Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTING DETAILS

System prompt 1: ”You are an expert Hanabi player”

System prompt 2: “You are an expert Hanabi player focused on maximizing team coordination
and achieving high scores with minimal mistakes. Follow these principles: Efficient Clue-Giving:
Provide clues that give maximum information, using finesse and double clues to benefit multiple
players. Deduction: Track played/discarded cards and deduce your own cards based on clues and
game state. Avoid discarding critical cards. Disciplined Play: Play and discard safely, minimiz-
ing risk while optimizing the team’s progress. Team Coordination: Follow team conventions and
use subtle cues (timing, actions) to communicate intent without verbal clues. Score Maximization:

Manage clue tokens and pace the game to ensure enough clues for critical moments.”

A.2 DATASET DETAILS

The dataset is acquired through self-play mode, utilizing a
pre-trained OBL agent in the Hanabi game. Trajectories
are filtered selectively with a gameplay score exceeding
20. Then, these trajectories are broken down into state-
action pairs to suit language model training. During the
initial data exploration, we found the action categories
are imbalanced as shown in[7} hence the language model
overfits to discard 4 based on the confusion matrix for
the prediction. To avoid that, we did categorical sampling
consisting of 2200 samples per action type, aggregating to
44,000 instances. Then we checked for duplicate states

Discard 4
Play 0
Play 3
Reveal player +1 rank 1
Play 1
Play 4
Reveal player +1 rank 2
Play 2
Reveal player +1 rank 3
Discard 0
Reveal player +1 rank 4
Reveal player +1 color W
Discard 2
Reveal player +1 color B
Discard 3

Actions

Reveal player +1 rank 5 -
Reveal player +1 color R
Reveal player +1 color G -

Discard 1+
Reveal player +1 color Y o

T T T T T T
2000 4000 6000 8000 10000 12000

Count

and dropped them, there were approximately 100 dupli-
cates as this could mislead the model’s learning. After
which, 10% of the dataset is reserved for testing by ran-
dom sampling. Further, the dataset is split into 90% for
train and 10% for validation.

Figure 7: Visualizing the number of ac-
tions available in the dataset to create a
diverse dataset of Hanabi gameplay in
the form of text.

A.3 How GooD LLMS ARE IN PLAYING HANABI?

To adapt the LLaMA to the gameplay, we use Low-Rank

Adaptation, or LoORA 20214), which learns a low-rank decomposition matrices into each
layer of the transformer architecture and freezes the pre-trained model weights. Thereby, signifi-
cantly reducing the trainable parameters. We conducted fine-tuning experiments with LLaMA-7B
weights with classifier using varying data sizes [200, 500, 1000] and LoRA ranks [32, 64, 128] for 10
epoch. Despite these parameter variations, the gameplay scores remained suboptimal level of around
one as shown in|[8] This highlights the challenges in achieving effective gameplay performance for
current large languge model on playing hanabi.

Datasize
124 == 200
- 500
-k

Datasize
- 200
7 = s00
-

Game Play Score

64
LoRA Rank LoRA Rank

Figure 8: Evaluation of Low-Rank Adaptation (LoRA) in LLaMA-7B finetuning, showcasing the
impact on a) Validation Accuracy and b) Game Play Score. The experiments involve varying data
sizes [200, 500, 1000] and LoRA ranks [32,64, 128].

14



Under review as a conference paper at ICLR 2025

A.4 ABLATION STUDIES
A.4.1 THE ROLE OF SCALING THE DATASET AND DIFFERENT MODEL VARIANTS

The dataset size emerges as a pivotal factor influencing gameplay scores. As the amount of training
data increases there is a gradual increase in validation and the gameplay score. When the training
percentage is equal to or less than 10% the games scores were poor ranging around 1 out of 25.
In contrast, the gameplay score sharply increases when using 25% of the data as shown in Eb
Nevertheless, the performance plateaus at a game play score of approximately 9 for both 75% and
100% , indicative of reaching a saturation point, affirming the sufficiency of the dataset size for
effective model training.

!

2

BERT - Validation Accuracy

BERT - Game Play Score
Average Gameplay Score

!

°
L

BERT-large BERT-base DistilBERT-base
Model Name

001 003 01 025 05 075 10 001 003 01 025 05 075 10
Amount of Training Data Amount of Training Data

Figure 9: Analysis of the impact of training data amount on BERT, examining a) BERT Validation
Accuracy, b) BERT Game Play Score across different percentages of training data, and c) BERT
model variants with varying parameter sizes.

In our experimentation, we varied the model parameter sizes—ranging from DistilBERT with 66/
parameters to BERT-base-uncased with 110 M parameters and BERT-large-uncased with 3400 pa-
rameters. We observed that DistiIBERT achieves a competitive gameplay score of approximately 8.7
after 600 game runs[Of. On top of the performance considering the fast inference and low memory
usage, DistiIBERT was chosen as a candidate for integration with reinforcement learning through
distillation.

A.4.2 THE ROLE OF DISCARD INFORMATION

o
We examined the impact of incorporating the discard

pile into the observation. Surprisingly, we discovered g6

that utilizing the discard pile did not contribute to any 2

improvement in game scores as show in the Figure [[0] ¢*]

Rather, it resulted in a doubling of the sequence length & N - BT

of the language model. Given the need for fast inference
in the reinforcement learning pipeline, we opted to ex-
clude discard pile information from the observation dur- DistilBERT
ing both language model training and inference. Nonethe-

less, there is a potential fo.r heuristic-bgsed approaches, Figure 10: Evaluation of the discard
to explore 'the 1deg of creating derlveq information from pile’s role in the game is assessed by
fI:Ol’n the discard pile, potentially leading to a more con- comparing game scores with the pres-
cise sequence length and better game score. ence and absence of the discard pile in

the observation during training.

mmm With Discard
s Without Discard

Model Type

A.5 TRAINING DETAILS
A.5.1 LM INITIALIZATION AND UPDATE FREQUENCY

We train two R3D2 agents in a 2-player Hanabi setting: one using a pre-trained language model
(LM) and the other with the same architecture but randomly initialized LM weights. Figure [ITa]
shows that learning from pre-trained weights significantly improves the sample efficiency. Addi-
tionally, we test updating the LM less frequently with periods of 1, 2, 5, and 10 training steps per
LM update to examine whether the original pre-trained weights provide sufficient representations
for playing Hanabi or if fine-tuning is necessary. Our results, presented in Figure[ITb} indicate that
updating the LM parameters is essential for effective learning.

15



Under review as a conference paper at ICLR 2025

20.04 pretrained LM —— LM update frequency=1

17.54 Random LM 20 LM update frequency=2
—8— LM update frequency=5
—8— LM update frequency=10

15.01

12.51 151

10.01

Score
Score

7.5
5.0
2.5

0.0 o]
0.0 05 1.0 15 20 25 3.0 35 0.0 05 1.0 15 20 25 3.0 35
Trainina Stens x10° Trainina Stens x10°
(a) Pretrained vs random LM weights (b) Frequency of updating the LM

Figure 11: Impact of pre-trained weights and update frequency on learning efficiency. (a) Per-
formance difference between R3D2 agents trained with pre-trained language model (LM) weights
versus randomly initialized LM weights, showing significant improvements in sample efficiency
with pre-trained weights. (b) The effect of varying the frequency of LM updates, highlighting that
frequent updates are critical for effective learning in the Hanabi environment.

A.5.2 R3D2 TRAINING SETUP
A.5.3 LANGUAGE MODEL SETUP

The model’s finetuning process begins with a set of training instances, denoted as (.5, A) drawn from
the dataset D where S € {so, s1,..,5,} and A € {ag, a1, .., a, }. Within this set, s and a represent
a state and its corresponding noisy labelled action, respectively, and n represents the number of
examples in the dataset. The training objective of BERT, DistilBERT, GPT2-Classifier is,

1 N C
Lecr =7, Zaij log(d; ) (1
1=1 j=1
Where N is the batch size. C'is the number of classes. a;; is the true probability of class j for the

i-th example in the batch and a;; is the predicted probability of class j for the i-th example in the
batch.

The training objective of GPT-2 Generative is to minimize the cross-entropy loss, denoted as £, and
do the finetuning of the model. The cross-entropy loss is mathematically defined as follows:

Lrrm = —Es.ay~plogp(AlS) )

Where p(S|A) represents the conditional probability of predicting an action A, given the state S.
The goal is to optimize these parameters, by minimizing the cross-entropy loss. We finetune the
model to generate responses that better align with Hanabi game. The learning graph of validation
accuracy with the game play score for each epoch is logged to understand the trend in the Figure
[I2[a,b). Mostly the Validation score and game score is getting saturated at around 4th epoch.

A.5.4 SOFTWARE DETAILS

The code was implemented using PyTorch, and pre-trained language models were loaded using
Huggingface. To gain insights for this paper, we employed Weights & Biases (Biewald, [2020) for
experiment tracking and visualizations. Lastly, plots are created using the seaborn package. For RL
algorithms, we used OBL agent (Hu et al.l |2021c) to collect the expert trajectory and RL Hive (?)
to train the algorithm.

16



Under review as a conference paper at ICLR 2025

Validation Accuracy

Figure 12: Learning graph for (a) Validation accuracy plotted against(b) Game play score, for each
epoch for different language model providing insights into the observed trends during the training

process.

0.55 1

0.50

0.45 4

0.40 1

0.35

0.30 4

0.25 1

e L D O
.

—e— BERT
—e— DistilBERT
—e— GPT2-classifier

—e— GPT2-generative

2 4 6 8 10

17

Game Score

104
o
° o o—"
8 b .72/ ><§>/
< .
= \'\-\,/'\-
6 /
4 —.
o\ N,
0/ —e— BERT
2 — —e— DistilBERT
/c/ —e— GPT2-classifier
0 —e— GPT2-generative
T T T T T
2 4 6 8 10
Epochs




	Appendix
	Prompting details
	Dataset details
	How Good LLMs are in playing Hanabi?
	Ablation studies
	The role of scaling the dataset and different model variants
	The role of discard information

	Training details
	LM initialization and update frequency
	R3D2 training setup
	Language Model setup
	Software details



