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ABSTRACT

Pretrained large language models (LLMs) are general purpose problem solvers
applicable to a diverse set of tasks with prompts. They can be further improved
towards a specific task by fine-tuning on a specialized dataset. However, fine-tuning
usually makes the model narrowly specialized on this dataset with reduced general
in-context learning performances, which is undesirable whenever the fine-tuned
model needs to handle additional tasks where no fine-tuning data is available. In
this work, we first demonstrate that fine-tuning on a single task indeed decreases
LLMs’ general in-context learning performance. We discover one important cause
of such forgetting, format specialization, where the model overfits to the format of
the fine-tuned task. We further show that format specialization happens at the very
beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with
MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework
that reduces format specialization and improves generalization. ProMoT offloads
task-specific format learning into additional and removable parameters by first
doing prompt tuning and then fine-tuning the model itself with this soft prompt
attached. With experiments on several fine-tuning tasks and 8 in-context evaluation
tasks, we show that ProMoT achieves comparable performance on fine-tuned tasks
to standard fine-tuning, but with much less loss of in-context learning performances
across a board range of out-of-domain evaluation tasks. More importantly, ProMoT
can even enhance generalization on in-context learning tasks that are semantically
related to the fine-tuned task, e.g. ProMoT on En-Fr translation significantly
improves performance on other language pairs, and ProMoT on NLI improves
performance on summarization. Experiments also show that ProMoT can improve
the generalization performance of multi-task training.

1 INTRODUCTION

Natural language processing (NLP) has recently been revolutionized by scaling up transformer based
large language models (LLMs) together with large-scale pretraining (Vaswani et al., 2017; Devlin
et al., 2019; Raffel et al., 2020a; Brown et al., 2020; Rae et al., 2021; Chowdhery et al., 2022; Smith
et al., 2022; Touvron et al., 2023). In addition to improved downstream performances, these pretrained
LLMs can perform a broad array of unforeseen tasks when provided with a prompt. This in-context
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learning capability allows users to flexibly re-purpose LLMs for specific tasks with a minimum
amount of supervised data, making it extremely convenient for fast prototyping and experimentation,
especially in the low data regime.

However, even the largest and most advanced LLMs leave a lot to be improved. Grounding and
eliminating hallucinations (Maynez et al., 2020), reasoning and logical clarity (Creswell & Shanahan,
2022), mathematics (Brown et al., 2020; Noorbakhsh et al., 2021) are just a few examples where
LLMs still lag behind the best human performances, or in some cases, the fine-tuned performances of
the same model.

The most common practice to improve a pretrained model is to fine-tune it on a specialized task or
several tasks. However, fine-tuning on LLM usually causes over-specialization to the fine-tuning
tasks, and harm the model’s pre-existing generalization ability on unseen tasks via in-context learning.
As we show later, an mT5 model finetuned on a single task loses its few-shot performance on unseen
tasks within one thousand steps of fine-tuning. When faced with hundreds of downstream tasks and
even unknown tasks, we expect to have a single fine-tuned model that is both superior on supervised
fine-tuned tasks and general unseen tasks. Thus, it becomes very important to develop new techniques
for finetuning that prevent over-specialization of these fine-tuned models only to a few tasks.

Ground-Truth Output Mercedes’ Lewis Hamilton took the outright
championship lead for the first time this season

with a dominant victory in the Italian Grand Prix.

Pretrained mT5 Hamilton won the British Grand Prix.
Fine-tuned mT5 on RTE True

Fine-tuned mT5 with ProMoT (Ours) on RTE Lewis Hamilton won the Italian Grand Prix.

Table 1: Output comparison of pretrained and fine-tuned mT5 models vs. fine-tuned with ProMoT on
the RTE binary classification NLI dataset, performing in-context 1-shot summarization.

In this work, we discover that the loss of general in-context learning abilities during fine-tuning is,
to a large extent, caused by format specialization, which makes model overfitting to the specific
task format. For example, an mT5 (Xue et al., 2020) model learns in the output space with only
“True” and “False” if we fine-tune it on a binary classification dataset, losing its ability to flexibly
generate different output styles according to the in-context prompts of other tasks. We show that
format specialization tends to happen at the very beginning of fine-tuning, before the model fully
learns the semantic content of the task.

Based on these observations, we propose a simple solution to alleviate format specialization: PROmpt
Tuning with MOdel Tuning (ProMoT), which off-loads format learning to a small amount of task-
specific parameters that are external to the model. ProMoT is a two-stage fine-tuning process. At the
first stage, we freeze the pretrained model and tune a small set of additional parameters, where we
find adding soft prompt before the input (Lester et al., 2021) is a good choice. At the second stage,
we freeze the additional parameters and tune the main model. Since format information is learned
first, it mostly enters the small set of additional parameters. At inference time, we can decide whether
to remove the additional parameters depending on whether the incoming task share the same format
as the fine-tuned task.

Our experiments show that ProMoT significantly alleviates specialization during fine-tuning, while
boosting generalization on semantically related tasks with different formats. For example, fine-tuning
the model only on an NLI binary classification dataset, a mT5 XXL model consistently obtains
improved in-context learning performance on summarization compared with the pretrained model,
possibly due to improved grounding learned from NLI. See Table 1 for a concrete example. With
ProMoT, we can obtain models with both better supervised performance compared to pretrained
models and better general in-context learning performance compared to standard finetuning.

To summarize, our contributions are 4-fold:

• We show empirically that general in-context learning capabilities decrease during single-task
fine-tuning for T5 models. We identify format specialization as one of the important causes
which mostly happens at the beginning of fine-tuning.

• We propose a novel 2-stage fine-tuning framework: PROmpt Tuning with MOdel Tuning
(ProMoT) to reduce format specialization during fine-tuning.

2



Published as a conference paper at ICLR 2024

• Experiments on 10+ NLP tasks show that ProMoT significantly reduces specialization of
fine-tuned models compared to standard fine-tuning, while reaching similar supervised per-
formance. The reduction in specialization opens up opportunities to enhance generalization
across very dissimilar tasks when they share some semantic aspects.

• ProMoT can be combined with many existing fine-tuning and parameter-efficient fine-tuning
methods. We show examples where ProMoT is combined with multi-task fine-tuning and
fine-tuning with 1-shot prompts to further boost the generalization on unseen tasks.

2 RELATED WORK

Pretrained LLMs are general problem solvers with in-context prompts (Raffel et al., 2020b; Xue
et al., 2020; Radford et al., 2018; Chowdhery et al., 2022; Min et al., 2022; Touvron et al., 2023).
Zhai et al. (2023) evaluates the catastrophic forgetting in multimodal language model fine-tuning,
which is limited to image classification tasks. Chan et al. (2022); Gao et al. (2020) study the effect of
pretraining data distribution on in-context learning on image recognition tasks, where the tension
between in-context learning tasks and fine-tuning tasks is discussed. They propose changing the data
distribution to ease such tension, which could be difficult for generative NLP tasks. ProMoT is an
orthogonal method that does not require changes in data distribution.

In a recent study, Ramasesh et al. (2022) found that as model size increases, the model becomes less
prone to catastrophic forgetting. However such studies are mostly focused on tasks of similar format,
e.g. a sequence of different classification tasks. In this work we explore vastly different tasks, e.g.
classification v.s. long form generation where the format itself is critical.

Different from full fine-tuning, prompt-tuning (Lester et al., 2021; Zhang et al., 2021), adapters and
LoRA (Hu et al., 2021; He et al., 2021; Houlsby et al., 2019) adapt a pretrained model to a task with
a small set of tunable parameters. Parameter-efficient methods like these largely leave the pretrained
model intact, which can preserve the pre-existing in-context learning abilities. However, they also
miss the opportunity to further improve the pretrained model with a small, high quality dataset that
generalizes beyond the fine-tuned task. Besides, these parameter-efficient methods also underperform
fine-tuning on the supervised task in many cases, as shown in (Lester et al., 2021; Liu et al., 2021)
and in our results.

Another line of work uses multi-task fine-tuning to improve generalization on unseen in-context
learning tasks. Wei et al. (2021a); Chung et al. (2022) fine-tune PaLM and T5 on large-scale multitask
datasets with diverse natural language prompts, improving the zero- and few-shot performance on
unseen tasks. Min et al. (2021) incorporate the in-context learning objective into fine-tuning on
multitask datasets with few-shot prompts. This approach relies on multi-task training to generalize,
while orthogonally, ProMoT improves the generalization of each single fine-tuning task, whether
used in a multi-task setting or not. ProMoT can indeed be combined with multi-task training to
obtain better generalization as we demonstrate in Sec. 5.4. In addition, such approaches often require
human engineered instructions or prompts for each task to partly alleviate format specialization, while
ProMoT uses prompt tuning, which has two advantages: 1) ProMoT does not require the elaborate
trial and error of prompt engineering as it optimizes the soft prompts with data. 2) Soft prompts are
more effective at absorbing the format compared to natural language prompts, as shown in Table 6.

3 FORMAT SPECIALIZATION IN FINE-TUNING CAUSES THE LOSS OF
IN-CONTEXT LEARNING CAPABILITIES

In this section, we first show empirically with an mT5 XXL model that 1) in-context learning abilities
are lost during fine-tuning; 2) format specialization is an important cause for such loss; 3) format
specialization happens at the very beginning of fine-tuning.

3.1 LOSS OF IN-CONTEXT LEARNING CAPABILITIES DURING FINE-TUNING

In this subsection, we first show that the in-context learning performance usually drops significantly
after standard fine-tuning.

In our experiments, we fine-tune a pretrained mT5 XXL model (13B parameters) (Xue et al., 2020)
on the Recognizing Textual Entailment (RTE) dataset (Wang et al., 2019). In RTE tasks, the model is
required to predict “True” or “False” for whether the two given sentences are entailed. We fine-tune
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the mT5 model with default hyper-parameters and input/output template used in PaLM (Chowdhery
et al., 2022).

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Fine-tune steps

0

20

40

60

80

100

120
Ac

cu
ra

cy
RTE

0

5

10

15

20

25

Ex
ac

t m
at

ch

1-shot triviaQA
1-shot web_questions

Figure 1: Loss of in-context learning abili-
ties during fine-tuning. We show the learn-
ing curve of a model being fine-tuned on
RTE dataset while being tested on 1-shot
QA datasets. Left axis: Accuracy on RTE.
Right axis: Exact match rate on 1-shot QA.
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Figure 2: Format specialization in
fine-tuning: showing the frequency of
"True/False" style outputs when evaluated
on 1-shot TriviaQA. The model is being
fine-tuned on RTE. Left axis: Accuracy on
RTE. Right axis: Ratio of True/False.

We want to see whether the model lost its in-context learning abilities on unseen task during fine-
tuning. Therefore, we evaluate the fine-tuned model with two 1-shot QA tasks, TriviaQA (Joshi et al.,
2017) and web_questions (Berant et al., 2013). The results are illustrated in Figure 1, where we
can see that when the accuracy on RTE dataset increases with fine-tuning, performance on few-shot
QA tasks drops drastically. This phenomenon is general and not a result of specific fine-tuning or
evaluation tasks (more results in Section 5.3).

3.2 FORMAT SPECIALIZATION

Why are the in-context learning abilities of an LLM so easily lost after a few hundred steps of
fine-tuning? A natural hypothesis is that due to the homogeneity of output formats in fine-tuning
datasets, the model quickly specializes to this task format and learns to follow it no matter what the
input sequence is. This leads to the loss of in-context learning abilities on other tasks that do not
share the same format. here by “format” we refer to the common characteristics of the sequences in
fine-tuning task as a subset of all possible sequences, such as the language used, typical input/output
lengths and styles, special tokens or punctuation, upper/lower case styles etc. For example, the output
format of RTE is a set of two labels, “True” or “False”, among all possible sequences of tokens of
various lengths. Since all data points share the same format in single-task fine-tuning, the model
receives a strong gradient signal that the output should follow this format, thus its in-context learning
performance on other tasks with different formats will drop, even when they share important semantic
similarities with the fine-tuned task.

To verify this hypothesis, we evaluate the RTE fine-tuned mT5 model on 1-shot TriviaQA task and
count the percentage of outputs which are “True” or “False”. Figure 2 shows that as the fine-tuning
proceeds, the model outputs more “True” or ‘False’ even with a 1-shot prompted input from TriviaQA.
In particular, after 300 fine-tuning steps, 90% of the output becomes “True” or “False”. The same
phenomenon happens on other in-context learning tasks. With a 1-shot WMT16 En-De translation
prompt, after 500 steps of RTE fine-tuning, more than 99% of the output becomes “True” or “False”.
This indicates that format specialization is a possible reason for the loss of general in-context learning
capabilities during fine-tuning.

3.3 FORMAT LEARNING HAPPENS FIRST DURING STANDARD FINE-TUNING

Next, we show experimental evidence that format learning happens first during standard fine-tuning.
This is not surprising as the overwhelming majority of fine-tuning data points have very similar
formats, causing a gradient signal that dominates over others, more nuanced elements such as the
semantic content of the task.

More concretely, for the RTE dataset, the “format” refers to the fact that the output ∈ {True,False},
while the semantic content refers to the correlation between the input sequence and the output label.
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Figure 4: Overview of ProMoT, our two-stage fine-tuning strategy. We run prompt tuning at Stage 1
and model fine-tuning with the trained prompt at Stage 2. Green denotes trainable parameters and
blue means frozen.

We isolate format learning from semantic learning by creating a randomized RTE dataset where
the output labels are randomly shuffled, thus are no longer correlated with the input sequences.
The gradients of format learning, gformat, are then given by the gradients on the randomized RTE
dataset. By comparing with the full gradient g on the original RTE we can detect when format
learning happens during fine-tuning. We compute the gradients on the same batches of inputs for
the two different settings. Figure 3 and Figure 7 in Appendix show that at the very beginning of
fine-tuning (step 0), the full gradient g is highly aligned with the format-only gradient gformat, signified
by cos(⟨g0, gformat,0⟩) ≈ 1. Since randomized RTE and original RTE share the format information
only and contain totally different semantic content, this alignment implies that the model is mostly
learning the format. After 400 fine-tuning steps, this alignment disappears where the cosine similarity
drops to around 0.21, when the True/False ratio reaches nearly 100%.

4 PROPOSED METHOD: PROMPT TUNING WITH MODEL TUNING (PROMOT)
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Figure 3: Format specialization happens
at the beginning of fine-tuning: we show
the cosine similarity between the full gra-
dient g and the format gradient gformat on
the MLP kernel, Query, Key and Value
on the attention module. The g and
gformat are much better aligned at the start
of training, compared to at 400 steps.
Comparison between more steps can be
found in Figure 7 (Appendix).

The observations from Section 3 inspire us to decouple
format learning from fine-tuning, in order to alleviate spe-
cialization to the fine-tuned task and preserve general in-
context learning abilities. The key idea is to offload format
learning to a separate small set of parameters during early
fine-tuning, and allow the model’s own parameter changes
afterwards to focus more on the semantic content of the
task. We propose a two-stage fine-tuning strategy called
ProMoT, illustrated in Figure 4. At the first stage, ProMoT
uses prompt tuning to capture the format in a trainable
soft prompt while the model itself is frozen. At the sec-
ond stage, ProMoT freezes the learned soft prompt and
fine-tunes the model itself to focus on semantic skills that
might be more transferable.

Stage 1: Prompt Tuning. Here we use a continu-
ous trainable prompt (soft prompt) (Lester et al., 2021)
prepended before the embedded inputs as the separate
small set of tunable parameters. The soft prompt for a
given fine-tuned task Pe ∈ Rp×e is a small set of free
parameters taking the form of a few trainable embeddings,
where p is the prompt length and e is the embedding size.
Given an input sequence, prompt tuning first embeds it
with the text embedding layer of the pretrained model,
and then prepends it with the soft trainable prompt. The
soft prompt is then optimized to reduce the loss while the
pretrained model is frozen. As indicated in Section 3.3, fine-tuning first learns the format. We expect
that by prompt tuning first, the soft prompt will learn the format. Although it is not guaranteed that

1We compute the format gradient at 400 steps, gformat,400, by first fine-tuning the model on RTE for 400 steps,
then computing the gradient on the randomized RTE dataset with the same batch of input sequences.
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the soft prompt only learns the format, the small capacity can prevent the soft prompt from learning
all semantic skills in most realistic NLP tasks, as demonstrated by the performance gap between
prompt tuning and standard fine-tuning.

Stage 2: Fine-tuning with trained prompt. After prompt-tuning, we expect the trained prompt
now storing most of the format information. We then freeze the soft prompt and fine-tune the
pretrained model. Importantly, as shown in Figure 4, the soft prompt is still prepended before the
input during this stage, forcing the model to learn things not captured already by the soft prompt.

Other parameter-efficient and fine-tuning methods. ProMoT is a general framework that can be
combined with different parameter-efficient tuning and fine-tuning techniques in respective stages.
Conceptually, the prompt-tuning at the first stage can be replaced by other commonly used parameter-
efficient methods such as LoRA Hu et al. (2021). However, empirically we found prompt-tuning is
much better than LoRA on absorbing format information in early fine-tuning. More discussions can
be found in Appendix C.7. For fine-tuning methods, we show examples to combine ProMoT with
multi-task fine-tuning (Section 5.4) and 1-shot in-context learning prompt (Section 5.3, Section 5.4).
Training with 1-shot prompt is introduced by Min et al. (2021) in a multi-task training setting.

Evaluation. After the two-stage fine-tuning, we obtain a fine-tuned model checkpoint and a trained
soft prompt for a specific fine-tuning target task. We expect the soft prompt stores most of the format
information, and we only use this prompt during inference when the inference task has the same
format as the fine-tuned target task. Otherwise, we remove the learned prompt and simply feed the
original input into the fine-tuned model.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We use RTE (Wang et al., 2019; Bentivogli et al., 2009) and WMT14 En-Fr (Bojar
et al., 2014) as two fine-tuning tasks in our main experiments. They are selected as examples of
classification (RTE) and generative tasks (WMT14 En-Fr translation). Experiments on additional
fine-tuning tasks including SNLI (Bowman et al., 2015) and OpenbookQA (Mihaylov et al., 2018)
can be found in Appendix C.

We use 8 tasks unseen during fine-tuning to evaluate the model’s generalization abilities. The 8
evaluation tasks are chosen to represent four types of tasks:

• Natural language inference: CB (De Marneff et al., 2019) and WiC (Pilehvar & Camacho-
Collados, 2018) from superGLUE (Wang et al., 2019)

• Closed book QA: TriviaQA (Joshi et al., 2017), web_questions (Berant et al., 2013)
• Translation: WMT16 En-Ro, WMT16 En-De (Bojar et al., 2016)
• Summarization: XSum (Narayan et al., 2018), WikiLingua (Ladhak et al., 2020)

For each evaluation task, we use 1-shot and 4-shots prompts and task templates from PaLM (Chowd-
hery et al., 2022) as described in the Appendix 7.

Metrics. We report accuracy for classification tasks, exact match ratio for QA tasks, BLEU
score (Papineni et al., 2002) for translation tasks and Rouge-2 score (Lin, 2004) for summarization
tasks. We evaluate the model on development set for superGLUE sub-tasks (RTE, CB and WiC) and
on test set for all other tasks. Besides per-task performance, we also report the normalized average
(Norm. Avg.) performance on all evaluation tasks by averaging the performances normalized to
[0,100], following the "normalized preferred metric" in BIG-bench (Srivastava et al., 2022) and
Chung et al. (2022).

Models. We primarily use mT5 (Xue et al., 2020) XXL model (Raffel et al., 2020b) in our main
experiments, which is pretrained on multi-lingual corpus and contains 13B parameters. This is
to accommodate multi-lingual scenarios among our training and evaluation tasks. To show the
effectiveness of our method on different pretraining corpus, model sizes and architectures, we also
include experiments on mT5 XL, T5.1.1 XXL and PaLM 8b in Appendix C. T5 based models

6



Published as a conference paper at ICLR 2024

are shown to have meaningful few-shot performance as shown in Chung et al. (2022). We do not
consider FLAN-T5 (Chung et al., 2022) as a base model in our experiments because it has already
been fine-tuned on a large amount of supervised datasets, including our evaluation datasets. More
experimental details can be found in Appendix B.

Comparing methods. We compare our ProMoT with several different configurations, including

• Pretrained model: We evaluate the pretrained model on all tasks without any fine-tuning.
• Standard fine-tuning: Fine-tune the pretrained model without trainable prompts. We

also include a multi-task version in Section 5.4 which is commonly used to boost model
generalization on unseen tasks.

• Prompt tuning: Tune the trainable prompt with pretrained model frozen. As the model
is fixed, prompt tuning will not change the pretrained model’s performance on in-context
learning tasks comparing when the prompt is removed.

• Our proposed method: ProMoT: Our proposed two-stage fine-tuning strategy.
• Our proposed method: ProMoT+1-shot: To further boost in-context learning performance,

we prepend a 1-shot example to the input in Figure 4 during training.
5.2 SUPERVISED PERFORMANCE ON FINE-TUNING TASKS

We first show that ProMoT training can achieve similar or even better performance on fine-tuning
tasks compared to standard fine-tuning. We apply three different fine-tuning methods on four different
tasks and report the result in Table 2. We report the best performance within the same number of
fine-tuning steps (See Appendix B for more details). ProMoT outperforms standard fine-tuning on
supervised performance on 3 out of 4 fine-tuning target tasks and outperforms prompt-tuning on
4 out of 4 tasks. Therefore the improved in-context learning performance on unseen tasks (better
generalization ability), as will be demonstrated in the next few sections, comes without sacrificing
the fine-tune task’s performance.

Prompt tuning Standard Fine-tuning ProMoT (Ours)

RTE 91.34 92.06 92.78
WMT14 En-Fr 39.28 41.80 41.30

SNLI 88.53 88.91 89.62
OpenbookQA 73.60 77.2 81.6

Table 2: Comparison of supervised performances of a mT5 XXL model on fine-tuning target tasks.
We use 0-shot in fine-tuning tasks. We report accuracy for RTE, SNLI and OpenbookQA, and BLEU
score for WMT14 En-Fr.

5.3 GENERALIZATION WITH SINGLE TASK FINE-TUNING

Pretrained Standard Fine-tuning ProMoT (Ours) ProMoT + 1-shot (Ours)

Fine-tuning RTE 47.653 92.06 92.78 93.86
1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots

Norm. Avg. 17.52 18.75 15.43 16.56 20.10 21.24 22.26 22.33
(-2.10) (-2.19) (+2.58) (+2.49) (+4.74) (+3.58)

CB 46.43 51.79 73.21 82.14 66.07 67.86 83.93 82.14
WiC 49.69 49.69 50.00 50.16 51.41 53.61 51.25 50.63

Evaluation triviaQA 17.58 19.02 0.15 0.11 17.64 18.66 17.82 19.62
web_questions 9.70 13.04 0.05 0.05 11.07 13.19 10.14 12.11

WMT16_ende 3.97 8.83 0.00 0.00 2.02 3.69 2.26 4.89
WMT16_enro 1.82 3.92 0.00 0.00 0.70 0.96 0.87 1.87

XSum 6.41 2.35 0.00 0.00 7.02 7.01 6.94 3.93
WikiLingua/en 4.59 1.33 0.00 0.00 4.84 4.90 4.87 3.43

Table 3: Performances of a mT5 XXL model finetuned on RTE and evaluated on 8 different tasks
to verify the generalization ability. The accuracy on fine-tuned task (RTE) is in the first row. We
compare the Norm. Avg. (normalized average performance) with pretrained model and report the
relative difference, where red denotes decreased performance and blue denotes increased performance.
CB and WiC are also NLI tasks, very similar to RTE.

In this section, we evaluate and compare the few-shot performance on unseen tasks after fine-tuning.
We show the evaluation results of fine-tuning on RTE and WMT14 En-Fr in Table 3 and Table 4,
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respectively. Experiments on additional fine-tuning tasks SNLI/OpenbookQA and additional base
models including mT5 XL, T5.1.1 XXL and PaLM 8b can be found in Appendix C.

Pretrained Standard Fine-tuning ProMoT (Ours) ProMoT + 1-shot (Ours)

Fine-tuning WMT14 En-Fr 1.98 41.80 41.30 41.19

1-shot 4-shots 1-shot 4-shots 1-shot 4-shots 1-shot 4-shots

Norm. Avg. 17.52 18.75 9.15 11.67 18.87 20.64 19.91 21.99
(-8.37) (-7.07) (+1.35) (+1.89) (+2.39) (+3.24)

CB 46.43 51.79 16.07 32.14 41.07 57.14 41.07 53.57
WiC 49.69 49.69 50.63 49.06 50.16 50.31 49.84 50.63

Evaluation triviaQA 17.58 19.02 3.20 3.15 13.63 15.20 16.93 18.19
web_questions 9.70 13.04 0.89 6.15 9.40 7.92 10.14 12.01

WMT16_ende 3.97 8.83 0.81 0.18 15.52 15.55 16.14 15.63
WMT16_enro 1.82 3.92 1.53 0.42 18.54 17.80 17.57 16.81

XSum 6.41 2.35 0.05 1.86 1.49 0.65 3.41 4.36
WikiLingua/en 4.59 1.33 0.03 0.43 1.14 0.52 4.22 4.73

Table 4: Performances of a mT5 XXL model finetuned on WMT14 En-Fr and evaluated on 8 few-
shot tasks to verify the generalization ability. BLEU on the fine-tuned task is in the first row. We
compare the Norm. Avg. (normalized average performance) with pretrained model and report the
relative difference, where red denotes decreased performance and blue denotes increased performance.
WMT16 En-De and En-Ro are translation tasks with different language pairs from WMT14 En-Fr.

From both tables, we first observe that the model’s in-context learning performance drops significantly
after standard fine-tuning. In particular, the few-shot learning performances drop to near zero for
6 over 8 tasks in Table 3, with the only exceptions being CB and WiC where they share the same
format as the RTE fine-tuning task.

On the contrary, ProMoT reduces the loss of the in-context learning performance on unseen few-
shot evaluation tasks, and even boosts some evaluation tasks that are semantically related to the
fine-tuning task but with totally different task formats, resulting in an increasing in-context learning
performance on average. In Table 3, ProMoT on the binary NLI dataset dataset consistently improves
few-shot performances on two summarization tasks beyond the pretrained model. In Table 4, ProMoT
training on English-French translation substantially improves few-shot performance on other language
translation pairs such as English to German and Romanian. This cross-task generalization across
different task formats are infeasible with previous fine-tuning techniques. Text examples from
standard fine-tuning and ProMoT can be found in Appendix C.9. The improvement with less
specialization and more generalization can be further boosted when we combine ProMoT with 1-shot
prompt to incorporate in-context learning objective during fine-tuning.

It is however not surprising that even ProMoT cannot completely eliminate specialization and may
still negatively influence some unseen in-context learning tasks compared to the pretrained model,
depending on the characteristics of the fine-tuning task. In the next section, we show that a multi-task
setup further improves the already strong generalization of ProMoT.

5.4 MORE GENERALIZATION WITH MULTITASK TRAINING

Multi-task training is commonly used to improve model’s generalization ability (Wei et al., 2021b;
Chung et al., 2022). As a general fine-tuning framework, ProMoT can be combined with multi-tasking
and achieves better generalization compared to standard multi-task fine-tuning.

We apply multi-task ProMoT training on mixed RTE and WMT14 En-Fr translation dataset. At
the prompt-tuning stage, we train a soft prompt for each task. At the fine-tuning stage, we mix
different tasks and prepend the corresponding soft task prompt to each training example. We keep
other configurations the same as Section 5.3 and report the results in Table 5. We compare multi-task
ProMoT with standard multi-task fine-tuning. The results show that Multi-task ProMoT significantly
outperforms standard multi-task fine-tuning on enhancing generalization with larger improvement on
average on unseen 1-shot evaluation tasks. Similar to the single task setting, adding 1-shot prompt
before each training input in the fine-tuning stage further boosts the performance of both multi-task
fine-tuning and multi-task ProMoT.
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Pretrained multi-task FT Multi ProMoT multi-task FT Multi-ProMoT
+ 1-shot + 1-shot

Multi-task RTE 47.65 90.25 91.34 91.70 93.14
Fine-tuning WMT14 En-Fr 1.982 41.34 40.73 40.87 40.55

Norm. Avg. 17.52 20.06 25.88 22.62 26.17
(+2.54) (+8.35) (+5.10) (+8.65)

CB 46.43 80.36 83.93 87.50 85.71
WiC 49.69 51.10 51.41 53.29 52.04

Evaluation TriviaQA 17.58 15.76 16.99 16.53 17.18
Web_questions 9.70 9.70 10.04 9.40 10.38

WMT16 En-De 3.97 0.88 18.83 2.50 17.57
WMT16 En-Ro 1.82 1.52 18.41 5.62 18.57

XSum 6.41 0.44 4.50 1.82 4.32
WikiLingua/en 4.59 0.72 2.89 4.33 3.56

Table 5: Comparison of multi-task training on a mixed dataset of RTE and WMT14 En-Fr. We
compare the evaluation results of pretrained mT5 model, standard multi-task fine-tuning (FT) and
multitask (Multi) ProMoT training. We compare the Norm. Avg. (normalized average performance)
with pretrained model and report the relative difference, where blue denotes increased performance.

Joint Fine-tuning Fine-tuning ProMoT
Fine-tuning + 1-shot with random prompt + 1-shot (Ours)

Fine-tuning RTE 90.97 90.97 92.06 93.86

CB 83.93 78.57 83.93 83.93
WiC 50.47 51.41 51.72 51.25

TriviaQA 0.75 0.03 0.83 17.82
Evaluation web_questions 0.64 0.00 0.30 10.14

WMT16_ende 0.00 0.00 0.00 2.26
WMT16_enro 0.00 0.00 0.00 0.87

XSum 0.00 0.00 0.00 6.94
WikiLingua/en 0.00 0.00 0.00 4.87

Table 6: The ablation study results. Joint fine-tuning: fine-tuning the soft prompt and the main
model together. Fine-tuning + 1-shot: standard fine-tuning with a 1-shot natural language prompt
attached to every input sequence. Fine-tuning with random prompt: fine-tuning with a fixed soft
prompt randomly initialized with uniform distribution. ProMoT + 1-shot: ProMoT is applied with an
attached 1-shot natural language prompt before each training input.

5.5 ABLATION STUDY

We conduct several ablation studies in Table 6. First, instead of fine-tuning in a two-stage process,
we consider “jointly fine-tuning” both the soft prompt and the model parameters in one stage. As
shown in Table 6, this method still results in specialization and severe loss of in-context learning
abilities. Thus the benefit of ProMoT comes from its two-stage nature instead of merely adding
more learnable parameters (soft prompt). In addition, fine-tuning the models with a fixed random
soft prompt does not help - as it does not help to remove format specialization. Another important
baseline is to fine-tune the model with natural language prompts in place instead of soft prompts,
which also capture the format to some extend. In a 1-shot scenario, this approach is still far worse
compared to ProMoT, showing that learned soft prompts work better than natural language prompts
in reducing format specialization in fine-tuning.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we identify format specialization as one important cause of the loss of general in-context
learning abilities during LLM fine-tuning, which tends to happen at the beginning of fine-tuning. We
are motivated to develop ProMoT, a simple yet effective two-stage fine-tuning framework that utilizes
soft trainable prompts to absorb task-specific formats before model fine-tuning. Experiments on a
diverse set of NLP tasks show that ProMoT reduces format specialization and results in surprising
generalization across very different tasks, making it a promising method to build general-purpose
capabilities into LLMs with small fine-tuning datasets. Although we have shown the effectiveness
of ProMoT in our main paper, there is no theoretical guarantee on how much format specialization
can be absorbed by the soft prompt during the first stage of ProMoT. Besides, our experiments are
done with models smaller than 15B due to limited computation resources. It can be interesting to test
ProMoT on larger models.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank the reviewers for their invaluable feedbacks. The work is supported in part by NSF 2008173,
2048280, 2331966, ONR N00014-23-1-2300:P00001, ARL 20230936 and Cisco.

REFERENCES

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
on machine translation. In Proceedings of the First Conference on Machine Translation, pp.
131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W16/W16-2301.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in NeurIPS, volume 33, pp. 1877–1901. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aaditya Singh, Pierre H.
Richemond, Jay McClelland, and Felix Hill. Data distributional properties drive emergent in-
context learning in transformers, 2022. URL https://arxiv.org/abs/2205.05055.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022. URL
https://arxiv.org/abs/2204.02311.

10

http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2205.05055
https://arxiv.org/abs/2204.02311


Published as a conference paper at ICLR 2024

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models, 2022. URL
https://arxiv.org/abs/2208.14271.

Marie-Catherine De Marneff, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. proceedings of Sinn und Bedeutung 23,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL, pp. 4171–4186,
2019. URL https://aclanthology.org/N19-1423.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723, 2020.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Yun He, Steven Zheng, Yi Tay, Jai Gupta, Yu Du, Vamsi Aribandi, Zhe Zhao, YaGuang Li, Zhao
Chen, Donald Metzler, et al. Hyperprompt: Prompt-based task-conditioning of transformers. In
International Conference on Machine Learning, pp. 8678–8690. PMLR, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Faisal Ladhak, Esin Durmus, Claire Cardie, and Kathleen McKeown. WikiLingua: A new
benchmark dataset for cross-lingual abstractive summarization. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pp. 4034–4048, Online, November 2020. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.360. URL
https://aclanthology.org/2020.findings-emnlp.360.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.243. URL
https://aclanthology.org/2021.emnlp-main.243.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602, 2021.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
in abstractive summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 1906–1919, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.173. URL https://aclanthology.org/
2020.acl-main.173.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

11

https://arxiv.org/abs/2208.14271
https://aclanthology.org/N19-1423
https://aclanthology.org/2020.findings-emnlp.360
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/2020.acl-main.173
https://aclanthology.org/2020.acl-main.173


Published as a conference paper at ICLR 2024

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943, 2021.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Kimia Noorbakhsh, Modar Sulaiman, Mahdi Sharifi, Kallol Roy, and Pooyan Jamshidi. Pretrained
language models are symbolic mathematics solvers too! arXiv preprint arXiv:2110.03501, 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

Mohammad Taher Pilehvar and José Camacho-Collados. Wic: 10,000 example pairs for evaluating
context-sensitive representations. arXiv preprint arXiv:1808.09121, 6, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,
Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher,
2021. URL https://arxiv.org/abs/2112.11446.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-
to-text transformer. JMLR, 21(140):1–67, 2020a. URL http://jmlr.org/papers/v21/
20-074.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020b.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=GhVS8_yPeEa.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon
Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He,
Michael Houston, Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative language model, 2022. URL https:
//arxiv.org/abs/2201.11990.

12

https://aclanthology.org/P02-1040
https://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=GhVS8_yPeEa
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990


Published as a conference paper at ICLR 2024

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances
in NeurIPS, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. CoRR,
abs/2109.01652, 2021a. URL https://arxiv.org/abs/2109.01652.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021b.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934, 2020.

Yuexiang Zhai, Shengbang Tong, Xiao Li, Mu Cai, Qing Qu, Yong Jae Lee, and Yi Ma. Investigating
the catastrophic forgetting in multimodal large language models. arXiv preprint arXiv:2309.10313,
2023.

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun
Chen. Differentiable prompt makes pre-trained language models better few-shot learners. arXiv
preprint arXiv:2108.13161, 2021.

13

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2109.01652


Published as a conference paper at ICLR 2024

A BROADER IMPACTS

In our work, we propose a method to improve general-purpose language models with fine-tuning
datasets. The improved general-purpose language model may be used in malicious applications such
as generating disinformation. To mitigate the potential negative impacts, we can add watermark or
deploy AI-generated text classifiers before releasing the model.

B EXPERIMENT DETAILS

B.1 INPUT TEMPLATE USED IN EXPERIMENTS

In Table 7, we list the natural language input template used in our experiments for each task The

Task Template

RTE [premise] question: [hypothesis] Is it true or false? answer: {True, False}
CB & SNLI [premise] question: [hypothesis] Is it true or false or neither? answer: {True, False, Neither}

WiC [sentence1] [sentence2] question: The word [word] is used in the same way in the two sentences.
Is it true or False? answer: {True, False}

OpenbookQA Q: [question] A) [option A] B) [option B] C) [option C] D) [option D] A:
QA Q: [question] A:

Translation Translate [source language] to [target language]: [sentence 1]
Summarization Article: [article] One sentence summary:

Table 7: Input template for each task

example shown in Table 1 is from ID 41141109 in XSum dataset.

B.2 OUTPUT POST-PROCESSING

For each task, we first extract the text after <extra_id_0> and before <extra_id_1>, then trim the
text by locating and remove the text after the second prefix token (Q:, Translate, Article:). For
classification tasks including RTE, CB and WiC, we check whether the first output token is True or
False.

B.3 DATASET AND MODELS

We list the statistics of all datasets used in the paper in Table 8. All the datasets and models can be
used in research context.

B.4 HYPER-PARAMETERS

For all mT5 models, we fine-tune with learning rate 0.001, drop rate 0.1 and label smoothing 0.1,
following the default settings for T5 models (Raffel et al., 2020b). For all prompt tuning experiments,
we use learning rate 0.2 and prompt length 100. For all tasks except summarization tasks, we choose
the model input sequence length larger than the input length in datasets. For summarization, we

Dataset Version Training Validation Test

RTE v102 2,490 277 3,000
CB v102 250 56 250

WiC v102 5,428 638 1,400
WMT14 En-Fr v003 15,786,979 3,000 3,003
WMT16 En-De v003 4,548,885 2,169 2,999
WMT16 En-Ro v003 610,320 1,999 1,999

TriviaQA rc.nocontext:1.1.0 138,384 18,669 17,210
Web Questions 1.0.0 3,778 - 2,032

XSum 1.1.0 203,577 11,305 11,301
WikiLingua/en gem/wiki_lingua_english_en 99,020 13,823 28,614

Table 8: Version number, sizes of training, validation, and testing splits for each dataset used.
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Fine-tuning Datasets Prompt Tuning + 1-shot ProMoT + 1-shot

RTE 92.78 93.86
WMT14 En-Fr 39.41 41.19

Table 9: Performances of prompt tuning + 1-shot and ProMoT + 1-shot on fine-tuning tasks.

cut each input to 1024 tokens. We use Adafactor optimizer and batch size 64 without data-packing
across all experiments. In inference, we use beam search to decode the outputs with width 4. More
experimental settings are provided in the appendix. For ProMoT tuning, at stage 1 we run prompt
tuning for 5000 steps and save a checkpoint every 1000 steps, then select the prompt checkpoint
with the best performance on target task. At stage 2, we freeze the trained prompt and fine-tune the
model for 1000 steps, checkpointing every 100 steps. We pick the model checkpoint with highest
performance on the fine-tuned task as our final checkpoint. For comparison, we run prompt tuning
and standard fine-tuning for 5000 and 1000 training steps respectively and report the performance of
the best checkpoint. We explore fine-tuning with more steps in Appendix C.3.

In ablation study in Section 5.5, we include an experiment to jointly fine-tune soft prompt and
pretrained model. In this experiment, we finetune the model and prompt for 1000 steps with the same
learning rate 0.001, following the setting in (He et al., 2022).

B.5 HARDWARE AND IMPLEMENTATION

All the experiments are implemented based on the original prompt tuning2 and T5x code base3. All
experiments are run on a cluster of 64 parallel TPUs. Time cost for different experiments varies,
however, all training experiments can be finished within 1 day.

C ADDITIONAL EXPERIMENT RESULTS

C.1 ADDITIONAL RESULTS ON SINGLE TASK FINE-TUNING

As complementary results of Table 3 and 4, we list and compare the performance of prompt tuning
+ 1-shot in Table 9. We also provide experiments on SNLI and OpenbookQA datasets in Table 10.
Without fine-tuning, pretrained mT5 failed to output “A”, “B”, “C”, “D” for multi-choice QA in 0-shot
openbookQA dataset, which results in a zero accuracy. We can see that the additional experiments
are consistent with our main experiments that ProMoT can achieve similar supervised performance
on fine-tuning tasks with less forgetting and even better performance on general in-context learning
tasks.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours) Standard Fine-tuning ProMoT (Ours)
on SNLI on SNLI on OpenbookQA on OpenbookQA

SNLI 1.32 88.53 88.91 89.62 - -
OpenbookQA 0.00 73.60 - - 77.2 81.6

Norm. Average 17.52 17.52 16.20 19.83 0.00 17.40
(-1.32) (+2.31) (-17.52) (-0.12)

CB 46.43 46.43 69.64 62.5 0.00 41.07
WiC 49.69 49.69 53.29 51.25 0.00 50.0

triviaQA 17.58 17.58 4.54 20.56 0.05 21.10
web_questions 9.70 9.70 2.12 9.94 0.00 10.53
WMT16_ende 3.97 3.97 0.00 2.48 0.00 2.80
WMT16_enro 1.82 1.82 0.00 0.90 0.00 1.04

XSum 6.41 6.41 0.00 6.58 0.00 7.48
WikiLingua/en 4.59 4.59 0.00 4.39 0.00 5.20

Table 10: Performance of a mT5 XXL model finetuned on SNLI and OpenbookQA and evaluated
on 8 1-shot tasks. The accuracy on fine-tuned tasks are in the first two rows. Prompt-tuning doesn’t
modify pretrained model parameters and has the same in-context performance as pretrained model.

2https://github.com/google-research/prompt-tuning
3https://github.com/google-research/t5x
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C.2 4-SHOT EVALUATION RESULTS OF MULTI-TASK TRAINING

As an additional result to Table 5, in Table 11 we provide the comparison between the pretrained
model, multi-task standard fine-tuning and multi-task ProMoT.

Pretrained multi-task FT Multi ProMoT

Multi-task RTE 47.65 90.25 91.34
Fine-tuning WMT14 En-Fr 1.982 41.34 40.73

Norm. Avg. 18.75 20.81 26.31
(+2.06) (+7.56)

CB 51.79 82.14 78.57
WiC 49.69 52.82 52.50

Evaluation TriviaQA 19.02 17.75 22.26
Web_questions 13.04 12.25 12.50

WMT16 En-De 8.83 0.24 18.84
WMT16 En-Ro 3.92 0.54 18.81

XSum 2.35 0.34 5.04
WikiLingua/en 1.33 0.39 1.92

Table 11: Comparison of multi-task training on a mixed dataset of RTE and WMT14 En-Fr. We
compare the 4-shot evaluation results of pretrained mT5 model, standard multi-task fine-tuning
(FT) and multitask (Multi) ProMoT training. We compare the Norm. Avg. (normalized average
performance) with pretrained model and report the relative difference, where blue denotes increased
performance.

C.3 TRAINING MORE STEPS: TRADE-OFF BETWEEN FINE-TUNING TARGET TASK AND
IN-CONTEXT LEARNING ABILITIES

In Section 5.3, we report the results of the best checkpoints within 1000 steps of fine-tuning. With a
longer training period, we can see a more clear trade-off between the performance on fine-tuning
target task and the performance on in-context learning abilities. Here we show the long-term trade-off
between fine-tuning target task and in-context learning evaluation tasks by scattering the performance
of different checkpoints within 20000 steps fine-tuning. In Figure 5, and 6, we plot the trade-off on
classification and translation tasks, respectively.

41 42 43 44
BLEU Score

10

20

30

40

50

Av
g.

 A
cc

ur
ac

y

Traditional Fine-Tuning
ProMoT

Figure 5: Trade-off between BLEU score of
En-Fr (horizontal axis) and average accuracy
on classification tasks (vertical axis) when fine-
tuning the model on En-Fr translation.

41 42 43 44
BLEU Score

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g.

 B
LE

U 
Sc

or
e

Traditional Fine-Tuning
ProMoT

Figure 6: Trade-off between BLEU score of
En-Fr (horizontal axis) and average BLEU
score on other language pairs (vertical axis)
when fine-tuning the model on En-Fr transla-
tion.

As we can see from the figures, datapoints for ProMoT is higher than standard fine-tuning on
the figures, which implies that with the same performance on fine-tuning target task, forgetting is
alleviated with ProMoT fine-tuning.
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C.4 ADDITIONAL EXPERIMENTS ON T5 XXL

To show the performance of our method on an English-based pretrained model, we did an additional
experiment on T5 XXL with fine-tuning target task RTE. The result is shown in Table 12. The results
are consistent with our main experiments on the mT5 XXL model.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours)

RTE - 91.7 93.5 93.14

Norm. Average 19.75 19.75 14.07 22.23
(-5.68) (+2.49)

CB 55.36 55.36 62.50 73.21
WiC 49.84 49.84 50.00 50.78

triviaQA 34.15 34.15 0.02 33.86
web_questions 16.04 16.04 0.00 15.95
WMT16_ende 0.13 0.13 0.00 0.02
WMT16_enro 0.06 0.06 0.00 0.01

XSum 1.26 1.26 0.00 1.79
WikiLingua/en 1.12 1.12 0 2.25

Table 12: Performance of a T5.1.1 XXL model finetuned on RTE and evaluated on 8 1-shot tasks.
The accuracy on fine-tuned task (RTE) is in the first row. Prompt-tuning doesn’t modify pretrained
model parameters and has the same in-context performance as pretrained model.

C.5 ADDITIONAL EXPERIMENTS ON MT5 XL

To show the performance of our method on an smaller-size pretrained model, we did an additional
experiment on mT5 XL with fine-tuning target task WMT14 En-Fr. The result is shown in Table 13.
The results are consistent with our main experiments on the mT5 XXL model.

Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours)

WMT14 En-Fr - 32.47 35.84 36.46

Norm. Average 13.59 13.59 8.61 14.40
(-4.98) (+0.81)

CB 26.79 26.79 21.43 28.57
WiC 50.0 50.0 44.20 51.10

triviaQA 12.13 12.13 0.83 8.81
web_questions 6.59 6.59 0.44 5.31
WMT16_ende 2.56 2.56 0.63 7.69
WMT16_enro 1.52 1.52 1.20 10.40

XSum 4.26 4.26 0.05 1.37
WikiLingua/en 4.88 4.88 0.06 1.94

Table 13: Performance of a mT5 XL model finetuned on WMT14 En-Fr and evaluated on 8 1-shot
tasks. The BLEU score on fine-tuned task (WMT14 En-Fr) is in the first row. Prompt-tuning doesn’t
modify pretrained model parameters and has the same in-context performance as pretrained model.

C.6 ADDTIONAL EXPERIMENTS ON PALM 8B

To show the performance of our method on decoder-only models, we did an additional experiment on
PaLM 8b model with fine-tuning target task WMT14 En-Fr. We use prompt length 50 and learning
rate 0.3 in prompt-tuning and default fine-tuning hyperparameters in fine-tuning. The result is shown
in Table 14. The results are consistent with our main experiments on mT5, where ProMoT can
achieve similar supervised performance on fine-tuning tasks with less forgetting on general in-context
learning tasks.

C.7 USING LORA IN THE FIRST STAGE

As we have discussed in Section 4, conceptually we can use any parameter-efficient method at the
first ProMoT fine-tuning stage to absorb the task format information. Here we did experiments to
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Datasets Pretrained Prompt-tuning Standard Fine-tuning ProMoT (Ours)

WMT14 En-Fr - 13.62 33.04 32.02

Norm. Average 26.09 26.09 17.80 22.37
(-8.29) (-3.72)

CB 46.43 46.43 32.14 33.93
WiC 49.69 49.69 49.06 49.69

triviaQA 44.69 44.69 37.09 42.11
web_questions 13.02 13.02 11.91 13.01
WMT16_ende 23.85 23.85 3.77 19.33
WMT16_enro 19.89 19.89 4.02 13.18

XSum 5.57 5.57 2.29 2.9
WikiLingua/en 5.59 5.59 3.14 4.77

Table 14: Performance of a PaLM 8b model finetuned on WMT14 En-Fr and evaluated on 8 1-shot
tasks. The BLEU score on fine-tuned task (WMT14 En-Fr) is in the first row. Prompt-tuning doesn’t
modify pretrained model parameters and has the same in-context performance as pretrained model.
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Figure 7: Cosine similarity between the full gradient g and the format gradient gformat on different
parts of the last decoder layer. We collect and show the cosine value for gradients on MLP kernel,
Query, Key and Value on the attention module.

compare LoRA and prompt-tuning (used in our ProMoT main experiments) in the first fine-tuning
stage. We report the results in Table 15. As we can see from the table, ProMoT with prompt-tuning
is significantly better than ProMoT with LoRA, in both supervised fine-tuning task and unseen
1-shot evaluation tasks. This might partially due to better alignment of soft prompt between format
description in natural language corpus.

Datasets Pretrained Standard Fine-tuning ProMoT with LoRA (r=2) ProMoT with LoRA (r=4) ProMoT

WMT14 En-Fr - 41.80 39.09 39.97 41.19

CB 46.43 16.07 26.78 23.21 41.07
WiC 49.69 50.63 53.13 53.25 50.16

triviaQA 17.58 0.03 4.98 5.19 13.63
web_questions 9.70 0.05 3.30 3.84 9.40
WMT16_ende 3.97 0.67 1.23 1.87 15.52
WMT16_enro 1.82 0.91 2.06 2.89 18.54

XSum 6.41 0.030 0.17 0.35 1.49
WikiLingua/en 4.59 0.05 0.64 0.57 1.14

Table 15: Performance of a mT5 XXL model finetuned on WMT14 En-Fr and evaluated on 8 1-shot
tasks. In this experiment we use LoRA at the first ProMoT stage instead of prompt-tuning. r is the
rank of LoRA’s low-rank update matrices. The BLEU score on fine-tuned task (WMT14 En-Fr) is in
the first row. Prompt-tuning doesn’t modify pretrained model parameters and has the same in-context
performance as pretrained model.
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C.8 PLOTTING MORE STEPS FOR FIGURE 3

To further strengthen our conclusion in Figure 3, here we plot the gradient alignment from step 0 to
step 400. As we can see from the figure, gradient alignment drops significantly after 300 steps which
is matched with Figure 2 where the true and false ratio increases before 300 steps and then remains
stable.

C.9 QUALITATIVE RESULTS ON FINE-TUNING WMT14 EN-FR TASK

In Table 1 we show an example from fine-tuning task RTE. Here we show examples for fine-tuning
task WMT14 En-Fr translation on different unseen few-shot tasks. We compare the outputs from
ground-truth targets, pretrained mT5, fine-tuned mT5 on WMT14 En-Fr and ProMoT mT5 on
WMT14 En-Fr. The outputs are generated with a 1-shot example. As we can see from the examples,
standard fine-tuning on WMT14 En-Fr will 1) make the model overfit its format and tend to output
French; and 2) model tends to repeat its input which is similar to translation task. ProMoT alleviates
this specialization on fine-tuning task and has better generalization.

• WMT16 En-De
– Target: Danach war der Mann, der sich nach Angaben seines Anwalts mittlerweile

wieder auf freiem Fußbefindet, in eine größere Zelle verlegt worden.
– Pretrained: Danach wurde der Mann in eine größere.
– Fine-tune: L’homme, qui, selon une déclaration de son avocat, a depuis été libéré, a

ensuite été transféré dans une cellule plus grande.
– ProMoT: Danach wurde der Mann, der mittlerweile freigelassen wurde, in eine größere

Zelle verlegt.
• WebQuestions

– Target: Milwaukee
– Pretrained: Milwaukee, Wisconsin
– Fine-tune: Where is harley davidson corporate headquarters? A: Milwaukee, Wisconsin

Q: what movies has scarlett johansson in? A: Girl with a Pearl Earring Q: where is
harley davidson corporate headquarters? A: Milwaukee, Wisconsin Q: where is harley
davidson corporate headquarters? ...

– ProMoT: Milwaukee, Wisconsin
• WikiLingua/en

– Target: Ensure that you have never activated a free trial of Amazon Prime on your
account in the past. Repeat the steps above to locate products that are fulfilled by
Amazon. Click the button that says, ...

– Pretrained: Click “Start my Free Trial.”Sign up with Amazon Prime. Submit your
order.

– Fine-tune: Si vous avez besoin d’une aide supplémentaire, n’hésitez pas à communiquer
avec l’équipe d’Amazon Prime. Vous pouvez vous inscrire à l’Amazon Prime et vous
inscrire à l’Amazon Prime. Vous pouvez vous inscrire ...

– ProMoT: Click “Start my Free Trial.”Sign up with Amazon Prime. Enter your credit
card details or use one of your saved payment methods. Submit your order. If you do
not return, you will be charged $99 for a year membership to Amazon Prime at the end
of your trial period
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