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Supplementary Material

(d) ¢ = “a bedroom for young twins w/ sunflower visuals”

(e) ¢ = “a modern bedroom

® ¢ = “a bedroom with wooden furniture”

Figure 1. Additional layout-guided image synthesis results from diverse prompts. The generated images (Right) from the input 3D
layouts (Left) and text prompts demonstrate our method’s strong adherence to both conditions. Notably, LACONIC produces high-quality
results across various settings: without a text prompt (c), with in-domain prompts (e, f), and with out-of-distribution prompts (a, b, d).

A. Implementation

In this section, we provide comprehensive implementation
details of our 3D layout adapter architecture, pretrained
text-to-image diffusion backbone, and our training and in-
ference settings. Unless otherwise specified, the same set-
tings are used for all datasets in our experiments. We also
detail the training and test configurations of the baselines.

A.1. Network Architecture

A.1.1. Pretrained Models

We employ the established and widely adopted Stable Dif-
fusion [21] v1.5 to implement the conditional UNet image
denoiser ¢y and CLIP [19] text prompt encoder 7y, using
the pretrained weights and implementation from the Hug-
gingFace Diffusers [28] library. In our framework, the text
encoder is used to encode both the global image caption c
and the object-level semantic descriptions s.

A.1.2. 3D Layout Encoder

We detail the modules used to embed the input semantic 3D
layout S, which build upon previous work [14, 15, 29] and
are illustrated in Figure 3 and described in Section 3.3 in the
main paper.

Shared Object Encoder Parametric object bounding box
representations o; are embedded by a common mod-
ule. More precisely, each scalar defining individual ob-
ject spatial attributes (p;, R;, d;) is projected to a higher-

dimensional vector using fixed, sinusoidal positional encod-
ing [27] with 32 frequencies. We follow [29] and apply:

PE(k) = {sin(128//%'k), cos(1287/31 k) }IL, € R® (1)

Consequently, object’s position p; and dimension d; are en-
coded to 192-dimensional attributes. Importantly, the rota-
tion matrix R; is first expressed in a continuous representa-
tion, following the recommendations from [34], leading to
a vector in R® from which individual scalars are also pro-
cessed by Equation (1). This produces a representation in
R384 that is subsequently mapped by a linear layer to R92,
The semantic embedding 7(s;) is the end-of-sequence out-
put token from the pretrained text encoder in R% , with
d; = 768, and is further projected to a 192-dimensional
representation by an MLP featuring a single hidden layer
of dimension 384 with LeakyReLU activations. Encoded
object attributes are finally concatenated, yielding an indi-
vidual token 7, of dimension 4 x 192 = d for each of the
N objects in the scene.

Floor Plan Encoder Following prior work [14, 29], we
encode the optional scene’s floor plan F by leveraging a
popular implementation of the PointNet [ 18] model, applied
on a point cloud representation obtained by sampling P =
100 three-dimensional points that are evenly spaced along
the room’s boundaries. A single floor token T, € R is
subsequently obtained by projecting the 1024-dimensional
module’s output.


https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
https://github.com/fxia22/pointnet.pytorch

Transformer Encoder New token representations T are
established by a Transformer encoder that follows the sem-
inal paper [27] by using the implementation from the Py-
Torch [16] library. In practice, we use 4 encoder layers with
6 attention heads and hidden dimensions of size 512. Since
the scene is defined as an unordered sequence of its objects
and floor representations, we do not additionally encode
the position of individual tokens in 7, and perform zero-
padding to handle scenes with different number of objects
N. In practice, we consider a maximum number of 50 ob-
jects. Following [31], the output token embeddings are each
passed to a shared MLP that preserves the token dimension
d-, implemented with a hidden unit of size 768, GELU ac-
tivation [6], and followed by Layer Normalization [1].

A.1.3. Cross-Attention Layers

As introduced in Section 3.3 of the main paper, the scene
conditioning sequence T output by the 3D layout encoder
is mapped to associated key K'Y and value VY by introduc-
ing respective learnable dense projection matrices Wx €
R4 and Wy € R9%4r . In practice, we follow the im-
plementation from IP-Adapter [31] to introduce the decou-
pled cross-attention mechanism within residual blocks of
the pretrained Stable Diffusion UNet backbone.

A.2. Datasets

In this section, we introduce the datasets used in our ex-
perimental evaluation and describe any dataset-dependent
mechanisms implemented to adapt our work to their spe-
cific features or available annotations.

A.2.1. HyperSim Dataset

Features Following previous work [30], we leverage in-
door scenes and photorealistic renderings from Hyper-
Sim [20] to construct a collection of semantic 3D bounding
box layouts with camera poses y and image x pairs. The
dataset originally features 461 scenes from diverse types of
indoor environments, and 77,400 rendered images. We fol-
low SceneCraft [30] and leverage a filtered version of the
dataset proposed in [24], discarding unbounded and scenes
with excessively large scales. This results in 323 unique
scenes, that are associated with 24,383 images annotated
by a global text caption extracted by a pretrained founda-
tion model. Each layout features 3D bounding box annota-
tions that are typed according to the standard NYU40 [25]
semantic classes. Each rendering is also associated with an
object instance map, that we leverage in the context of our
SOC metric implementation, as detailed in Section A.6. We
conducted foundational statistical analysis of the 3D lay-
outs, establishing that scenes contain an average of 121 ob-
jects, with a median of 54 and that the dataset demonstrates
a large diversity in terms of structural complexity, which is
challenging in the context of our work and in light of the
limited number of available samples.

Experimental Setup We describe here the dataset-
specific mechanisms implemented to run experiments on
HyperSim layouts. Importantly, a proportion of scenes from
the dataset contain hundreds of objects, exceeding the max-
imum length fixed to 50 for our sequence-based represen-
tation used for the model conditioning. As a result, we
leverage the instance semantic map of the target render-
ing to prioritize including visible objects in the condition-
ing sequence. If the number of visible objects still exceeds
the limit, we identify the most meaningful objects based on
their bounding box dimensions. Since the HyperSim dataset
does not provide the floor information in a straightforward
manner, we set F = () in our experiments. Object-level se-
mantic information are also limited to their categorical label
among NYU4O0 classes, from which we apply 74 (s;) as de-
scribed in our general methodology.

A.2.2. Custom Bedroom Dataset

As described in the main paper in Section 4.1, the limited
number of available HyperSim layouts, that are passed as
conditioning input, makes it easier for our model to learn
a mapping between the global scenes and specific camera
poses and target renderings, while overlooking the contri-
butions of individual objects. In response, we gathered a
custom dataset of 72,000 human-designed 3D indoor bed-
room layouts, in which each layout is associated to a single
rendering. The dataset also includes floor information, rep-
resented as a 3D point cloud. Finally, ground-truth object-
level semantic descriptions s; are extracted using a LLaVA
model [10] from their 2D rendering using the following in-
struction: ”Describe this object concisely. Do not analyse
the background, only the object”. This level of annotations
allows to implement all the building blocks from our gen-
eral methodology.

A.3. Training Protocol

We optimize our adapter network while keeping the text-
to-image denoiser frozen by following standard DDPM [7]
training with e-prediction objective, as formalized in Equa-
tion (1) in the main paper. Noise timesteps are uniformly
sampled from ¢ ~ 1{(0,1000). At each iteration, we
randomly drop the conditioning input 3D layout y with a
rate pgop = 0.15. We use the AdamW [11] optimizer,
with weight decay coefficient A = 0.01 and learning rate
n = 5 x 1075, reached following an initial linear warmup
phase during the first 200 training iterations. Our check-
points are trained for a total of 250 epochs, with 7 decreas-
ing according to a cosine schedule. We leverage PyTorch
Lightning [4] to distribute experiments across 3 NVIDIA
RTX 6000 GPUs, each handling a batch size of 10 sam-
ples. Importantly, we experimented with enabling auto-
matic mixed precision during training, but empirically ob-
served instability and inconsistent convergence.


https://github.com/tencent-ailab/IP-Adapter
https://github.com/tencent-ailab/IP-Adapter
https://huggingface.co/datasets/gzzyyxy/layout_diffusion_hypersim
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Figure 2. Text-driven DiT synthesis results. Given an input 3D
layout, viewpoint and caption (a), LACONIC with Stable Diffu-
sion 3 [3] supports adjusting the adapter strength to balance fidelity
to the text prompt against adherence to the input layout (b—d).

A 4. Inference Settings

At test-time, images for quantitative evaluation are gen-
erated following the sampling algorithm from DPM-
Solver [12]. We apply 30 denoising steps with a classifier-
free guidance scale of 5.0. Images in our qualitative results
are obtained with the DDIM sampler [26] using 50 steps.

A.5. Baselines

A.5.1. SceneCraft

SceneCraft [30] is a recent baseline method that proposes
to tackle 3D layout-guided image synthesis, in which, sim-
ilar to our approach, 3D layouts are defined as a collection
of typed object 3D bounding boxes. To do so, it renders
the input 3D layout from the target camera viewpoint to (i)
a semantic map in which individual boxes are colored ac-
cording to their one-hot semantic category and (ii) depth
maps that are automatically derived from the input geom-
etry. From this pair of 2D input representations and in or-
der to introduce the additional controls to a pretrained text-
to-image backbone, SceneCraft trains dedicated Control-
Net [32] modules in a supervised experiment. In practice,
we leverage the pretrained checkpoint obtained by training
the modules on the same HyperSim [20] subset used in our
own experiments. It uses Stable Diffusion [21] v2.1 as the
T2I prior. We employ official author implementation with
the default test-time parameters.

A.5.2. Diffusion Model from Scratch

We describe below the main motivations and implemen-
tation details behind the Diffusion Model trained From
Scratch (DM-FS) from our experimental evaluations.

Intuitions A key design choice in our framework is to use
a cross-attention-based adapter network to augment exist-
ing T2I models with 3D layout guidance, rather than train-
ing a dedicated, conditional generative model from scratch.
This choice is motivated by two primary factors. First,
achieving photorealistic generation results would be ex-
tremely challenging given the small scale of available im-
age datasets featuring 3D layout annotations, especially on
less common camera views that are not widely represented
in the training distribution. Second, our adapter approach
allows us to leverage the powerful priors of large-scale T21I
models, enabling strong generalization to other domains, as
demonstrated by our experimental results. We believe that
those insights validate the relevance of this baseline in the
context of our contributions’ evaluation.

Implementation To experimentally validate our intu-
itions, we trained a baseline from scratch, jointly optimizing
arandomly initialized UNet and the 3D layout encoder from
Section A.1.2. The backbone is similar to that of Stable
Diffusion, implemented with Diffusers [28], and is guided
through standard cross-attention conditioning [21] between
the 3D scene sequence S and feature maps from the resid-
ual blocks. Due to the limited caption variety in the training
data, we omit text conditioning for this baseline. To account
for the smaller training set, the UNet is also downsized com-
pared to Stable Diffusion and comprises 4 downsampling
and upsampling residual blocks with 128, 256, 256 and 384
output channels. The two bottleneck blocks, that operate
at smaller resolutions, are augmented with cross-attention
with 8 heads. The 3D layout encoder’s architecture is iden-
tical to that described in Section A.1.2.

A.6. Evaluation Metric

In Section 4.1 of our main paper, we introduce the Scene
Object CLIP (SOC) score as a robust way to simultaneously
assess whether objects in the generated content (i) are cor-
rectly positioned and sized with respect to their spatial con-
ditioning information and, at the same time, (ii) match their
assigned semantic attributes.

Procedure To compute the score for a synthesized image,
we first identify its main visible objects given the condition-
ing 3D layout S, the camera pose C, and the 2D object o;
bounding box annotations B, from the associated ground
truth image . Since these 2D boxes do not assess that the
corresponding objects o; are mostly visible, we also project
the 3D bounding boxes from the conditioning signal onto
the image plane to derive enclosing 2D boxes B, For each
object, we notice that this second bounding box fully con-
tains the one from the image annotation, and compute the
ratio 7, as the area of B, divided by the area of the enclos-
ing projected box Bi,. Remarkably, this projection mecha-


https://huggingface.co/gzzyyxy/layout_diffusion_hypersim_prompt_one_hot_multi_control_bs32_epoch24
https://github.com/OrangeSodahub/SceneCraft

Figure 3. Layout-guided image synthesis results with a DiT-based backbone. Our LACONIC adapter successfully conditions Stable
Diffusion 3 [3], demonstrating compatibility with modern DiT architectures. The generated images (Right) show strong adherence to the

input 3D layouts and camera viewpoints (Left).

nism also handles objects that partially lie outside the image
bounds. Based on this ratio, objects o; that are sufficiently
visible are cropped at the location of Biy, in the synthesized
image, yielding per-object images x,,. We finally compute
a CLIP [19] correlation score between object images and
their associated text semantic s;.

Filtering Parameters We rely on an object’s associated
visible area ratio % to determine if its crop image will be
added to the evaluation base. In practice and to report the
values in Table 1 in the main paper, we set a threshold value
a = 0.4. Additionally, we filter out tiny objects, which
are prevalent in the HyperSim [20] dataset. Indeed, ob-
jects whose instance semantic map covers less than 2% of
the image area are discarded. Finally, we also filter objects
whose NYU40 semantic annotation is non-descriptive, e.g.,
that are classified as “other”. The final metric is averaged
over all the resulting object crops in the dataset.

B. Generalization to DiT Backbones

In this section, we demonstrate the flexibility of our
adapter by integrating it with a recent Diffusion Trans-
former (DiT) [17] backbone. Specifically, we employ Sta-
ble Diffusion 3 [3] to showcase that LACONIC is not lim-
ited to established UNet-based models conditioned via stan-
dard cross-attention, but is capable of remarkable general-
ization across architectures.

B.1. Background on Joint-Attention

Stable Diffusion 3 [3] introduces a Multimodal Diffusion
Transformer (MM-DIiT) architecture trained with Rectified
Flows [9]. The core of its conditioning approach is a joint-
attention mechanism that operates over a unified sequence
containing both image tokens (from the latent x;) and text
tokens (from the caption c¢). Within each transformer block,

separate sets of linear projections are used to yield the re-
spective image Q*, K*, V* and text Q°, K¢, V¢ matri-
ces. These are subsequently concatenated into global ma-
trices (e.g., @ = [Q%; Q°)]) used for attention, enabling a
bidirectional information flow between text and visual fea-
tures within the architecture. The resulting hidden states
H? and H€ are finally separated and processed by addi-
tional modality-specific feedforward modules.

B.2. Layout Conditioning

Our 3D layout condition is integrated by performing an ad-
ditional joint-attention pass. Consistent with our general
methodology, this is implemented by introducing new train-
able linear projections to augment the pretrained model.
Specifically, we obtain new key-value pairs from both the
text-conditioned image state H”* and the encoded layout y
features, while leveraging the query matrix ) from the pri-
mary text-conditioning step. A second joint-attention oper-
ation is then performed over concatenated matrices, produc-
ing an output that is split into a novel image state ' and
a layout state HY which is processed by additional linear
layers. These are merged with the outputs from the primary
joint-attention pass, following the linear combination from
Equation 3 in the main paper, i.e.,

Hﬁxnal =H" + 'nyl and Hgnal =H° + ’YHy (2)

In practice, we leverage the Diffusers backbone imple-
mentation and pretrained weights, that we augment with
the custom joint-attention processor implementation from
IPAdapter-Instruct [22].

B.3. Qualitative Results

We show in Figure 3 images synthesized by Stable Diffu-
sion 3 [3] DiT after training a dedicated LACONIC adapter.
Notably, the augmented backbone successfully takes into
account the input 3D layout and viewpoint and, as a result,


https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
https://github.com/unity-research/IP-Adapter-Instruct
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Figure 4. Qualitative comparison with Build-A-Scene [2] given a common 3D layout and viewpoint. For each method, from left to
right: input scene representation, generation result for prompt c1 = “a cozy bedroom with a wooden floor”, and for co = “a Van-Gogh
style bedroom”. Build-A-Scene’s input representation also features individual prompt for each bounding box.

renders scenes in accordance with the specified objects spa-
tial and semantic features. Additionally, Figure 2 highlights
that the model also supports multimodal conditioning with
a non-empty global text caption ¢, whose influence with re-
spect to the layout can be adjusted following Equation 2.

C. Additional Results

In this section, we provide additional experimental results
highlighting the capabilities of our model and advantages
of our design choices.

C.1. Ablation Study

We trained ablated versions of our model to measure the

individual contribution of:

e L-R: applying the reframing mechanism from world to
camera coordinates described in Section 3.4.

e L-T: including the transformer encoder module in the
adapter architecture detailed in Section 3.3.

Quantitative evaluation metrics are computed on the custom

bedroom dataset and reported in Table 1. Reported results

further validate our design choices. Notably, we can ob-

serve that the transformation of the input layout to the cam-

era’s 3D coordinate system has a key contribution to our

method’s performance.

Table 1. Ablation study on our framework’s main components.

Ablation Setting FID| KID| SOC1

L-R 34.03 3217 2217
L-T 10.68 11.19 2228
LACONIC 9.68 10.24 2235

C.2. Baseline Comparison

We provide an additional qualitative comparison against the
recent Build-A-Scene [2] method. While fundamentally
different in its setting by adopting a training-free approach,
the baseline also attempts to perform 3D layout guided im-
age synthesis. To do so, objects are iteratively added to a
given background by leveraging a depth-conditioned image
generative model and by manipulating the attention maps of

the pretrained backbone. Qualitative results from the same
input bedroom layout are reported in Figure 4. Remarkably,
our method more accurately reflects the input 3D structure,
showcasing all and only the specified objects.

C.3. Perceptual Study

We conducted a perceptual study to compare our method
with SceneCraft [30], evaluating both the overall quality of
the generated images and their adherence to the input 3D
layout and viewpoint.

Baseline Settings Methods are compared on our custom
bedroom dataset on which we train a SceneCraft model by
optimizing jointly respective ControlNet [32] modules from
depth and semantic maps. These conditioning inputs are
rendered from the 3D layout and at the target camera view,
as shown in Figure 5. We follow the official implementa-
tion and default parameters, using the same Stable Diffu-
sion v1.5 backbone as our method. A qualitative compari-
son with this baseline is shown in Figure 8.

Study Design We employed a two-alternative forced-
choice (2AFC) test. For a given 3D layout and text prompt,
participants were shown the pair of synthesized images and
asked to choose the better one based on two separate cri-
teria: (i) “Which image is the most realistic/natural?” and
(i1) “Which image better respects the reference 3D layout
and viewpoint?”. To prevent bias, the positions of the im-
ages were randomized for each trial. The study interface
provided an interactive view of the 3D layout input and the
ground truth image for reference, as shown in Figure 7.

Results We collected 638 preference votes from 15 par-
ticipants across 319 image pairs. The results demonstrate a
clear preference for our method which was favored for re-
alism in 71.2% of comparisons. For adherence to the input
3D layout, LACONIC achieved a strong 89.0% preference
rate. This trend was remarkably consistent across partic-
ipants. Based on their individual average ratings, 100% of
participants (15 out of 15) favored our method on condition-
ing adherence, and 93% (14 out of 15) favored it on realism.



(a) Input 3D layout & viewpoint (b) Ground-truth image

(¢) Conditioning depth map

(d) Conditioning segmentation map

Figure 5. Conditioning inputs for the SceneCraft [30] baseline.
The model is conditioned on depth (c) and segmentation (d) maps,
which are rendered from the 3D bounding box layout (a) underly-
ing a ground-truth bedroom image (b).

C.4. Qualitative Results

We provide additional qualitative results on text-driven,
layout-guided image synthesis in Figure 1. These results
highlight our method’s ability to adhere to the input seman-
tic 3D layout while achieving out-of-distribution general-
ization to unseen concepts. Additionally, we report in Fig-
ure 9 and Figure 10 supplemental comparisons against the
DM-FS and SceneCraft [30] baselines, both with and with-
out providing an additional text condition. Our method con-
sistently generates more realistic images with superior de-
tail, 3D layout fidelity, and text prompt adherence. Motivat-
ing our 3D layout conditioning encoder, the DM-FS base-
line appears to better respect the input 3D layout in com-
parison to SceneCraft [30]. We notice that both adapter-
based approaches, ours and SceneCraft, leverage the pre-
trained T2I backbone, resulting in fewer artifacts in the gen-
erated images in comparison to DM-FS. Consequently, our
method demonstrates a significant advantage in complex
scenes with many objects, combining the expressiveness of
our 3D layout encoder with the T2I backbone’s ability to
generate detailed visual features.

D. Limitations

Figure 6 illustrates failure cases and known limitations. Al-
though our method demonstrates state-of-the-art 3D layout
adherence, it can occasionally generate results with incon-
sistencies, such as missing objects, visual artifacts, or dis-
torted perspectives.

E. Societal Impact

Controllable generative Al for 3D environments has signif-
icant implications for both individuals and industries. We

believe our method to predominantly yield positive societal
impact. By enabling fine-grained control over generation,
our approach makes 3D-aware content creation more intu-
itive and accessible, empowering not only artists and de-
signers but also individuals with no prior expertise in 3D
modeling. It also benefits industries that rely on realistic
environmental rendering, such as urban planning, architec-
ture, and digital twins for cities. A key advantage of our
method is its parameter efficiency, which reduces the com-
putational cost of training—an important factor given the
high environmental impact of generative models [8, 13].
However, these benefits come with challenges. Since our
approach does not natively incorporate recent advances in
generative model watermarking [5, 23], it could be misused
for potentially deceptive applications. Additionally, by sig-
nificantly lowering the barrier to content generation, it may
contribute to rapid job displacement in traditional 3D de-
sign fields. Another concern is the potential for bias propa-
gation, as image generative models, including semantic and
style-driven ones like ours, may unintentionally reinforce
stereotypes [33]—for example, by associating certain col-
ors with gender, by e.g., synthesizing a bedroom as blue for
”boys” and pink for "girls”. Ensuring the responsible de-
velopment and use of such technologies, while addressing
ethical concerns and mitigating biases, is crucial.

()

“a bedroom
for a chess
lover”

\ “a white
© / bedroom”

Figure 6. Failure Cases and Limitations. In (a), some objects,
such as the windows, are missing in the generated image and the
floor shape, while complex, is not accurately rendered. We can
also observe visual stability issues, as shown in the result in (b),
which features an inconsistent pattern on the wall resembling a
misplaced frame above the bed. Finally, generated images can
exhibit unnatural perspective, resulting in distorted floors and ob-
jects, as showcased in (c). This behavior may result from our as-
sumption of consistent camera intrinsics across all data samples.



LACONIC €8 Perceptual Study
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Which synthesized image is the most realistic/natural one ()
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Which synthesized image better respects the reference 3D layout & viewpoint ()
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Figure 7. Perceptual Study Interface. Users are prompted to independently select which generation result is (i) the most realistic and (ii)
more in line with the input 3D layout and viewpoint.

(a) Input 3D Layout (b) Ground-Truth Image (¢) SceneCraft (¢) Ours

Figure 8. Comparison with SceneCraft [30] on 3D layout-guided image synthesis. Our method demonstrates superior realism and
adherence to the input 3D layout and viewpoint on our custom bedroom dataset.
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"an empty restaurant with wooden tables
and chairs"

"a large kitchen with a center island and
bar stools"

Figure 9. Additional 3D layout-guided image synthesis baseline comparisons (1/2). We can observe that our method produces more
natural images that better respect the input 3D layout.



(a) 3D scene

(b) SceneCraft

(¢) DM-FS

(d) ours

(e) SceneCraft w/prompt

A

"a pool with a table and chairs next to it"

(f) ours w/prompt

"a room with a lot of tables and chairs"
"a bedroom with a large bed and a
large window'

Figure 10. Additional 3D layout-guided image synthesis baseline comparisons (2/2).
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