = ;(fﬂt —xf,), =z, =arg ;Iél)r(l{<VF(«Tt)7$> + h(z) + ;Dwt (x,24) },

where F(z) = f(z,y*(x)) or F(z) = E¢[f(z,y*(x);£)]. When ¢(z) = 1[z[? X = R% and
h(z) = cis a constant, we have ||G;||*> = || VF(x;)|?, which is a common convergence metric used
in [T1L22). When ¢ (z) = 3||z||?, ¥ € R% and h(x) = c is a constant, our convergence metric is
1G:|? = ||%(1't — Px(z; — yVF(x;))||?, which was also used in [T3].

Next, we provide some useful lemmas and some mild assumptions.

Lemma 4. (Lemma 3.1 in [23]]) Under the above Assumptions (I} 2} 3), stochastic gradient estimator
YV f(z,y;€) is Ly-Lipschitz continuous, e.g., for v1,x2 € X and y € R%,

EBel|Vf(21,y:€) — V(w2491 < L ||z — z2f?,

2 2 4 K 4 K°Ly,,
where L5, = 2L* + 6L o L P +60fng»8y2uL e + 6L = u)2(2ZIL/ )
Lemma 5. Suppose the sequence {x;,y;}1_, be generated from Algorithms [2] and l Under the
above assumptions, given 0 < n; < 1forallt > 1and 0 < \ < we have

GL’

* ntu 3mA?
lyees = Ger)I? < (1= 25y =y (o) = = el
25 oK
+ TRV (o) = ol + o =

The above lemma 5| basically follows the Lemma 28 of [17] used for minimax optimization.
Assumption 6. The stochastic partial derivative Vyg(x,y; () satisfies E[V ,g(x,y; ()] = Vyg(z,y)
and E||V ,g9(z,y;¢) — Vyg(z,9)||?> < 0% The estimated stochastic partial derivative V f(x, y; €)
defined in (6) satlsﬁes Ee[Vf(z,y;8)] = V(z,y) + R(z,y) and B¢|V f (2, y;€) — V f(z,y) —
R(z,y)|* < o?



Assumption 7. The mirror functions {1;(x)}1_, are p-strongly convex, where p > 0.

Assumption [6]is commonly used in stochastic bilevel optimization methods [15} 23]. Assumption
shows that the constant p can be seen as a lower bound of the strong convexity of all the mirror
functions ¢ (x) for all t > 0, which is widely used in mirror descent algorithms [29] and adaptive
gradient algorithms [19].

5.1 Convergence Analysis of BiO-BreD Algorithm
In this subsection, we provide the convergence properties of our BiO-BreD algorithm.

Theorem 1 Suppose the sequence {xy,y; }1_, be generated from Algorlthm Let 0 < < 75 L ,

0<A< 3, K =log(T )/log(li/\u) +land ||y) — y*(x,)||* < Aforallt > 0, we have
1 Z 16, < (®(z0) — ®*)  22AL3  22AL3 2213 o
3Tp p*T p*T  p?T?
where k = L L= L(L""/‘)’ Ly = 2Csy (1L gzy+LL.qyy) and L3 = Lny.

I w2 ©

Remark 1. Without loss of generality, let L > L, X\ = 5, v = 43L—'; and p = O(L). It is easy

to verify that our BiO-BreD algorithm has a convergence rate of O(%) Let %2 = €, we have
T = k% L. Dueto K = log(T)/log(ﬁ) + 1, we choose K = O(rlog(L)) for finding e-
stationary point of the problem (), we need the gradient complexity: Ge(f,¢) = 2T = O(rk%e™ 1)

and Ge(g,€) = KT = O(k3e™1), and the Jacobian-vector and Hessian-vector product complexities:
JV(g,e) = KT = O(k%¢ ') and HV (g,¢) = KT = O(k3e1).

5.2 Convergence Analysis of SBiO-BreD Algorithm
In this subsection, we provide the convergence properties of our SBiO-BreD algorithm.
Theorem 2. Suppose the sequence {x;,y;}1_, be generated from Algorithm Let A = ||lyp —

LC, T ./ 3p  9npul A
y* () 2)K:%log(#),0<n:mg1,O<’ySmm(ﬁ,Sgg’;z,zgfg)and0<)\§

1
aL we have

T
1 32(®(xg) — P* 32A 75202  400nAo? 752

3Tvp 3Tvp  3p3b 9ypub + 3p2T2"

Remark 2. Without loss of generality, let L > l A=

— mi 3p  9npuA nppA
sr 7 = min (575, o 47L§) and

p=0(L), we have ~vp = O( ) It is easily verified that our SBiO-BreD algorithm has a convergence
rateofO( ) Let——Qand“ :2,wehaveT—2fee Yand b = 2k%¢7!. Due to K =
ﬁ log( LCZ” ) we have K = O(rlog(%-)) = O(k). For finding e-stationary point of the problem

(@), we need the gradient complexity: Gc(f, €) = 2bT = k%°c 2 and Gc(g,¢) = bT = O( Se2),
and the Jacobian-vector and Hessian-vector product complexities: JV (g, €) = bT = O(k%e2) and
HV(g,e) = KbT = O(x%¢2).

5.3 Convergence Analysis of ASBiO-BreD Algorithm
In this subsection, we provide the convergence properties of our ASBiO-BreD algorithm.

Theorem 3. Suppose the sequence {xy,y;}1_, be generated from Algorithm Let A

IA I

* LCys,T
lyo — y*(@o)lI> bn = ¢ K = LZlog(==*=), 0 < n = 7 < 1L, 0 < v
min (%, 92, 0 e, 90Y) and 0 < A < min (i, sz, we have

T—1

1 32(P(xp) — P*)  32A 152 4 1 1,02

7 2 ElGP < tamat ot ) O

T 3Tvp 3Tvp  3T7%p npy L Ly’ b
Remark 3. Without loss of generality, let L > i A = min (&,100%77‘%2), vy =

: 3p 3p_ 2pmpX pn 9pnuA _ _ 1 i i ;
min <38L§(n’ L7 1012 7 '8 » 100s2 ) and p = O(L), we have yp = O(z). It is easily verified that

our ASBiO-BreD algorithm has a convergence rate of O (%4 ) Let

2
= %and% = £, we have

L
T 2



T =2k*Yand b = 2k%¢". Dueto K = ﬁlog(w%), we have K = O(mlog(’%)) = O(k).

Let by = q = ke "5, For finding e-stationary point of the problem (2)), we need the gradient complex-
ity: Ge(f,e) = 2(”% +201T) = O(k%¢~15) and Ge(g, €) = %T + 201 T = O(kPe~ %), and the

Jacobian-vector and Hessian-vector product complexities: JV (g,€) = % + 20T = O(KkPe1?)
and HV (g,€) = K (% +2b,T) = O(k5%¢ ).
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Figure 1: Validation Loss vs. Running Time for different methods. We compare our BiO-BreD with
deterministic baselines (the first column), SBiO-BreD with stochastic baselines (the second column);
ASBiO-BreD with momentum-based or SPIDER/SARAH based baselines (the last column). We test
two values of p: large noise setting ¢ = 0.8 (top row) and small noise setting o = 0.4 (bottom row).

6 Numerical Experiments

In this section, we perform two tasks to demonstrate the efficiency of our algorithms: 1) data hyper-
cleaning task [39] over the MNIST dataset [25]]; 2) hyper-representation learning task [9] over the
Omniglot dataset [24]. In the experiment, we compare our algorithms (i.e., BiO-BreD, SBiO-BreD,
and ASBiO-BreD) with the following bilevel optimization algorithms: reverse [9]/AID-BiO [11} 22],
AID-CG [12]], AID-FP [12]], stocBiO [22]), MRBO [21], VRBO [21], FSLA [28], SUSTAIN [23],
and VR-saBiAdam [18]]. All experiments are averaged over 5 runs and we use a server with AMD
EPYC 7763 64-Core CPU and 1 NVIDIA RTX A5000.

We use Bregman function ¢;(z) = %xTHtx to generate the Bregman distance in our algorithms,
where H; is the adaptive matrix as used in [19], i.e. the exponential moving average of the square of
the gradient and we use coefficient 0.99 in all experiments.

6.1 Data Hyper-cleaning

In this subsection, we perform data hyper-cleaning over the MNIST dataset [23]]. The formulation of
this problem is as follows:

m)%n lyal ()\,w*()\)) = DL Z l(l'zTU)*()‘)?yi)

(%4,y:) €Dy
1
s.t. w*(\) = argmin (N, w) := —— c\)l(xfw,y;) + Cllwl?,
() =argmin by = 5 Y oIl + Clul

(zi,yi)€EDT

where [(-) denotes the cross entropy loss, D7 and Dy, are training and validation datasets, respectively.
Here A = {\; }iep, are hyper-parameters and C' > 0 is a tuning parameter, o(-) denotes the sigmoid
function. In experiment, we set C' = 0.001. The dataset includes a training set and a validation set



Table 3: Validation accuracy vs. Running Time (5-way-1-shot) for different methods (with L

regularization)
Time | AID_BiO | ITD_BiO | MRBO | FSLA | VRBO | VR-saBiAdam | ASBiO-BreD
20s 0.6509 0.6411 0.6103 | 0.6539 | 0.5951 0.6812 0.6653
40s 0.7365 0.7210 0.6971 | 0.7399 | 0.6805 0.7141 0.7403
60s 0.7762 0.7721 0.7519 | 0.7661 | 0.7429 0.7523 0.7830

Table 4: Validation accuracy vs.

Running Time (5-way-5-shot) for different methods (with L

regularization)
Time | AID_BiO | ITD_BiO | MRBO | FSLA | VRBO | VR-saBiAdam | ASBiO-BreD
20s 0.8316 0.8131 0.8174 | 0.7993 | 0.7730 0.7753 0.8529
40s 0.8779 0.8621 0.8634 | 0.8485 | 0.8305 0.8188 0.8967
60s 0.9032 0.8968 0.8819 | 0.8824 | 0.8745 0.8640 0.9313

where each contains 5000 images. A portion of the training data are corrupted by randomly changing
their labels, and we denote the portion of corrupted images as g.

The detailed experimental setup is described in the Appendix [A.] For hyper-parameters, we perform
grid search for our algorithms and other baselines to choose the best setting. The experimental results
are summarized in Figure[T] As shown by the figure, BiO-BreD outperforms the reverse algorithm;
SBiO-BreD outperforms AID-FP/stocBiO and AID-CG methods, and ASBiO-BreD outperforms the
other SPIDER based algorithm MRBO and several momentum-based variance reduction methods:
MRBO, SUSTAIN, FSLA, and VR-saBiAdam.

6.2 Hyper-representation Learning

In this subsection, we perform the hyper-representation learning task over the Omniglot dataset [24].
The formulation of this problem is as follows:

. * 1
m}}n lq)al ()\7 w ()\)) = ]Ef [m ( Z

xi,Yi) €Dy ¢

(wg T @l N )1 €] +all Al

1
twi()) = in L\ w; &) i= —— HwTd(xi; M),y ) + Cllwl|?
s.twg (A) = argmin Ly (A, w; €) Dyl > (w (i )7y)+ [l

(z:,y:)EDT,§

where [(-) denotes the cross entropy loss, Dy ¢ and Dy ¢ are training and validation datasets for
randomly sampled meta task &. Here ¢(-, -) is a four-layers convolutional neural network with max-
pooling and 32 filters per layer [9], which denotes a representation mapping. A denotes the parameter
vector of the representation mapping ¢(+, -), and C' > 0 is a tuning parameter to guarantee the inner
problem to be strongly convex. The term «||A||; imposes the sparsity of hyper-representations. In the
experiment, we set « = 0.001 and C' = 0.01.

The detailed experimental setup is described in the Appendix [A.2] The results of validation accuracy
(test accuracy) are summarized in Table[3|and 4 From these results, our ASBiO-BreD algorithm
outperforms other baselines in the non-smooth case. We also consider the smooth case, where the
upper level problem is not added the L, regularization. The results without L, regularization are
given in the Appendix [A.2]

7 Conclusions

In the paper, we proposed a class of enhanced bilevel optimization methods based on the Bregman
distance to solve the nonconvex-strongly-convex bilevel optimization problems possibly with nons-
mooth regularization. Moreover, we provided a comprehensive theoretical analysis framework to
analyze our methods. The theoretical results show that our methods outperform the best known
computational complexities with respect to the condition number  and the target accuracy e for
finding an e-stationary point.
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A Experimental Details

In this section, we introduce more details of our experiments. we compare our algorithms (i.e., BiO-BreD, SBiO-
BreD, and ASBiO-BreD) with the following bilevel optimization algorithms: reverse [9)/AID-BiO [11} 22],
AID-CG [12]], AID-FP [12], stocBiO [22]), MRBO [21], VRBO [21]], FSLA [28]], SUSTAIN [23]], and VR-
saBiAdam [18]]. We do not include results for STABLE [5]/SVRB [14], because they require matrix inversion
which does not make sufficient progress compared to other baselines within a given time range. SMB/SEMA [13]]
method resembles SUSTAIN, thus we do not include it in the comparison.

A.1 Data Hyper-cleaning

In this subsection, we perform data hyper-cleaning over the MNIST dataset [25]]. The formulation of this problem
is as follows:

min Lo (A, w” () = S @t ()

1Dyl (z4,y:) €Dy
* . 1 T 2
s.t. w” (A) = argmin gy (N, w) := —— o(N)l(x; w,y;) + Cllwl|*,
(M) gmin Ly (A, w) D7 > (AU yi) + Cllwl|

(zi,9i)EDT

where [(-) denotes the cross entropy loss, Dy and Dy are training and validation dataset, respectively. Here
A = {Ai}iep, are hyper-parameters and C' > 0 is a tuning parameter, o (-) denotes the sigmoid function. In
experiment, we set C' = 0.001.

For training/validation batch-size, we use batch-size of 32, while for VRBO and our ASBiO-BreD, we choose
larger batch-size 5000 (parameter b in Algorithm [3) and sampling interval (parameter g in Algorithm 3] is set
as 3. For stocBiO/AID-FP, AID-CG and reverse, we use the warm-start trick as our BiO-BreD algorithm, i.e.
the inner variable starts from the state of last iteration (Line 4 of Algorithm[I). We fine tune the number of
inner-loop iterations and set it to be 50 for these algorithms. For MRBO, VRBO, SUSTAIN and our SBiO-
BreD/ASBiO-BreD, we set K = 3 to evaluate the hyper-gradient. For FSLA, K = 1 as the hyper-gradient
is evaluated recursively. As for learning rates, we set 1000 as the outer learning rate for all algorithms except
our algorithms which use 0.1 as we change the learning rate adaptively. As for the inner learning rates, we
set the stepsize as 0.05 for reverse, BiO-BreD, AID-CG, stocBiO/AID-FP, MRBO/SUSTAIN, FSLA and our
SBiO-BreD; we set the stepsize as 0.2 for VRBO, VR-saBiAdam and our ASBiO-BreD; we set the stepsize as 1
for SUSTAIN.

A.2 Hyper-representation Learning

In this subsection, we perform the hyper-representation learning task over the Omniglot dataset [24]. The
formulation of this problem (without L; regularization) is as follows:

min L (L' () = Be[ 5 30 1(wE )7 0w N). 01 )]

D
[Dv.el (zi,9i)EDy ¢

* . 1
s.t.wg (A) = arg min lir( N, w; &) = Drel Z l(wT¢($i§ >\)7yz‘) + Cllwl)?,
0 (25,y5)EDTE

where [(-) denotes the cross entropy loss, D7 ¢ and Dy ¢ are training and validation dataset for randomly
sampled meta task £. Here ¢(, -) is a four-layers convolutional neural network with maxpooling and 32 filters
per layer [9], which denotes a representation mapping. A denotes the parameter vector of the representation
mapping ¢(-,-), and C' > 0 is a tuning parameter to guarantee the inner problem to be strongly convex. In the
experiment, we set C' = 0.01.

In every hyper-iteration, we choose 4 meta tasks, while for VRBO and our ASBiO-BreD, we choose larger
batch-size 16 (parameter b in Algorithm3)) and sampling interval (parameter g in Algorithm B} is set as 3. For
stocBiO/AID-FP, AID-CG and reverse, we use the warm-start trick as our BiO-BreD algorithm, i.e. the inner
variable starts from the state of last iteration (Line 4 of Algorithm|[T). We fine tune the number of inner-loop
iterations and set it to be 16 for these algorithms. For MRBO, VRBO, SUSTAIN and our SBiO-BreD/ASBiO-
BreD, we set K = 5 to evaluate the hyper-gradient. For FSLA, K = 1 as the hyper-gradient is evaluated
recursively. As for learning rates, we set 1000 as the outer learning rate for all algorithms except our algorithms
which use 0.001 as we change the learning rate adaptively. As for the inner learning rates, we set the stepsize as
0.4 for all algorithms.

The experimental results are summarized in Figure[2] As shown by the figure, BiO-BreD outperforms the reverse
algorithm; SBiO-BreD outperforms AID-FP/stocBiO and AID-CG methods, while SBiO-BreD outperforms
another SPIDER based algorithm MRBO and several momentum-based variance reduction methods: MRBO,
SUSTAIN, FSLA and VR-saBiAdam.
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Figure 2: Validation Accuracy (Test Accuracy) vs. Running Time for different methods for the
Omniglot Dataset. We compare our BiO-BreD with deterministic baselines (the first column),
SBiO-BreD with stochastic baselines (the second column); ASBiO-BreD with momentum-based or
SPIDER/SARAH based baselines (the last column). The first row shows results for 5-way-1-shot case;
the second row shows results for 5-way-5-shot case; the third row shows results for 20-way-1-shot
case; the last row shows results for 20-way-5-shot case.

B Detailed Convergence Analysis
In this section, we provide the detailed convergence analysis of our algorithms. We first gives some useful
lemmas.
K
Lemma 6. (Proposition 2. ) The gradient %f‘) is the following analytical form:

Of (ze,yt") = = |
# =Vaof(@u,ut) =AY Vig@eyd) [ (e — AV, 9@, y])) Vo f(ze,ut0).
k=0 j=k+1

The above lemmalg] shows an analytical form of w; in Algorithm|[T}
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Lemma 7. (Lemma 6. [22 ] ) Under the above Assumptions, given the sequence {z, yt}thl generated from
Alg()rlthm and 0 < A < 1, we have

K
2

122@0ID) G gl < (a1 = a0 S + Lol = M) Tl — 57 @0ll + La(1 — A, (10)

ox

L+ 1., = 2CryWhgzy+Llgyy) 0 Ly = LCsy
w0’ 2 i

where L1 = m

K
The above lemm shows the variance of gradient estimator w; = W decays exponentially fast with

iteration number K.

Lemma 8. Given i.i.d. random variables {(;}i—, with zero mean, we have E|| L 37 ¢i||* = LE||¢G||° for
any i € [n].

Lemma9. (Lemma I in [I10]) Let x1+1 = arg mingcx {(wt, x) + h(z) + %D% (z, xt)} and Gy = %(-Tt —
Ztt+1), we have, forall t > 1

(we, Ge) > pllGe)l* + 7(h(ivt+1) h(xt)), (11)

where p > 0 depends on p-strongly convex function ().

Lemma 10. (Lemma 2 in [[I0]) Let {x:}1—, be generated from Algorithms I E| and I and define x}, 1=
argmingex {(VF(z:), z) + h(z) + %Dwt(az,xt)}, and let G, = %(mt zi ) G = (:ct — Tt41), we
have

16 — G|l < %uvmt) — w, (12)

where F(z¢) = f(x¢,y" (z¢)) and p > 0 depends on p-strongly convex function ¢ ().

Lemma 11. (Restatement of Lemma 5) Suppose the sequence {x+, yt}t 1 be genemted from Algorzthmsland
Under the above assumptions, given 0 < ny < 1forallt > 1and 0 < X\ < GL, we have

. A 3 A?
e =y @) P < (0= P2 e =y (@) P = =25 oo
2577t 2 2552

+— 61 IVyg(xe, ye) — vel @er1 —2el?, 13)

J’_
67 A
where k = L/ .

Proof. We first use the step ye+1 = Y+ + 1t (Je+1 — y¢) and Jer1 = y+ — Av; instead of the step 5 in Algorithm
|Z|and step 11 in Algorithm@ i.e., Yt+1 = Y+ — Aneve. This proof mainly follows the proof of Lemma 28 in [17].

According to Assumption i.e., the function g(x, y) is p-strongly convex w.r.t y, we have
I
9(we,y) = (e, ye) + (Vug(e, vy = ve) + 5 lly — well”
= g(@e,ye) + (ve, y — Ge1) + (Vyg(@e, ye) — v,y — Geg)
+(Vyg(@e, y1), Jrer — ye) + %Hy —uell*. (14)
According to Assumption i.e., the function g(zx, y) is L-smooth, we have
- . L,
9(@e, Ge1) < 9(@e,ye) + (Vyg(@e, ye), Gerr = ye) + 5 [[Ge+1 — yel*. (15)
By combining the about inequalities (I4) with (I3), we have
9(@e,y) 2 9(@e, Geyr) + (06, Y — Jewr) + (Vyg(Te, ye) — v,y — Jegr)

m L .
+ Slly = well® = S llGesr — well. (16)
2 2
According to §¢+1 = y+ — Ave, we have

(U, y = Ge+1) = T(Ge+1 — Y, Jet1 — Y)

>l >

1,.
= ||yt+1 —yel® + )\<yt+1 — Y, Yt — Y)- a7

15



By plugging the inequalities (T7) into (T6), we have
- 1, 1, .
9(@t,y) 2 9(@e, Geer) + 1 (Fer = e, ye = y) + 1G4 — yel®

~ u L, .
+ (Vyg(@e,ye) = ve,y = Ger) + S lly — yell* = 5 G421 = yell*. (18)
Lety = y*(x¢), then we have

" - 1,. " 1 L. .
g(ze,y" (w1)) > g(@e, Get1) + X<yt+1 — Y, Yt — Y (T4)) + (X - §)Hyt+1 — e

(Vyg(ee ) = vey” (@) = o) + Glly" (@) — (19)

Due to the strongly-convexity of g(-,y) and y*(z:) = argmingey g(x+,y), we have g(zs,y* (z:)) <
g(x¢, §t+1). Thus, we obtain

1 % -
0> ~(Ge+1 — Y,y — Y (21)) + (Vyg(xe, ye) — v,y (1) — Ger1)

—l—y

(5 = Dligers — will* + Ll (@) - wel 20)

BY yt+1 = Yt + Ne(Pe+1 — ye), we have
lyerr — v @I = llye + ne(Gesr — ye) — v () |2

= llye — v (@)l1* + 20¢ @1 — ye, ye — ¥ (o)) + 07 [ Ger — el (21)
Then we obtain

~ * 1 * ~
(Grr1 — ye,ye — Y (20)) = TmHytH —y (z)|” - *Hyt —y (z)l” ~ %Hytﬂ —ul® @2
Consider the upper bound of the term (V,g(x¢, y¢) — ve, y (act) — Ye+1), we have

(Vyg(@e, ys) — ve, y" (2¢) — Jer1)
= (Vyg(@e, ye) — ve, ¥ (@0) — ye) + (Vyg(e,ye) — ve, Yt — Ge1)

1 . 1 -
> == (| Vyglxe,ye) —vell* = Sy (@) = well® = > 1Vyg (e, ve) —vell = Ellye = Gsall?
n 4 m 4
2 « -
= =2 IVt o) = wll® = Flly @) = will* = e = e @3)

By plugging the inequalities (22) and (23) into (20, we obtain

1 * 2
o )\Hyt+1 =y (@)l

< Gy~ Dl =" @I+ G + 4+ 5 = Dl = 9l + 2 Vg ) = o]

< gy = Dl =" @I+ Cf = 5Dl = 0l + 2 [Py y) = vl

= (g — Dl =5 @I = (55 + g5 = s yt||2+%nvyg(xt,yt)fvtn?

< (s = Pllwe =y @I = gy lees =l + = V(e ) = el 24)

where the second inequality holds by L > prand 0 < n; < 1, and the last inequality isdue to 0 < A < g7 It
implies that

mu

2 + 4’17,5)\

. 3Nt~
lyers =" @)I* < (0= TE)llye = @Ol = ZFllger — e IV ug(eye) —vel*. @3)

Next, we decompose the term ||y;+1 — y* (z¢+1)||* as follows:
ye1 — ¥ @es )1 = lyers — v () + 4" (w0) — v (@er) [
= [lye+r = ¥ (@)1 4+ 2(werr — v (), ¥ (we) — ¥ (@) + |y (w0) = y" (werr) ||

Utﬂ)\ * 2 4 * * 2
<(1 - 1+ — -
< @+ =y =y (@)l + (1 + mﬂ)\)Hy (@) =y (@esa)||
A « 4
< M =y @)l + (14 )l =z, (26)
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where the first inequality holds by Cauchy-Schwarz inequality and Young’s inequality, and the second inequality
is due to Lernrna and the last equality holds by x¢+1 = z¢ + n¢(Te41 — ).

By combining the above inequalities (23) and 26), we have

(1+ mu/\)(l muA ntuk)?mz

lyerr =y (@) < oMy =y (@o)* — (1 +

4 lFe+1 — Z/t“
A4 4
(1 T2 TR ’“ 1Vyg (e, ye) = vel® + ( )% |z — e
4 u)\
Since 0 <m < 1,0 <A< 5% andL>,u,wehave)\ oz < g;andn, <1< gis. Then by using > 1,
we have
NepA nepA mpA | mepd N nepA
14+ 22y - 22y =1 — - <1- B2
1+ =) 5 ) 5t 1 g < T
ntu/\ 3 30
1 < 2k
-+ )7 ST
4 1.4 2
(1+mu>\) mA - (14 2) mA _ 577,5)\7
4 m 247 p 61
4 9 2 4K? K2 42 252
14+ —)k" < k" + < + = .
( mW\) - mpA T O mepA 6mp
Thus we have
* )\
Iye1 — ¥ (wer) ]I < (1 — mu S ye — v ()12
25 25k2
+ BV (o) = ol + s s — &)

O

B.1 Convergence Analysis of the BiO-BreD Algorithm

In this subsection, we provide the convergence analysis of our BiO-BreD algorithm.

Theorem 4. (Restatement of Theorem 1) Suppose the sequence {x:, y: }1—1 be generated from Algorithm Let
0<y< i—pF, 0<A< 1, K= log(T)/log(ﬁ) + Land ||yf —y* (z:)||* < Aforallt > 0, we have

- 6(®(z0) — @ 22AL%  22ALZ 2212
Z 6.7 < L8(Bla0) = ¢7) ! 2 2 (28)
t=0

3Tvp p*T p?*T  p?T%

where L1 =

L(L+ 2C ¢, (uLgay+LLgyy) LC
( = H)’ Lo = 2%ty Q;Zy 9v¥) gnd [, = ufy'

Proof. According to the above Lemma |2} the function F'(x) has Lp-Lipschitz continuous gradient. Let
G, = %(mt — Z¢4+1), we have

L
F(zi1) < Fa) + (VF(@t), 21 — 20) + l||39t+1 — x|

= () (T F(@).60 + LT G

= ) - (22 g, +v<%j’f{) VP, 6+ TG

< F(a) =20l Gel? — haeen) + e + (L) _9pia) 6y + TEryg e

< Pl + (C5 = SO)IGIP — hians) + hia + 1 LE00E) W(xt)n?, )

where the second last inequality holds by the above LemmalJ] and the last inequality holds by the following
inequality

K K
PIEve) g, 6 < |20 gE@)iG)
1 8f(a:t,yf<) 2, Pys 2
< ;HT = VE(@)|I” + ZHgtH . (30)
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According to the above Lemma[7] we have

K
121@0v) G2

ox
<B(LI(L = M) ™ + L3(1 = M) 1) 1y — y™ (o) |* + BL3(1 — Aw)*™
<BALI(1 — M)® +3ALZ(1 — Apw) 71+ 3L2(1 — Ap)?K, (1)

where the last inequality holds by ||y? — y*(x¢)]|> < A forall ¢ > 0.
Let ®(z) = F(z) + h(z), plugging (1) into 29), we have

*Lr 3vp,,5 Of (e, yf
Barnn) < @) + (LpE = )G + 2 2L gpa)p

3 3y L3
< ®(ae) = “2LNG | + D=

(1 - AM)QKv
(32)
where the last inequality is due to 0 < v < 7% and the above inequality (3I). According to Lemma . the

difference between gt and G; are bounded, we have

IG:11* < 211Gel” +2[1Ge — Gil|?
. 2
< 2|Ge)l* + 5z llwe = VE(ar)|?

2 2
37iL1 (1= ) + SWiLg (1= AwE1 4+

5 2 af(mhyt ) 2
=2[|Ge]I” + pQIIT = VF(z)||
. 6AL2 6AL3 1 6L3
<2Ge)? + =21 - )+ 252 - K 1+p—j(1—Au)2K. (33)
Thus we have
. 1 3AL3 3AL3 313
—1G:* < —§||9t||2 2 L - )+ =2 - +7(1—/\u)2K- (34)
By plugging (34) into (29), we have
3 3vp 3ALT 3AL3 . 3L3
B(ee) < @) = TENGN® + 2 (=20 - S + = T S - A
3yYALZ 3vAL3 1 3yL3
+L(1*/\H)K+%(1*/\WK e Y i
37/3 337AL? K | 33yAL3 k-1, 337vL3 ok
=0 1— e Y 2T — .
(z¢) = 35 lIGe I + 55 (I=2)" + 55 (I=2)" "+ 5 (1 =)
(35)
Thus, we have
1 o 16(®(z0) — ®(zr))  22AL3 Kk 22AL3 ko1 22L3 ok
= Gi||” < + 1—Ap)™ + 1-X +—==(1-x
T ; Gl 3Tp 7 =( 1+) E ( 14) 2 ( 1)
16(®(wo) — @)  22AL3? x  22AL2 K1 2203 2K
< + =)™ + 11—\ + 1—
3Tp E 5 1) 2 ( 14) 5 ( 1)
< 16(®(z0) — ®*)  22ALY  22AL3  22L% 36)
3Typ p*T p*T  p*T*’
where the last inequality holds by K = log(T")/ log(l%/\u) +land A < 1.
0

B.2 Convergence Analysis of the SBiO-BreD Algorithm

In this subsection, we provide the convergence analysis of our SBiO-BreD algorithm. Let R(z¢,y:) =
Vf(a:t,yt) Vf(xt,yt,Bt) for all ¢ > 0.

Theorem 5. (Restatement of Theorem 2) Suppose the sequence {x+, yt}t 1 be generated from Algorlthml Let

K= il (i) O<n=mn< 1,0<’y§m1n(4‘z”F,Zggﬁ;,;’%%‘) and 0 < X\ < 6L,wehave
o* 32A 75207 400mAo’ 752
ZEHG 2 < 22(2leo) = 2 20, o™ | B2 67
T 3T~p 3T~p 3p2%b 9ypub 3p%T
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where A = [lyo — y* (o) ||*.

Proof. According to the above Lemma |2} the function F'(x) has Lp-Lipschitz continuous gradient. Let
G = %(mt — Z¢4+1), we have

L
F(xiy1) < Fxy) + (VF(xt), Tep1 — o) + l|\$t+1 —z?

= Fla) = 1(TP(@),6) + T 16|

= Flax) = 7w G + (w0 — VP, 6+ LLE G

< (o) = 1plIGul” = hares) + hlan) + 1w — V@), 6) + LL |G|

< Fa) + (T2 = TN GI? — e + hia) + e VF(xt)Hz, (38)

where the second last inequality holds by the above Lemma([J] and the last inequality holds by the following
inequality

Al
Clhwe = VE@)IP + 1617 (39)

(wt - VF(It), gt>

IN

AN

According to the above Lemma@ we have
lwe = VF(@o)|* = lwe = V f (e, 90) + V (@i, y0) — VF(x)|”
< 2fwe = Vf(@e,y)|* + 20|V f (e, y¢) — VE ()|
< 2fwe = Vf(@eyo)l* + 2Ly lye =y (@)™ (40)
Let ®(z) = F(z) + h(z), plugging [@0) into (38), we have

Lp 3 2Ly .
B(er1) < lan) + (L5 - ZD)GP + —Hwt Vaf (@l + =y = 7 (@)l

2
3vp . 5 2L2 .
< 0(w0) = TG + e = Vo (e ) I + =2 e = (@), 4D
where the last inequality is due to 0 < v < 7% Accordmg to Lemma | the difference between G; and G; are

bounded, we have
1G:l1* < 21Gell* + 201G — Gell?
~ 2
<2)1G:)1* + El\wt — VF(z:)?

5012 4 = 2 4L§ * 2
<2[Ge” + ?Hwt = Vf(ze,y)lI” + p7||yt =y (@)]I” (42)

Thus we have
2

oL )
—[1Gel|* < —*||gt|| *||wt V(e y)l* + TQyHZJt —y (@) 43)
By plugging @3) into @I}, we have

3 2 _ 2L2 .
() < @) = JENGN + = (S lhwe =V Gow)l* + 2w — " (@)°)

2 _ 212
+ gnwt — Vf @,y + 2

Y *
lye =y~ (zo)”

3 _ 1112~ y
= 0(e0) = TG + 2 e = Vo) + e = @ @
Next, we define a useful Lyapunov function, for any ¢ > 1
Q= E[®(xe) + llye — " (z0)]*]- (45)
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According to Lemmal[TT] we have

* A
y (e)|* < -2

y (2l ~

lyerr — v (@ern) 1> = llye — lly: —

+ 2577t

25K
IVyg(ze, ye) — vel|* + 5 )\||90t+1 — m||”.

Then we have

Q1 — U =E D(xe) + [y — ¥ (@es )| = llye — v ()%

1102y 5
IE — —
I lye — y* ()]

[@(zi41) —

3 11 =
< —SREIG® + ”Enwt — Vi)l +

3"7t)\ 2577t

o

3 11 = 1105y
16 BIG® + VBl = VS eyl + = Bl — v @l -

Eflve]|* +

UtH2

E(Vyg(we, yt) — 617 i)
2

mw\

EHyt

317t)\ H 2 A 252 'y
6nep

— Ellv 6.
25k2%~2

E(|Vyg(ze, ye) — ve|® +

E||G:|?
S ,(Sﬂ —
16
11L2
(e
4p
25?’],5)\
6

11y 50k2~2
E|G|” + +
3ntu>\) IGeI™+ 4 4p  3nudp?
501{272L§ Nt UA 2
— Elly: — v*
A ) Ely: — y" (z)]|” —

E|[Vyg(ze,ye) — vel|?,

25 Elwe = V(@ y)|?

377t
—/—El|lv

+

where the last inequality holds by the following inequality

oAl
VF(z)|?

I1Gel|” < 201Gel? + 2/1G: —
< 2[|G|1?

+ 2w
2
2

2

4 _ AL .
< 2(|G:1* + EHwt = Vi(ze,yo)l* + T;Hyt —y (@)

Letn =, forall ¢ > 0. By using 0 < < 21242

< Sosts, we have

3L§’y
16p

2 2712
50Kk"y" Ly
3nepuAp?

5022

3y
=L T
3nepAp?

16p —

npA
Let4_

: s (9mppA mppA
. Given 0 < v < min (243, it ), we have

— 47L12J

3 47 = 25
Qs = O < = FBIGI + - Ellwe = Ve, + Z Ellve = Vyg(oe o)l

Thus, we have

El|G. |

< PO Rer) 4 S Bl — VSl + G Bl — Vgl

_ W n %Euwt V(e ye) — Rlae,ye) + Rlze,ye)|* + %EHW Vgl o)’

< = Deer) P — (o, ) — Rlo )l + ;ipfnR( )|+ G Bl = Vg, o)
R
where the last inequality holds by Assumptionlgand we = Vf(ze,yeBr) = 3 2ien, VI (@e e &) ve =

Vyg(@e,ye; Be) = § Xiem, Vog(@e,ye, &)

20

(46)

A .
By, -y (20)?

v (z)|)?

(“47)

(48)

(49)

(50)



Taking average over t = 0,2, -+ ,T — 1 on both sides of the above inequality (31), we have

1 2 _ 322 —Qr)  7520%  400nX\e? 7521
— M E < E| R(
TZ 194 < = T 3% T 0ypub 3p2TZ 1R Ge, o)

32(®(w0) + llyo — y* (o) [I”) ~ 32E(@(x7) + |lyr — y* (z1)[*)
3Typ 3Typ

75202 400nAo> 752 1
—_— E||R(z:,
370 Oypub 32T Z 1R (e, ye)]

_3AP(wo) — @) 324 75207 400pA0® 752
- 3Tvp 3T~vp  3p2%b 9ypub 3p2T?’

(52)

where the last inequality holds by Assumption I 5|and E||R(z:,y¢)|| < + forall t > 1 by choosing K =

L jog(=Len).

O

B.3 Convergence Analysis of the ASBiO-BreD Algorithm

In this subsection, we provide the convergence analysis of our ASBiO-BreD algorithm. When mod (¢, ¢) #
0, let R(wi,ye) = V(@ ye) — Vf(ze,y; L) forall t > 0, when mod (t,q) = 0, let R(zi,y¢) =
V (e, ye) = V (e, ye; Be).

Lemma 12. Suppose the stochastic gradients v and wy be generated from Algorithm[3] we have

_ 212 =1 o2
E|Vf(ze, ) + R(ze, ) — we]|* < TK Z (Ellzis1 — zi|® + Ellyirr — wil]*) + 5 6
b im(ne—1)q
2 2L7 — 2 2 o®
E(IVyg(xe,ye) —ve]|” < 5 > (Ellzis — 2l + Ellgi — wll®) + s (54)
i=(nt—1)q
Proof. We first prove the inequality (53). According to the definition of w:—1 in Algorithm[3] we have

we — w1 =V [,y L) — V@1, y-151). (55)

Then we have

B[V f(ze, ye) + R(ze, ye) — we|?

= B[V (@, ) + R(we, ye) — we—1 — (we — we—1)||?

=BV f (e, ye) + R(xe,ye) — wio1 — V@, y65T0) + Vi (@1, ye-1: T

=E|Vf(@i—1,yi-1) + R(xi-1,y1-1) — wi—1 + Vf (e, y¢) + R(xe,y:) — Vf (@i=1,91-1) — R(@Te—1, Y1)
= Vi@ ys L) + Vi@, g L)

=E|Vf(@i-1,y0-1) + R@i-1,y0-1) —wia|* + B[V f (e, 90) + R(me,90) = Vi (@e-1,90-1) — R(@e—1,ye-1)
= Vi@ ys D) + Vi@, v )|

_ 1 - _
=E|Vf(@i-1,ye-1) + R(@e—1,ye-1) —wea||” + b*EHVf(l”z,yt) + R(we, yt) — VI (@i—1,y1—1) — R(Te—1,y1-1)
1
— (Vf(@e,ys &) — Vi1, ye-1:6))1°
_ 1= _
<E|Vf(xi-1,yi-1) + R(@i—1,ye-1) — wer||* + *EHVf(??z,yt;é}l) ~ V(@1 ye-1:6)|

_ 2L
<E|VS(@e-1,y1-1) + R(@i-1,ye—1) — wema || + =5

(||=’73t =zl + llye — yeal?), (56)
where the fourth equality follows by Ez, [V f(zt,yt) + R(ze,y¢) — Vf(@e-1,yi-1) — R(xe—1,y1-1) —
(?f(xt,yt;ft) — ?f(a:t 1, Yt 1,2))] = 0; the ﬁfth equality holds by Lemmaand ?f(xt,yt;ft) =
% e, Vf(xe, ye; &), V(@i—1,y-1;L) = by QuicT V f(xi—1,yt—1;&;); the second last inequality
[C]I1* < E||¢|I?; the last inequality is due to Lemma
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Throughout the paper, let n; = [t/g] such that (n; — 1)g < ¢ < nyq — 1. Telescoping (36) over ¢ from
(nt —1)g + 1 to t, we have
2L2 t—1
EIIV £ (e, ye) + Rlze,ye) —wel> < =5 37 (Ellwiss — 2al® + Ellyiss — will*)
Y oi(ne-1)q
+ EH@f(x(nt*l)‘P Yine—1)a) T R(T(ni—1)g) Y(ne—1)q) — w(ntfl)qHQ
203 o?
< TlK . Z (Ellzisr — zi|® + Ellyir1 — vil*) + 7 (57
i=(ni—1)q
where  the last inequality is due to  Assumption |§| and  Wen,—1)q =
1 Zieg(nﬁl)q V(@ (ne-1)a> Yni—1)a> Einy —1)q)- Similarly, we can obtain

) o?
E[[Vyg(ze, ye) — vel|* < o > (Bl — @l® + Ellyier — will*) + T (58)
i=(nt—1)q

O

Theorem 6. (Restatement of Theorem 3) Suppose the sequence {x+, yt}thl be generated from Algorithm

L LC¢yT : 3 3 2pnu) 9pnu
Letby = g K = plog(%), 0<n=n<1,0<~v< mln(38L%(n,ﬁ, 1997’;3 ,%, 438’;2) and
0 < A < min(z

1 97u)
6L 1007;2L2 ’

32(®(x0) — @)  32A 152 4 1 1,0°
E P
Z I1G:I1" < 3Tvp 3Tvp " 312p? TR npy (L e

we have

L2)b’

where A = |lyo — y (m0)||2.

Proof. This proof is similar to the proof of Theoreml According to the above Lemma the function F'(x) has
L -Lipschitz continuous gradient. Let G, = (wt — T441), we have

Lr
F(xi41) < F(me) + (VF(21), o1 — o) + 7th+1 —z?

= F(a:) — v(VF(2:),G0) + 1 LFIIQtH

— Flax) = 7w G+ 1w — VP, G+ LEE G

< Fla) = 3olGul? = hers) + he) + 3w = VF G0, 6) + 2 G

< Fla) + (TR = TGP — hoiss) + bie) + Lo - W(xt)n% (©0)

where the second last inequality holds by the above Lemmal9] and the last inequality holds by the following
inequality

(we = VF(24),Ge) < |lwy — VF (o) [|[|Gell

IN

IA

1 ~
Sllwe = VE@)I* + {16 ©1)

According to the above Lemma[2] we have
lwe = VE(2o)||* = lwe = V (2o, ye) + V (e, 9:) = VF ()|
< 2llwe = Vf (e, yo)|I* + 2|V f (e, ye) — VF(x0)||?

< 2w, — W e,y |+ 2L5 llye — y™ (20| (62)
Let ®(z) = F(z) + h(z), plugging (62) into (60), we have
VL 37/) 2y 2, 2Lyy o2
B(we1) < Oze) + (5 = SOG® + sz = Ve f(@e,y)l” + Tllyt =y (z)||
’Y 2 * 2
< (xe) - IIQtII += Hwt Ve f(@e,ye) | =y (@)l
3 2 203y \
= ®(ar) - 7”ngtn 6”7 s = el + = Hlwe = Ve f (o u)l* + =l =" @)l

(63)
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where the second last inequality is due to 0 < v < 72 L . By using Lemma | the difference between G; and G;
are bounded, we have

IG:11* < 21IGe* + 211G — Gul|?

. 2
< 2(|G:I* + El\wt — VF(z)||”

2

5 4 - 4L *
< 2(|G:1* + Fﬂ’wt — V(e yo)l® + T;Hyt —y (@)l (64)

Thus we have

2L2 y
—[1Gel|* < —fIIQtII Ith V(e ye)I” + p—;“’l\yt —y"(z)]*. (65)

By plugging (63) into (63), we have

2

3 3 2 - 2L .
Do) < ) = ZENGI + T (Sl = Vo) + =2y = v @)

2

3p _ 2L~ .
- *||93t+1 —z|” + 7|\wt Vi@ y)ll® + =y — v ()]

3 19y = 19L
= ®(w)) = 16" = 5 loers = 2l + e = Ve gl + =5 e =y @l
(66)
Next, we define a useful Lyapunov function, for any ¢t > 1
Q =E[®(z) + |lye — y" (z0)]%]- (67)

According to Lemmal[TT] we have

77t#

lyesr — y* (@er)|1? = llye — y" (@) |)* < — lye — y* ()]

25?71

2
K
+ = IVug @ ye) = vl + =l — @e*. (68)

Letn = n; for all t > 0. Then we have

Qi1 — QU =E[®(x141) — <1>(«’Et) Fllyesr — v @) ® = llye — v (@) [|]

281G — 3 Bleess — aulP + B~ 91wyl + By~ )
- mfAJEHyt - y"(m)ll2 - %Euvtn? 256’” BV, g(ze, ye) — vel® + %EH%H e
= Bl - (% - iﬁim“w —z” + gEHwt — Ve, o)
- ("’j“ - 195”)1&“% — ()] - %EHWHQ 2 (ﬁf E|V,g(ze, ye) — ve?

3 3 25k2
< —PE|G? - ({2 -

19 =
160 G o) Bllzees =l + Bl we = Ve y) — Rz y)l*

4p

A 19L2y . 3 \?
+ ”EHR ou)ll* = (F5= = =5 VBl =y @l = = Eljer*

2577
+ 6; E[|Vyg(we, ye) — vt
3 3 25k 19 -
< =Sy BIG® = (g — g Bllaess =l + SEBlwe =V f(ai,y) = Rl o)
3nA? 25mA
+ IRy = B + SRV gl ) — vl (69)

where the last inequality holds by v < %.
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Summing over ¢ = 0,1,--- ,T — 1 on both sides of (69), by Lemma[I2] we have

3
oy ZEHQ &

3p 252 19y
< Qo —Qr — E — IE E||R(
< o = Ur (167 Y § [ Jlve]* + ;0 IR (e, v )|
T-1 2 t—1 2
19y L
t 1, (35 > (Ellwin — 2ill* + Ellyira — wil®) + 5)
t=0 ! i=(n¢—1)q
95m T-1 g2 ol 9

S g
o 2 (bi > (Ellzivn = zll” + Ellyier — wil*) + ?)

=0 "1 i=(ni-1)q

T-1
3p 257 377)\ 197 2
< Q= G - (167 G § :]EH!BtH —ail? = Bl + Y EllR@ w0

9y
fzo

2
ag
— 2] + Ellyes1 — ytHQ)JF?)

o2
Z L (El|zer — well® + Ellyeer — wel®) + 5 7)
T—1
3p  25K%  19yLiq 2577)\L2 19’y 2
= Qo Qp — (22 - E - E||R
o~ (167 G Apby 61br tzg o1 — zel|* + 1 ; [ R(ze, ye)l
3nA? 19yLqn®N\? 25A L2 1 L 25mA To?
4 4pby 6,u b
WherTe Ihe second inequality holds by >/ ' Z:;(lnﬁl)q (Ellzivr — x® + Ellyivr — wll?) <
4o (Bllzers = zel” + Ellyesr — ve?).-
2 2)\2 372
Letby = ¢, 0< vy < 38L2 and 0 < \ < m,wehave S'M > % and 3“ > %,
i.e., we obtain
2 372, 3
3nA 19'yLKq77 A2 _ 25M"L7qn > 0. an
4 4pb1 6ub1
. 2 .
At the same time, we have i < 192prfq’ 837] < 252:;12", 87;22 < %” and 87]% < M Thus we have
1912 " 7 7
43n > 7Zpbfq + 7256’:1: 4. Lety < min (”8’, ?{35@) we have
2 25k2  19vL%q  25nAL%
3p > 5k2 3 > 5k YL¥q n fq' (72)
16y — 6nuA 61 8pb1 64b1
Based on the above inequalities (7I) and (72), we have
S’yp 19y 3.1 1 | To?
ZEIIQ I? < Qo —Qr + ZJEIIR e, ye)| 8—(5+L—2)—b , (73)
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By using the above inequality (73), we have

T—1

1 2 32(Q —Qr) 152 4 .1 1.,0?
—>ME < E —~\
T; Vel = =5 T 312 E IR, vo) nm(LQ +LK) b
_ 32(®(xo) + llyo —y (mo)ll ) 32E(P(zr) + |lyr — v (z1)?)

3Typ 3Tvp

o2 S NE +i(i+i)0j

bt Lz 12/

T-1

<32(<1>(a:0)—<1>*) 32A 152 4,1

E = (=
< STp * 370, T 37,2 Z | R(zs,ye)]? o (L2 +

32(® — o 32A 152 4 .1 1,02
< ( (IO) ) + 22 T ( 2 7)077
3Typ 3Typ  312p%  npy L? L%’ b

)%

1.,0?

(74)

where the last inequality is due to E||R(z¢,y¢)|| < 7 forall t > 0 by choosing K = £ - log( Lny ).
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