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A PROOFS

Proof of Theorem 1.

We first provide two lemmas for verifying condition equation 10 in Lemma 1.

Lemma 2 (Li et al. (2017) Proposition 1). Define Σt =
t∑

s=1
XsX

T
s , where Xs is drawn i.i.d. from

some distribution ν supported on d-dimensional unit ball Bd := {x ∈ Rd : ∥x∥ ≤ 1}. Furthermore,
let Σ := E[XsX

T
s ] be the second moment matrix, and B and δ > 0 be two positive constants. Then,

there exist positive, universal constants C1 and C2 such that λmin(Σt) ≥ B with probability at least
1− δ, as long as

t ≥

(
C1

√
d+ C2

√
log(1/δ)

λmin(Σ)

)2

+
2B

λmin(Σ)
.

Lemma 3 (Cesa-Bianchi & Fischer (1998) Lemma 3). For index set J ⊆ {1, 2, · · · }, define
Σ(J ) :=

∑
s∈J

XsX
T
s . If J2 ⊆ J1, then λmin(Σ(J2)) ≤ λmin(Σ(J1)).

For Ws ∈ B2d1 and Vs ∈ B3d2 , denote Gt =
t∑

s=1
WsW

T
s , Ht =

t∑
s=1

VsV
T
s , Σ1 = E[WsW

T
s ]

and Σ2 = E[VsV
T
s ]. Recall τ = m × K denote the number of initialization rounds. When τ =

max


(
C1

√
2d1 + C2

√
log(2/δ)

λmin(Σ1)

)2

+
2B1

λmin(Σ1)
,

(
C1

√
3d2 + C2

√
log(2/δ)

λmin(Σ2)

)2

+
2B2

λmin(Σ2)

,

then by Lemma 2, w.p. at least 1− δ, λmin(Gτ ) ≥ B1 and λmin(Hτ ) ≥ B2 hold. Here we may take

B1 = max

{
1,

512M2
gσ

2
y

κ4
y

(
4d21 + log

6

δ

)}
and B2 = max

{
1,

512M2
hσ

2
z

κ4
z

(
9d22 + log

6

δ

)}
.

Note that for t ≥ τ , when λmin(Gτ ) ≥ B1 and λmin(Hτ ) ≥ B2, by Lemma 3, λmin(Gt) ≥ B1 and
λmin(Ht) ≥ B2 are always true.

Let ωs = I(At ̸= k̂t), s > τ . Then ωs = 0 when the algorithm chooses the best arm estimated by
η̂t−1 and ωs = 1 if the algorithm explores other arms. Further, let T (t) = {τ < s ≤ t : ωs = 1},
then the cumulative regret up to time t can be decomposed as

Rt =

t∑
s=1

{q∗s − qAs,s + λ(pAs,s − θ)+ − λ(p∗s − θ)+}

=

t∑
s=1

{
h(V T

s∗γ)− h(V T
s γ) + λ(g(WT

s β)− θ)+ − λ(g(WT
s∗β)− θ)+

}
=

τ∑
s=1

{
h(V T

s∗γ)− h(V T
s γ) + λ(g(WT

s β)− θ)+ − λ(g(WT
s∗β)− θ)+

}
(12)

+

t∑
s=τ+1,s∈T (t)

{
h(V T

s∗γ)− h(V T
s γ) + λ(g(WT

s β)− θ)+ − λ(g(WT
s∗β)− θ)+

}
(13)

+

t∑
s=τ+1,s/∈T (t)

{
h(V T

s∗γ)− h(V T
s γ) + λ(g(WT

s β)− θ)+ − λ(g(WT
s∗β)− θ)+

}
(14)

here we use Ws∗ := (Φ(Xs)
T , uk∗(s)Φ(Xs)

T )T and Vs∗ := (Ψ(Xs)
T , uk∗(s)Ψ(Xs)

T , u2
k∗(s)

Ψ(Xs)
T )T as short-hand notations.

Now we bound the three parts equation 12, equation 13 and equation 14 separately.
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The first part

equation 12 ≤
τ∑

s=1

(1 + λ) ≤ (1 + λ)τ, (15)

since h(x) ∈ [0, 1] and (g(x)− θ)+ ∈ [0, 1].

The second part equation 13 ≤ (1 + λ)
t∑

s=τ+1
ωs. Since ωs

ind∼ Bernoulli(
K − 1

K
ϵs), by Hoeffd-

ing’s inequality, for fixed δ > 0,

P

(
t∑

s=τ+1

ωs ≤
t∑

s=τ+1

Eωs +

√
t− τ

2
log

1

δ

)
≥ 1− δ,

and
t∑

s=τ+1
Eωs =

t∑
s=τ+1

K − 1

K
min

{
1, C

log s

s

}
≤ C

{
(log t)2

2
− (log τ)2

2

}
.

Therefore, w.p. at least 1− δ,

equation 13 ≤ (1 + λ)

(
C
(log t)2

2
− C

(log τ)2

2
+

√
t− τ

2
log

1

δ

)
(16)

The next lemma provides a bound on the third part of regret.
Lemma 4 (Li et al. (2017) Lemma 2). Let {Xt}∞t=1 be a sequence in Rd satisfying ∥Xt∥ ≤ 1. Define

Σt =
t∑

s=1
XsX

T
s . Suppose there is an integer n such that λmin(Σn) ≥ 1, then for all t > n,

t∑
s=n+1

∥Xs∥Σ−1
s−1

≤
√
2(t− n)d log

t

d
.

Therefore, we can bound term equation 14 by Lemma 1 and Lemma 4.

When As = k̂s, since the algorithm is greedy, we know h(V T
s γ̂s−1) − λ(g(WT

s β̂s−1) − θ)+ ≥
h(V T

s∗ γ̂s−1)− λ(g(WT
s∗ β̂s−1)− θ)+, therefore,

equation 14 ≤
t∑

s=τ+1,s/∈T (t)

{
h(V T

s∗γ)− h(V T
s γ) + λ(g(WT

s β)− θ)+ − λ(g(WT
s∗β)− θ)+

+h(V T
s γ̂s−1)− λ(g(WT

s β̂s−1)− θ)+ − h(V T
s∗ γ̂s−1) + λ(g(WT

s∗ β̂s−1)− θ)+

}
=

t∑
s=τ+1,s/∈T (t)

{
h(V T

s∗γ)− h(V T
s∗ γ̂s−1)

+ h(V T
s γ̂s−1)− h(V T

s γ)

+ λ(g(WT
s β)− θ)+ − λ(g(WT

s β̂s−1)− θ)+

+λ(g(WT
s∗ β̂s−1)− θ)+ − λ(g(WT

s∗β)− θ)+

}
≤

t∑
s=τ+1,s/∈T (t)

{
Lh|V T

s∗(γ̂s−1 − γ)|+ Lh|V T
s (γ̂s−1 − γ)|+ λLg|WT

s (β̂s−1 − β)|+ λLg|WT
s∗(β̂s−1 − β)|

}
,

(17)

where the last inequality follows from 0 ≤ h′(x) ≤ Lh, 0 ≤ g′(x) ≤ Lg and observing than
(g(x)− θ)+ is also an Lg-Lipschitz continuous function.

When λmin(Gτ ) ≥ B1 and λmin(Hτ ) ≥ B2, by Lemma 1, for any w ∈ R2d1 , v ∈ R3d2 and s > τ ,
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P

(
|wT (β̂s − β)| ≤ σy

κy

√
log(6/δ)∥w∥G−1

s

∣∣∣λmin(Gs) ≥ B1

)
≥ 1− δ/2,

and

P

(
|vT (γ̂s − γ)| ≤ σz

κz

√
log(6/δ)∥v∥H−1

s

∣∣∣λmin(Hs) ≥ B2

)
≥ 1− δ/2.

Thus,

P

(
|wT (β̂s − β)| ≤ σy

κy

√
log(6/δ)∥w∥G−1

s
, |vT (γ̂s − γ)| ≤ σz

κz

√
log(6/δ)∥v∥H−1

s

)
≥ 1− 2δ.

With probability at least 1− 2δ, we can bound equation 17 by

equation 17 ≤
t∑

s=τ+1,s/∈T (t)

{
Lh

σz

κz

√
log(6/δ)∥Vs∗∥H−1

s−1
+ Lh

σz

κz

√
log(6/δ)∥Vs∥H−1

s−1

+λLg
σy

κy

√
log(6/δ)∥Ws∗∥G−1

s−1
+ λLg

σy

κy

√
log(6/δ)∥Ws∥G−1

s−1

}
≤ 2Lh

σz

κz

√
log(6/δ)

t∑
s=τ+1

∥Vs∥H−1
s−1

+ 2λLg
σy

κy

√
log(6/δ)

t∑
s=τ+1

∥Ws∥G−1
s−1

≤ 2Lh
σz

κz

√
log(6/δ)

√
6d2(t− τ) log

t

3d2
+ 2λLg

σy

κy

√
log(6/δ)

√
4d1(t− τ) log

t

2d1
.

(18)

The last inequality follows from Lemma 4.

Combining equation 15, equation 16 and equation 18 together, we can show the regret bound in
Theorem 1 holds w.p at least 1− 3δ.

□

B ADDITIONAL ALGORITHM AND RESULTS

One criticism for ϵ-greedy is that the exploration is carried out uniformly among all the arms and
cannot adapt to the difference in sample size or uncertainty for different arms like UCB or Thompson
sampling. To improve the statistical accuracy of η̂t in the trial, at the exploration step, the arms should
be allocated so that the new data obtained from the chosen arm can minimize the variance of η̂t. A
brief introduction to optimal design of experiment can be found in Fedorov (2010).

At time t, say the algorithm decides to explore based on history data X1:t−1, A1:t−1, Y1:t−1, Z1:t−1

and new context Xt. A design Dt =

{
1, 2, · · · , K
π1, π2, · · · , πK

}
is to choose At = k with probability

πk. Here the dependence of πk on Xt and history data up to time t− 1 is suppressed for simplicity
of notation. For MLE η̂t−1 = argmax

η=(β,γ)

∑t−1
s=1{log f(Ys|Xs, As;β) + log f(Zs|Xs, As; γ)}, its

observed information matrix is given by

Î(η̂t−1) =

(
∇βℓt−1(∇βℓt−1)

T ∇βℓt−1(∇γℓt−1)
T

∇γℓt−1(∇βℓt−1)
T ∇γℓt−1(∇γℓt−1)

T

)
,

where

∇βℓt−1 =

t−1∑
s=1

∇ log f(Ys|Xs, As;β)|β̂t−1
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=

t−1∑
s=1

ϕ(Ys − p(Xs, As;β))∇ζ(Xs, As;β)|β̂t−1
,

and

∇γℓt−1 =

t−1∑
s=1

∇ log f(Zs|Xs, As; γ)|γ̂t−1

=

t−1∑
s=1

ϕ(Zs − q(Xs, As; γ))∇ξ(Xs, As; γ)|γ̂t−1 ,

We are interested in a design that chooses an arm with probability 1.

Write Dt,k =

{
1, 2, · · · , k, · · · , K
0, 0, · · · , 1, · · · , 0

}
, then the expected information for the new observa-

tion under Dt,k is

I(Dt,k, η̂t−1) = E{∇ log f(Yt, Zt|Xt, k; η)|η̂t−1
(∇ log f(Yt, Zt|Xt, k; η)|η̂t−1

)T }

=

(
IY 0
0 IZ

)
,

where IY = ϕ2E(Yt−p(Xt, k;β))
2{∇ζ(Xt, k;β)|β̂t−1

(∇ζ(Xt, k;β)|β̂t−1
)T } and IZ = ϕ2E(Zt−

q(Xt, k; γ))
2{∇ξ(Xt, k; γ)|γ̂t−1

(∇ξ(Xt, k; γ)|γ̂t−1
)T }.

Note in generalized linear models, E(Yt − p(Xt, k;β))
2 = 1

ϕm
′′
1(ζ(Xt, k;β)) and E(Zt −

q(Xt, k; γ))
2 = 1

ϕm
′′
2(ξ(Xt, k; γ)), so the expectations can be calculated explicitly.

The D-optimum design is to minimize the determinant of the inverse information matrix, i.e., we the
arm chosen according to optimal design is

k̃t = argmin
k

det
(
{Î(η̂t−1) + I(Dt,k, η̂t−1)}−1

)
.

The information matrix depends on the true value of η which is unknown. In the MAB algorithm, we
can plug in the estimated parameter η̂t−1 at the tth round, and this only gives us a local optimum
design.

In the additional experiment results, we also provide the effect of λ-value on regret and safety feature.
λ = 1, 2, 5 and 10 are considered. The data generation process is the same as described in Section 5.
It is not a surprise that no matter how large a λ-value we use, the method “Ignore harm” will not learn
the harm effect and induce a large regret as well as violate the safety constraint. Hence, to keep a
proper scale of the plots, the results for method “Ignore harm” are omitted. Figure 3 show the results
for different λ-value, including the ”Optimal design” method.

Note since we do not use a hard constraint, even the oracle method (true models are known) will
sometimes pick an arm with p > θ. Nevertheless, the chosen p is usually not much larger than θ. The
average value for (p− θ)+ is from the oracle method is given in Table 2

However, the simulation for exploration with optimal design(“Optimal design”) did not show an
advantage over the original ϵ-greedy algorithm (“Varying coefficient model”). The optimal design
tends to collect more data on the extreme arms k = 1 or k = K to improve the statistical accuracy
for parameter estimates. Thus, the regret is higher than the original ϵ-greedy algorithm. Compared to
the original ϵ-greedy algorithm, optimal design is able to identify the best arm correctly slightly more
often across all the rounds. Optimal design also identifies the best arm correctly the most often at the
end of a trial. The chance of each method choosing the best arm is given in Table 3 and 4.

With more careful integration of the optimal design of experiment into ϵ-greedy framework, we
believe the effort to improve statistical accuracy will pay off, and this approach is worth investigating
in the future.
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Algorithm 2: ϵ-greedy with optimal exploration
input: Time horizon T , exploration rate ϵt ∈ (0, 1), penalty λ ∈ (0,∞), harm threshold
θ ∈ (0, 1), initialization rounds m

for t = 1, · · · ,m×K do
Sample from each arm m times, record context Xt and response Yt, Zt

end
for t = m×K + 1, · · · , T do

Estimate η̂t−1 based on X1:t−1, A1:t−1, Y1:t−1, Z1:t−1

Identify best arm k̂t = argmax
k

q(Xt, k; γ̂t−1)− λ(p(Xt, k; β̂t−1)− θ)+

if A random w ∼ Unif(0, 1) < ϵt then
Find the best exploration choice according to optimal design
k̃t = argmin

k
det
(
{Î(η̂t−1) + I(Dt,k, η̂t−1)}−1

)
Sample from At = k̃t

else
Sample from At = k̂t

end
Record context Xt, choice At and responses Yt, Zt

end
output: Parameter estimates η̂T

λ 1 2 5 10

Avg. (p− θ)+ 0.014 0.007 0.055 0.053

Table 2: The harm chosen by oracle method does not exceed threshold θ = 0.33 a lot.

C ADDITIONAL COMPUTATION DETAILS

Base R function glm.fit is used to estimate the parameters. It uses iteratively reweighted least
squares to find the MLE for given input data and distribution.

When the number of initialization rounds τ is not large enough, there is a small chance that the
parameter η̂τ cannot be estimated stably. To prevent the algorithm from getting stuck on poor
parameter estimates, we use the cv.glmnet function in glmnet package to fit a GLM with
elasticnet regularization when the estimated parameter has an entry with magnitude larger than 100.
This regularization only works as a measure of caution, and dose not affect parameter estimates when
t is sufficiently large. Choosing a large τ can prevent unstable estimates too. If we use a rule of
thumb from linear regression, we need approximately τ = 10×# of parameters. In our experiment,
initialization for the varying coefficient model or K separate models takes τ = 63 rounds (m = 9).
For binned context model, we sample each arm 3 times for each category so that the total number of
initialization rounds is also 63. The exploration rate ϵt = 11.43 log t

t . The whole experiment of 100
trails can be finished in several hours on a computer using Intel Xeon Gold 6244 CPU with 32 cores.
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λ 1 2 5 10

Varying coefficient 0.56 0.69 0.69 0.72

Optimal design 0.61 0.72 0.72 0.73

K separate 0.37 0.47 0.47 0.48

Binned context 0.38 0.50 0.50 0.50

Ignore Context 0.16 0.14 0.14 0.14

Table 3: The overall chance of each method choosing the best arm among all the 100 trials and 5,000
rounds.

λ 1 2 5 10

Varying coefficient 0.72 0.81 0.81 0.80

Optimal design 0.74 0.86 0.86 0.86

K separate 0.43 0.53 0.53 0.55

Binned context 0.43 0.55 0.55 0.51

Ignore Context 0.12 0.17 0.17 0.17

Table 4: The chance of each method choosing the best arm among all the 100 trials at the last (5,000th)
round.
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(a) λ = 1 (b) λ = 1

(c) λ = 2 (d) λ = 2

(e) λ = 5 (f) λ = 5

(g) λ = 10 (h) λ = 10

Figure 3: (a,c,e, g)The cumulative regret averaged across 100 trials. (b,d,f, h) To reflect the safety
feature of each method, we calculate how many times the method chooses an arm with harm
probability p > θ up to round t. Then the count is averaged over 100 trials. As penalty λ gets larger,
this count decreases.
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