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A Ginkgo Generative Model

The Ginkgo generative process is outlined below: The 2-body decay in the parent rest frame is defined using

Algorithm 1 Toy Parton Shower Generator
Require: parent momentum p

µ
p , parent mass squared tP , cut-o� mass squared tcut, rate for the exponential

distribution ⁄, binary tree tree

1: Function NodeProcessing(pµ
p , tP , tcut, ⁄, tree)

2: Add parent node to tree.
3: if tP > tcut then

4: Sample tL and tR from the decaying exponential distribution.
5: Sample a unit vector from a uniform distribution over the 2-sphere.
6: Compute the 2-body decay of the parent node in the parent rest frame.
7: Apply a Lorentz boost to the lab frame to each child.
8: call NodeProcessing(pµ

p , tL, tcut, ⁄, tree)
9: call NodeProcessing(pµ

p , tR, tcut, ⁄, tree)
10: end if

momentum p
µ
p = p

µ
L + p

µ
R = (

Ô
s, 0, 0, 0). Due to energy-momentum conservation the child energies are given

by

EL =
Ô

s

2

3
1 + tL

s
≠

tR

s

4
(18)

ER =
Ô

s

2

3
1 + tR

s
≠

tL

s

4
(19)

and the magnitude of their 3-momentum is defined

|p̨| =
Ô

s

2 —̄ =
Ô

s

2

Ú
1 ≠

2(tL + tR)
s

+ (tL ≠ tR)2

s2 (20)

The left and right child momentum are given by p
µ
L = (EL, p̨) and p

µ
R = (ER, ≠p̨) in the parent rest frame.

The Lorentz boost “ = EpÔ
tp

and “— = |p̨p|/
Ô

tp. For more information see Cranmer, Kyle et al. (2021);
Cranmer et al. (2019b).
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B Combinatorial Sequential Monte Carlo

We provide an overview of the Csmc algorithm from Wang et al. (2015).

B.1 Partial States and the Natural Forest Extension

Definition 1 (Partial State). A rank r œ {0, · · · , N ≠1} partial state, symbolized as sr = (ti, Xi), represents
a collection of rooted trees and adheres to the following three conditions:

1. Partial states of di�erent ranks are disjoint, meaning that for any two distinct ranks, r and s, there
is no overlap between the sets of partial states, written as ’r ”= s, Sr fl Ss = ÿ.

2. The set of partial states at the smallest rank consists of only one element, denoted as S0 = ‹.

3. The set of partial states at the final rank R = N ≠ 1 corresponds to the target space X .

The likelihood, as represented in Eq. 12, and the probability measure fi are specifically defined within the
scope of the target space, denoted as SR = X . It’s important to note that these definitions apply exclusively
to the target space of trees and not to the broader sample space encompassing partial states, denoted as
Sr<R, which consists of forests containing disjoint trees. The Sum-Product algorithm is primarily utilized
to derive a maximum likelihood estimate for a tree. However, partial states are explicitly characterized as
collections of these disjoint trees or leaf nodes. To extend the target measure fi to encompass the sample
space Sr<R, a practical approach is to treat all elements of the jump chain as trees, as elaborated in Wang
et al. (2015).
Definition 2 (Natural Forest Extension). The natural forest extension, denoted as Nfe, expands the target
measure fi into forests by forming a product over the trees contained within the forest:

fi(s) :=
Ÿ

(ti,Xi)
fiYi(xi)(ti) . (21)

One notable advantage of the Nfe is its ability to transmit information from non-coalescing elements to the
local weight update.

Algorithm 2 Combinatorial Sequential Monte Carlo
Input: Y = {Y1, · · · , YM } œ �NxM , ◊

1: Initialization. ’k, s
k
0 Ω‹, w

k
0 Ω 1/K.

2: for r = 0 to R = N ≠ 1 do

3: for k = 1 to K do

4: Resample

P(ak
r≠1 = i) =

w
i
r≠1qK

l=1 w
l
r≠1

5: Extend partial state

s
k
r ≥ q(·|sak

r≠1
r≠1 )

6: Compute weights

w
k
r = w(sak

r≠1
r≠1 , s

k
r ) = fi(sk

r )

fi(sak
r≠1

r≠1 )
·

‹
≠(sak

r≠1
r≠1 )

q(sk
r |s

ak
r≠1

r≠1 )

7: end for

8: end for

9: Output: s
1:K
R , w

1:K
1:R
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C Nested Combinatorial Sequential Monte Carlo

We provide a review of the Ncsmc algorithm from Moretti et al. (2021). The Ncsmc method performs a
standard Resample step (line 4 ), similar to Csmc methods, iterating over rank events. In each iteration,
Ncsmc explores all possible one-step ahead topologies (

!N≠r
2

"
) and samples sub-branch lengths for each of

them (line 5-7 ). Importance sub-weights or potential functions are evaluated for these sampled look-ahead
states (line 8 ). The ancestral partial state is then extended to a new partial state by choosing a topology
and branch length based on their respective weights (line 11 ). The final weight for each sample is calculated
by averaging over the potential functions (line 12 ). For a visual representation of this procedure, please refer
to Fig. 7.

Algorithm 3 Nested Combinatorial Sequential Monte Carlo
Input: Y = {Y1, · · · , YN } œ �NxM , ◊

1: Initialization. ’k, s
k
0 Ω‹, w

k
0 Ω 1/K.

2: for r = 1 to R = N ≠ 1 do

3: for k = 1 to K do

4: Resample P(ak
r≠1 = i) = wi

r≠1qK

l=1
wl

r≠1

5: for i = 1 to L =
!N≠r

2
"

do

6: for m = 1 to M do

7: Form look-ahead partial state

s
k,m
r [i] ≥ q(·|sak

r≠1
r≠1 )

8: Compute potentials

w
k,m
r [i] = fi(sk,m

r [i])

fi(sak
r≠1

r≠1 )
·

‹
≠(sak

r≠1
r≠1 )

q(sk,m
r [i]|sak

r≠1
r≠1 )

9: end for

10: end for

11: Extend partial state

s
k
r = s

k,J
r [I],

P(I = i, J = j) = w
k,j
r [i]

qL
l=1

qM
m=1 w

k,m
r [i]

12: Compute weights

w
k
r = 1

ML

Lÿ

i=1

Mÿ

m=1
w

k,m
r [i]

13: end for

14: end for

Output: s
1:K
R , w

1:K
1:R

D Approximate Posteriors

The proposal distribution for our point estimator adaptation of Csmc and the corresponding approximate
posterior for Vcsmc corresponding to Eq. 5 can be written explicitly as follows:

Q„

!
T

1:K
1:R , a

1:K
1:R≠1

"
:=

A
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k=1
q„(T k
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r=2
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U w
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3
T

k
r |T
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4T

V . (22)
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Figure 7: Illustration of the Ncsmc framework: In Ncsmc, all possible one-step ahead topologies, which
amount to

!N≠r
2

"
in total, are systematically enumerated. For the state A, B, C, D, the enumerated topologies

include (top): A, B, C, D, (center): A, B, C, D, and (bottom): B, A, C, D. Subsequently, M = 1 sub-branch
lengths are stochastically sampled for each edge. Following this, the sub-weights or potentials are computed
(right), and a single candidate is randomly selected proportional to its sub-weight (or potential) to create
the new partial state.

In the above, a
k
r≠1 denotes the ancestor index of the resampled random variable and the partial state s

k
r = T

k
r

is sampled by proposing forest T
k

r ≥ q„(·|T ak
r≠1

r≠1 ) from a Uniform distribution. Similarly, the proposal
distribution for the global posterior defined in Eq. 14 is expressed where ⁄

k
r ≥ qÂ(·|⁄ak

r≠1
r≠1 ) = log N(·|µ̃, �̃):
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(23)

The Ncsmc method detailed in Algorithm 3 can also be used to form an unbiased and consistent estimator
of the log-marginal likelihood ‚ZNCSMC and a variational objective which we refer to as LNCSMC :

LNCSMC := E
Q

Ë
log ẐNCSMC

È
, ‚ZNCSMC :=

RŸ

r=1

A
1
K

Kÿ

k=1
w

k
r

B
. (24)
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E Log Conditional Likelihood P̂ (X|·, ⁄)

Figure 8: Log-conditional likelihood P̂ (X|·, ⁄) values for Vcsmc (blue) with K = {8, 16, 32, 64, 128, 256}

samples and Vncsmc (red) with K = {8, 16, 32, 64, 128, 256} and M = 1 samples averaged across 5 random
seeds. Greater values of K result in a more constrained ELBO and higher log-likelihood values while reducing
stochastic gradient noise. Vncsmc with K Ø 8 explores higher probability spaces than the likelihood
returned by the simulator, as depicted by the green trace for reference. Vncsmc achieves convergence in
fewer epochs than Vcsmc and yields higher values, all while maintaining lower stochastic gradient noise.
Notably, even Vncsmc with (K, M) = (8, 1) in the top-left plot (red) outperforms Vcsmc with K = 256 in
the bottom-right plot (blue).

F Implementation Details

F.1 Invalid Partial States when Coalescing Particles

Physics imposes several constraints on which pairs of particles are impossible to coalesce. We must consider
these constraints as we are building trees from leaf to root, coalescing particles (represented as nodes) at
every iteration. The following are the conditions

1. t > 0 for any node.

2. tp > tcut for all inner nodes.

3. tp > max(tl, tr) for all inner nodes.

Recall that the ELBO is a function of the weight matrix, which is of dimensions (R, K), and contains all
weights of the K particles across R iterations. Each entry in the matrix represents the corresponding weight
of some partial state.

In Vcsmc and Vncsmc, resampling ensures that we not only extend upon partial states of valid non-zero
probability, but we also arrive at K valid trees at the final rank event. We note that both Greedy Search
and Beam Search often fail to find any valid trees because they reach a set of partial states where no viable
tree can be constructed.
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