
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROMPTING DETAILS

System prompt 1: ”You are an expert Hanabi player”

System prompt 2: ”You are an expert Hanabi player focused on maximizing team coordination
and achieving high scores with minimal mistakes. Follow these principles: Efficient Clue-Giving:
Provide clues that give maximum information, using finesse and double clues to benefit multiple
players. Deduction: Track played/discarded cards and deduce your own cards based on clues and
game state. Avoid discarding critical cards. Disciplined Play: Play and discard safely, minimiz-
ing risk while optimizing the team’s progress. Team Coordination: Follow team conventions and
use subtle cues (timing, actions) to communicate intent without verbal clues. Score Maximization:
Manage clue tokens and pace the game to ensure enough clues for critical moments.”

A.2 DATASET DETAILS

0 2000 4000 6000 8000 10000 12000
Count

Discard 4
Play 0
Play 3

Reveal player +1 rank 1
Play 1
Play 4

Reveal player +1 rank 2
Play 2

Reveal player +1 rank 3
Discard 0

Reveal player +1 rank 4
Reveal player +1 color W

Discard 2
Reveal player +1 color B

Discard 3
Reveal player +1 rank 5
Reveal player +1 color R
Reveal player +1 color G

Discard 1
Reveal player +1 color Y

Ac
tio

ns

Figure 7: Visualizing the number of ac-
tions available in the dataset to create a
diverse dataset of Hanabi gameplay in
the form of text.

The dataset is acquired through self-play mode, utilizing a
pre-trained OBL agent in the Hanabi game. Trajectories
are filtered selectively with a gameplay score exceeding
20. Then, these trajectories are broken down into state-
action pairs to suit language model training. During the
initial data exploration, we found the action categories
are imbalanced as shown in 7, hence the language model
overfits to discard 4 based on the confusion matrix for
the prediction. To avoid that, we did categorical sampling
consisting of 2200 samples per action type, aggregating to
44, 000 instances. Then we checked for duplicate states
and dropped them, there were approximately 100 dupli-
cates as this could mislead the model’s learning. After
which, 10% of the dataset is reserved for testing by ran-
dom sampling. Further, the dataset is split into 90% for
train and 10% for validation.

A.3 HOW GOOD LLMS ARE IN PLAYING HANABI?

To adapt the LLaMA to the gameplay, we use Low-Rank
Adaptation, or LoRA (Hu et al., 2021a), which learns a low-rank decomposition matrices into each
layer of the transformer architecture and freezes the pre-trained model weights. Thereby, signifi-
cantly reducing the trainable parameters. We conducted fine-tuning experiments with LLaMA-7B
weights with classifier using varying data sizes [200, 500, 1000] and LoRA ranks [32, 64, 128] for 10
epoch. Despite these parameter variations, the gameplay scores remained suboptimal level of around
one as shown in 8. This highlights the challenges in achieving effective gameplay performance for
current large languge model on playing hanabi.

32 64 128
LoRA Rank

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Va
lid

at
io

n 
Ac

cu
ra

cy

Datasize
200
500
1K

32 64 128
LoRA Rank

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ga
m

e 
Pl

ay
 S

co
re

Datasize
200
500
1K

Figure 8: Evaluation of Low-Rank Adaptation (LoRA) in LLaMA-7B finetuning, showcasing the
impact on a) Validation Accuracy and b) Game Play Score. The experiments involve varying data
sizes [200, 500, 1000] and LoRA ranks [32, 64, 128].

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.4 ABLATION STUDIES

A.4.1 THE ROLE OF SCALING THE DATASET AND DIFFERENT MODEL VARIANTS

The dataset size emerges as a pivotal factor influencing gameplay scores. As the amount of training
data increases there is a gradual increase in validation and the gameplay score. When the training
percentage is equal to or less than 10% the games scores were poor ranging around 1 out of 25.
In contrast, the gameplay score sharply increases when using 25% of the data as shown in 9b.
Nevertheless, the performance plateaus at a game play score of approximately 9 for both 75% and
100% , indicative of reaching a saturation point, affirming the sufficiency of the dataset size for
effective model training.

0.01 0.03 0.1 0.25 0.5 0.75 1.0
Amount of Training Data

0.0

0.1

0.2

0.3

0.4

0.5

BE
RT

 - 
Va

lid
at

io
n 

Ac
cu

ra
cy

0.01 0.03 0.1 0.25 0.5 0.75 1.0
Amount of Training Data

0

2

4

6

8

10

BE
RT

 - 
Ga

m
e 

Pl
ay

 S
co

re

BERT-large BERT-base DistilBERT-base
Model Name

0

2

4

6

8

10

Av
er

ag
e 

Ga
m

ep
la

y 
Sc

or
e

Figure 9: Analysis of the impact of training data amount on BERT, examining a) BERT Validation
Accuracy, b) BERT Game Play Score across different percentages of training data, and c) BERT
model variants with varying parameter sizes.

In our experimentation, we varied the model parameter sizes—ranging from DistilBERT with 66M
parameters to BERT-base-uncased with 110M parameters and BERT-large-uncased with 340M pa-
rameters. We observed that DistilBERT achieves a competitive gameplay score of approximately 8.7
after 600 game runs 9c. On top of the performance considering the fast inference and low memory
usage, DistilBERT was chosen as a candidate for integration with reinforcement learning through
distillation.

A.4.2 THE ROLE OF DISCARD INFORMATION

DistilBERT BERT
Model Type

0

2

4

6

8

Ga
m

e 
Pl

ay
 S

co
re

Type of Discard
With Discard
Without Discard

Figure 10: Evaluation of the discard
pile’s role in the game is assessed by
comparing game scores with the pres-
ence and absence of the discard pile in
the observation during training.

We examined the impact of incorporating the discard
pile into the observation. Surprisingly, we discovered
that utilizing the discard pile did not contribute to any
improvement in game scores as show in the Figure 10.
Rather, it resulted in a doubling of the sequence length
of the language model. Given the need for fast inference
in the reinforcement learning pipeline, we opted to ex-
clude discard pile information from the observation dur-
ing both language model training and inference. Nonethe-
less, there is a potential for heuristic-based approaches,
to explore the idea of creating derived information from
from the discard pile, potentially leading to a more con-
cise sequence length and better game score.

A.5 TRAINING DETAILS

A.5.1 LM INITIALIZATION AND UPDATE FREQUENCY

We train two R3D2 agents in a 2-player Hanabi setting: one using a pre-trained language model
(LM) and the other with the same architecture but randomly initialized LM weights. Figure 11a
shows that learning from pre-trained weights significantly improves the sample efficiency. Addi-
tionally, we test updating the LM less frequently with periods of 1, 2, 5, and 10 training steps per
LM update to examine whether the original pre-trained weights provide sufficient representations
for playing Hanabi or if fine-tuning is necessary. Our results, presented in Figure 11b, indicate that
updating the LM parameters is essential for effective learning.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training Steps ×105

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sc
or

e

Pretrained LM
Random LM

(a) Pretrained vs random LM weights

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Training Steps ×105

0

5

10

15

20

Sc
or

e

LM update frequency=1
LM update frequency=2
LM update frequency=5
LM update frequency=10

(b) Frequency of updating the LM
Figure 11: Impact of pre-trained weights and update frequency on learning efficiency. (a) Per-
formance difference between R3D2 agents trained with pre-trained language model (LM) weights
versus randomly initialized LM weights, showing significant improvements in sample efficiency
with pre-trained weights. (b) The effect of varying the frequency of LM updates, highlighting that
frequent updates are critical for effective learning in the Hanabi environment.

A.5.2 R3D2 TRAINING SETUP

A.5.3 LANGUAGE MODEL SETUP

The model’s finetuning process begins with a set of training instances, denoted as (S,A) drawn from
the dataset D where S ∈ {s0, s1, .., sn} and A ∈ {a0, a1, .., an}. Within this set, s and a represent
a state and its corresponding noisy labelled action, respectively, and n represents the number of
examples in the dataset. The training objective of BERT, DistilBERT, GPT2-Classifier is,

LCCE = − 1

N

N∑
i=1

C∑
j=1

aij log(âij) (1)

Where N is the batch size. C is the number of classes. aij is the true probability of class j for the
i-th example in the batch and âij is the predicted probability of class j for the i-th example in the
batch.

The training objective of GPT-2 Generative is to minimize the cross-entropy loss, denoted as L, and
do the finetuning of the model. The cross-entropy loss is mathematically defined as follows:

LLLM = −E(S,A)∼D log p(A|S) (2)

Where p(S|A) represents the conditional probability of predicting an action A, given the state S.
The goal is to optimize these parameters, by minimizing the cross-entropy loss. We finetune the
model to generate responses that better align with Hanabi game. The learning graph of validation
accuracy with the game play score for each epoch is logged to understand the trend in the Figure
12(a,b). Mostly the Validation score and game score is getting saturated at around 4th epoch.

A.5.4 SOFTWARE DETAILS

The code was implemented using PyTorch, and pre-trained language models were loaded using
Huggingface. To gain insights for this paper, we employed Weights & Biases (Biewald, 2020) for
experiment tracking and visualizations. Lastly, plots are created using the seaborn package. For RL
algorithms, we used OBL agent (Hu et al., 2021c) to collect the expert trajectory and RL Hive (?)
to train the algorithm.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10
Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Va
lid

at
io

n 
Ac

cu
ra

cy

BERT
DistilBERT
GPT2-classifier
GPT2-generative

0 2 4 6 8 10
Epochs

0

2

4

6

8

10

Ga
m

e 
Sc

or
e

BERT
DistilBERT
GPT2-classifier
GPT2-generative

Figure 12: Learning graph for (a) Validation accuracy plotted against(b) Game play score, for each
epoch for different language model providing insights into the observed trends during the training
process.

17


	Appendix
	Prompting details
	Dataset details
	How Good LLMs are in playing Hanabi?
	Ablation studies
	The role of scaling the dataset and different model variants
	The role of discard information

	Training details
	LM initialization and update frequency
	R3D2 training setup
	Language Model setup
	Software details



