
Appendix to

Monocular Dynamic View Synthesis: A Reality Check

Hang Gao1,† Ruilong Li1 Shubham Tulsiani2 Bryan Russell3 Angjoo Kanazawa1

1UC Berkeley 2Carnegie Mellon University 3Adobe Research

A Outline

In this Appendix, we describe in detail the following:

• Computation for effective multi-view factors (EMFs) in Section B.

• Computation for co-visibility mask and masked image metrics in Section C.

• Summary of existing works and correspondence readout in Section D.

• Summary of the capture setup and data processing for our iPhone dataset in Section E.

• Summary of the implementation details and remain differences in Section F.

• Additional results on the impact of effective multi-view in Section G.

• Additional results on per-sequence performance breakdown in Section H.

• Additional results on novel-view synthesis in Section I.

• Additional results on inferred correspondence in Section J.

For better demonstration, we strongly recommend visiting our project page for videos of the capture
and result visualizations.

B Computation for effective multi-view factors (EMFs)

To quantify the amount of effective multi-view in a sequence by the camera and scene motion
magnitude, we propose two metrics as effective multi-view factors (EMFs), i.e., the Full EMF Ω and
the angular EMF ω. Note that we design our metrics to be scale-agnostic such that we can compare
them across different sequences of different world scales.

As in the main paper, we define a point xt ∈ S
2
t on the visible object’s surface and a camera

parameterized by its origin ot at time t ∈ T , where T is the set of possible time steps.

B.1 Full EMF Ω: Ratio of camera-scene motion magnitude

We are interested in the relative scale of the camera motion compared to the object. Recall that we
define Ω as the expected ratio over all visible pixels over time,

Ω = E
t,t+1∈T

[

E
xt∈S2

t

[ ∥ot+1 − ot∥

∥xt+1 − xt∥

]

]

. (1)

The numerator is trivially computable given the camera information. We thus focus on the denomina-
tor, i.e., the foreground 3D scene flow xt+1 − xt.

We estimate 3D scene flow by combining the known cameras, dense 2D optical flow, and per-frame
depth maps. We estimate the 2D optical flow using RAFT [1]. When metric depth is not available,
e.g., on previous datasets [2, 3, 4], we use DPT [5] for monocular depth estimation. Additionally, we
need a foreground mask for the object, which we obtain through a video segmentation network [6].
For each pixel location ut at time t in the foreground mask, we can compute its 3D position xt by
back-projection with the depth zt. We then get the 2D pixel correspondence at time t+ 1 by simply

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://people.eecs.berkeley.edu/~hangg/dycheck


following the 2D optical flow ut+1 = ut + ft→t+1(ut), where ft→t+1 is a bilinearly interpolated
forward flow map. After back-projection, we obtain the corresponding 3D point position xt+1 at
frame t + 1. In practice, extra care is needed for handling the unknown depth scale from model
prediction and occlusion, discussed next.

Aligning depth maps of unknown scales. The DPT [5] model predicts a disparity map in Euclidean
space with an unknown scale a and shift b. To resolve the scale and shift ambiguity in the predicted
disparity maps, we make use of the sparse 3D points extracted by COLMAP. For a frame at time t,
we first calculate the actual disparity 1/z̃t of the sparse 3D points by projecting them onto the image,
which usually results in sub-pixels. We then bilinearly interpolate the predicted disparity map to get
the predicted disparity 1/z̃∗t . Scale a and shift b can then be estimated through linear regression via
the relation:

1

z̃t
= a ·

1

z̃∗t
+ b.

Note that the sparse 3D points from COLMAP [7] are all located on the static background. When
projecting the sparse 3D points onto the image, some points might be occluded by the moving objects
in the foreground. We handle occluded points by fitting a and b using RANSAC [8], which ignores
outliers and is robust in practice.

Handling occlusions. We identify occlusions using a forward-backward consistency check follow-
ing the method of Brox et al. [9]. We briefly summarize their method here.

Concretely, we identify an occlusion by chaining the forward flow ft→t+1 and backward flow ft+1→t

and thresholding based on warp consistency. For those pixels that have inconsistent forward and
backward optical flows, defined by regions where chained forward and backward flows result in
non-zero flow values, satisfying the following inequality:

∥ft→t+1(ut) + ft+1→t(ut + ft→t+1(ut))∥
2
2

⩾ 0.01 · (∥ft→t+1(ut)∥
2
2 + ∥ft+1→t(ut + ft→t+1(ut))∥

2
2) + 0.5.

(2)

The occluded pixels, along with the background pixels not belonging to the foreground mask, are
excluded from the 3D scene flow computation.

Discussion. In practice, we find that the Ω metric relies on the model estimation quality, in particular,
the monocular depth prediction. We therefore design a second metric by measuring camera angular
speed ω. With some practical assumptions, it circumvents Ω’s limitation and does not rely on any
external model estimates.

B.2 Angular EMF ω: Camera angular velocity

We propose to measure camera angular speed ω given the camera parameters, frame rate N and a
single 3D look-at point a obtained by triangulating all cameras, following Nerfies [4]. Recall that ω
is computed as the scaled expectation,

ω = E
t,t+1∈T

[

arccos
( ⟨a− ot,a− ot+1⟩

∥a− ot∥ · ∥a− ot+1∥

)

]

·N. (3)

When computing this metric, we assume that (1) the object moves at roughly constant speed, (2)
the camera always fixates on the object, and (3) the distance between the camera and the object
remains approximately the same over time. All sequences from existing works as well as ours meet
these assumptions, except those from the NSFF [2] and NV-DYN [11] datasets. In their case, the
cameras are always facing forward, breaking the assumption (2). However, we find that even though
cameras are not fixated on the object since they are static, we can still compute the look-at point a by
considering the center of mass of the foreground visible surfaces in 3D. Both datasets provide accurate
foreground segmentations and MVS depth, which we use to identify and back-project foreground
pixels into 3D space. The final look-at point is computed as the average foreground points over all
frames.

Note that existing works only provide extracted frames from each sequence without specifying the
frame rate. We identify the frame rates by re-assembling the original video using different FPS candi-
dates and hand-picking the one that results in the most natural object and camera motion, which are ver-
ified by the original authors [2, 3, 4]. We document per-sequence FPS for future reference in Table 1.

2



Sequence #Frames FPS Ω ω

D-NeRF [10] BOUNCINGBALLS 150 30 15.52 1945.52

HELLWARRIOR 100 30 10.32 2984.15

HOOK 100 30 25.82 1996.95

JUMPINGJACKS 200 30 10.64 1969.47

LEGO 50 30 17.00 2133.78

MUTANT 150 30 12.64 1908.67

STANDUP 150 30 14.22 2011.31

TREX 200 30 13.70 2133.78

HyperNeRF [3] 3D PRINTER 207 15 3.13 251.37

CHICKEN 164 15 7.38 212.58

PEEL BANANA 513 15 1.26 237.66

Nerfies [4] BROOM 197 15 3.40 128.54

CURLS 57 5 1.20 138.55

TAIL 238 15 3.30 160.55

TOBY SIT 308 15 2.18 110.51

NSFF [2] BALLOON1 24 15 2.44 57.63

BALLOON2 24 30 0.76 76.97

DYNAMIC FACE 24 15 4.57 83.17

JUMPING 24 30 0.68 53.79

PLAYGROUND 24 30 0.36 71.56

SKATING 24 30 0.79 42.76

TRUCK 24 30 0.22 19.41

UMBRELLA 24 15 0.62 20.66

iPhone (Ours) APPLE 475 30 0.75 3.79

BACKPACK 180 30 0.26 5.59

BLOCK 350 30 0.04 11.50

CREEPER 210 30 0.23 14.05

HANDWAVY 303 30 0.05 13.66

HARU 200 60 0.30 30.32

MOCHI 180 60 0.07 14.49

PAPER WINDMILL 277 30 0.38 10.71

PILLOW 330 30 0.06 13.19

SPACE OUT 429 30 0.13 6.37

SPIN 426 30 0.15 7.86

SRIRACHA 220 30 0.18 18.56

TEDDY 350 30 0.20 7.62

WHEEL 250 30 0.03 58.45

Table 1: Per-sequence breakdowns of the statistics of different datasets. As in the main paper, we consider the
multi-camera captures from three representative existing datasets: D-NeRF [10], Nerfies [4] and HyperNeRF [3].
We also provide per-sequence breakdowns for both the multi-camera and single-camera captures from our
proposed iPhone dataset.

3



<latexit sha1_base64="6/hKOjmo6KDWAJMI+ar5bpyHL+E=">AAACVHicjVFNSwMxFMxurdaqtdWjl8UieCq7UlTwUvTisaL9gHYp2TTbhmaTJXkrlqU/wav+M8H/4sFs24OVFRwIGWbeC+9NgpgzDa77admFreL2Tmm3vLd/UDms1o66WiaK0A6RXKp+gDXlTNAOMOC0HyuKo4DTXjC7y/zeM1WaSfEE85j6EZ4IFjKCwUiPMPJG1brXcJdw/iZ1tEZ7VLNuhmNJkogKIBxrPfDcGPwUK2CE00V5mGgaYzLDEzowVOCIaj9dzrpwzowydkKpzBHgLNWfHSmOtJ5HgamMMEz1by8Tcz0TCc81gihXzhSQkuv811giGLxk85p7cyUIr/2UiTgBKshqozDhDkgnS9gZM0UJ8LkhmChmQnHIFCtMwPxD+X9xdy8a3mWj+dCst27XwZfQCTpF58hDV6iF7lEbdRBBE/SK3tC79WF92QW7uCq1rXXPMdqAXfkGxRW0sA==</latexit>

t1

<latexit sha1_base64="W5/EsGuIcXvah6q07+x6Lwxd1tI=">AAACVHicjVHLSgMxFM1Mrdb6anXpZrAIrspMKSq4KbpxWdE+oB1KJs20oZlkSO6IZegnuNU/E/wXF2baLqyM4IGQwzn3hntPgpgzDa77admFreL2Tmm3vLd/cHhUqR53tUwUoR0iuVT9AGvKmaAdYMBpP1YURwGnvWB2l/m9Z6o0k+IJ5jH1IzwRLGQEg5EeYdQYVWpe3V3C+ZvU0BrtUdW6GY4lSSIqgHCs9cBzY/BTrIARThflYaJpjMkMT+jAUIEjqv10OevCOTfK2AmlMkeAs1R/dqQ40noeBaYywjDVv71MzPVMJDzXCKJcOVNASq7zX2OJYPCSzWvuzZUgvPZTJuIEqCCrjcKEOyCdLGFnzBQlwOeGYKKYCcUhU6wwAfMP5f/F3W3Uvct686FZa92ugy+hU3SGLpCHrlAL3aM26iCCJugVvaF368P6sgt2cVVqW+ueE7QB+/AbxwO0sQ==</latexit>

t2

<latexit sha1_base64="t3Y5Uj6L3pRf5rMnyr4UYvex/5U=">AAACVHicjVFNSwMxFMxurdaqtdWjl8UieCq7Iip4KXrxJBXtB7RLyabZNjSbLMlbsSz9CV71nwn+Fw9m2x6srOBAyDDzXnhvEsScaXDdT8subBQ3t0rb5Z3dvcp+tXbQ0TJRhLaJ5FL1AqwpZ4K2gQGnvVhRHAWcdoPpbeZ3n6nSTIonmMXUj/BYsJARDEZ6hOH9sFr3Gu4Czt+kjlZoDWvW9WAkSRJRAYRjrfueG4OfYgWMcDovDxJNY0ymeEz7hgocUe2ni1nnzolRRk4olTkCnIX6syPFkdazKDCVEYaJ/u1lYq5nIuG5RhDlypkCUnKd/xpLBIOXbF5zr68E4ZWfMhEnQAVZbhQm3AHpZAk7I6YoAT4zBBPFTCgOmWCFCZh/KP8v7s5Zw7tonD+c15s3q+BL6Agdo1PkoUvURHeohdqIoDF6RW/o3fqwvuyCXVyW2taq5xCtwa58A/0LtM0=</latexit>

tN

(a) Test view
(b) Training views and

test view occlusions
(c) Test view

co-visibility heatmap
(d) Test view

co-visibility mask
(e) Test view 

with mask

Figure 1: Illustration of the computation process for co-visibility. Given a (a) test view, we first compute its
pairwise (b) occlusions in all training views the forward-backward consistency check [9] based on the optical
flow estimation from pre-trained RAFT [1]. The occlusions are visualized as binary masks in (b)’s second row,
where black color indicates pixels without correspondence. We also visualize their overlays over the original
test image. Then by summing up all occlusion maps, we compute the (c) test view co-visibility heatmap, which
stores the number of times each test pixel is seen in training frames. Finally, we apply a threshold on the heatmap
and obtain a binary (d) co-visibility mask. We also visualize its (e) overlay on the test image. Note that the
occlusion maps are usually inaccurate due to noise in optical flow prediction, e.g., they miss the cover of the
chicken toy in this example. Our conservative threshold strategy overcomes the noise and ensures that adequately
seen regions are included in the final mask.

C Computation for co-visibility mask and masked image metrics

Code for both the co-visibility mask and masked image metrics are made publicly available on our
project page. In this section, we provide further details for their computation processes.

C.1 Co-visibility mask

In dynamic scenes, particularly for monocular capture with multi-camera validation, the test view
contains regions that may not have been observed at all by the training camera. To circumvent this
issue without resorting to camera teleportation, for each pixel in the test image, we propose “co-
visibility” masking, which tests how many times a test pixel has been observed in the training images.

We visualize the computation process of the co-visibility mask in Figure 1. Concretely, for each
(a) test frame, we first check its (b) occlusion in each training frame by the forward-backward flow
consistency check according to Equation 2. We use RAFT [1] for optical flow estimation between
each test frame and each training frame. Note that we visualize occlusion as both a binary mask and
its overlay on the test image. For occlusion mask visualization, the black color indicates pixels with
no correspondence in the training views. We then compute the (c) co-visibility heatmap by simply
summing up all test view occlusion masks. This co-visibility heatmap stores the number of times
that each pixel is seen in training views. For visualization purpose, we normalize the heatmap by the
number of the training frames N . Finally, we apply a threshold β to the heatmap and obtain a (d)
binary co-visibility mask, which we also visualize with (e) its overlay on the test image. We adopt
a conservative strategy and set β = max(5, 0.1 ·N), meaning that we deem a pixel “seen” during
training and valid for evaluation when it is seen in 5 or 10% of training frames, whichever is larger.
This strategy ensures high recall in the masking result, i.e., the final co-visible regions are adequately
seen during training when the flow estimation is noisy. For example, as shown in the third row of
Figure 1 (b), the test view occlusions are inaccurate and miss the red cover of the chicken toy when it
is visible in both frames. However, since the red cover is adequately seen over the whole sequence, it
is still included in the final co-visibility mask.

4

http://hangg7.com/dycheck


C.2 Masked image metrics

In this work, we propose to only evaluate on regions that are adequately seen during training by co-
visibility masking. We employ three masked image metrics, namely mPSNR, mSSIM and mLPIPS,
which extend from their original definition, which we discuss next.

PSNR → mPSNR. PSNR is originally defined as per-pixel mean squared error (MSE) in the log
scale (with a constant negative multiplier). We compute mPSNR by simply taking the average of
per-pixel PSNR scores over the masked region.

SSIM [12] → mSSIM. Comparing to PSNR, SSIM is defined on the patch level: it considers the
structural similarity within each patch. In practice, it is usually implemented as convolutions where
kernels are defined by the pixels in each patch. We take inspiration from Liu et al. [13] and follow
exactly their partial convolution implementation for this operation, where only the masked pixels are
accounted for the final result.

LPIPS [14] → mLPIPS [2, 15, 16]. LPIPS is also defined on patch level. Given two images,
it computes their similarity distance in the feature space across different spatial resolution using
a pretrained AlexNet model [17]. The final similarity score is the average over all distance maps.
To compute mLPIPS, we follow the previous works [2, 15, 16] and first apply the co-visibility mask
on the input images by zeroing out the unseen regions. Given the output distance maps at each spatial
resolution, we then apply the same mask with downsampling and compute the masked average
distance score. It should be noted that the pretrained AlexNet has a receptive field of 1952. Thus
when the co-visibility mask is small (most of the pixels are not seen during training), this metric
can be artificially low due to the zeroing operation.

D Correspondence readout from existing works

In this section, we first review the formulation of the existing works and then describe the computation
to read out correspondence from these models.

D.1 Formulation of existing works

A neural radiance field (NeRF) [18] represents a static scene as a continuous volumetric field F that
transforms a point’s position x and auxiliary variables w (e.g., view direction, latent appearance
vector) to color c and density σ,

F : (x,w) 7→ (c, σ). (4)

Here we briefly review representative approaches that extend NeRFs to dynamic scenes.

Nerfies [4] and HyperNeRF [3]. Similarly to traditional non-rigid reconstruction methods that
explains non-rigid scenes with a static canonical space and a per-frame deformation model [19],
Nerfies [4] capture a non-rigid scene with one canonical NeRF F and a per-time step view-to-
canonical deformation Wt→c that takes a point x with a time-conditioned latent vector ϕt to a
canonical point xc,

Wt→c : (x,ϕt) 7→ xc. (5)

At each time step the resulting volumetric field is Ft = F ◦ Wt→c. HyperNeRF [3] addresses
topological change on top of Nerfies by outputting a two-dimensional “ambient” coordinate w

encoding the topological change in addition to the canonical point xc,

Wt→c : (x,ϕt) 7→ (xc,w). (6)

These two output variables are passed to the (topologically varying) canonical space mapping F .

Time-conditioned NeRF and NSFF [2]. Another way to handle non-rigid scenes is to directly map
space-time to the output color and density by a time-conditioned latent vector ϕt, which we refer to
as T-NeRF:

Ft : (x,ϕt) 7→ (c, σ). (7)

5



Note that since T-NeRF implicitly handles deformation, it is difficult to compute correspondences
over time. NSFF [2] augments T-NeRF’s implicit function Ft to output an explicit scene flow field
Wt→t+δ between adjacent time steps t and t+ δ,

Wt→t+δ : x 7→ x
′, δ ∈ {+1,−1}. (8)

This explicit flow field is used to regularize motion and, as shown below, can be chained to compute
long-range point correspondences across views and times.

D.2 Correspondence readout

Our goal is to find view-to-view correspondences such that given a set of key-points on a source
image at time t1, we can find their correspondence on a target image at time t2.

For clarity, we start with assuming a known 3D view-to-view warp Wt1→t2 , outlined in the last
sub-section. The 2D correspondence ut2 given ut1 can be obtained by three steps, which we describe
as “warp-integrate-project”. In the “warp” step, given the pixel location ut1 and camera πt1 , we

sample points on the ray passing from the camera center through the pixel π−1
t1

(ut1). Then, we
warp the sampled points toward their 3D correspondences in the target frame using the known 3D
warp Wt1→t2 . In the “integrate” step, we compute the expected 3D location for the source samples
weighted by the probability mass wt1 by volume rendering, as per NeRF [18]. We can use densities
from either source or target frame, a choice that we find insensitive in practice. In our formulation,
we use the densities from the source frame. Finally, in the “project” step, we project the expected 3D
location to the target frame through the target camera πt2 . The “warp-integrate-project” process can
be written as

ut2 = πt2

(

E
xt1

∈π
−1

t1
(ut1

)

[

wt1(xt1) ·Wt1→t2(xt1)
]

)

. (9)

Note that there are also other alternatives such as “warp-project-integrate” where integration happens
after projecting warped points to 2D. We find in practice that these different approaches make little
difference to the final results when the surface is dense such that wt is concentrated near one point
(almost one-hot) for each ray.

Nerfies [4] and HyperNeRF [3]. We can compose Wt1→t2 by an inverse map Wt1→c and a forward

map W̃c→t2 ,

Wt1→t2(xt1) = W̃c→t2(Wt1→c(xt1)). (10)

We solve for the forward map given the inverse map through optimization:

W̃c→t(xt) = argmin
xc

∥Wt→c(xt)− xc∥
2
2. (11)

We use the Broyden solver for root-finding, as per SNARF [20], and initialize xc with xt.

NSFF [2]. We can compose Wt1→t2 by chaining the scene flow predictions through time. Con-
cretely we have

Wt1→t2(xt1) = Wt2−1→t2

(

· · ·Wt1+1→t1+2

(

Wt1→t1+1(xt1)
)

)

. (12)

E Summary of the capture setup and data processing for our iPhone dataset

Our capture setup has 7 multi-camera captures (MV) and 7 single camera captues (SV). We evaluate
novel-view synthesis on the multi-camera captures and correspondence on all captures.

Multi-camera captures. For multi-camera captures, we employ three cameras: one hand-held
camera to capture monocular video for training and two stationary mounted cameras for validation.
The two validation cameras face inward from two distinct viewpoints with large baseline. This
wide-baseline setup enables us to better evaluate the shape modeling quality for novel-view synthesis.
We use the “Record3D” app [21] on iPhone to record both RGB and depth information at each time
step. Note that we only collect depth information for training views given that we will only use the

6



depths for supervision. We discuss the preprocessing procedure for the training video sequence in the
“Single-camera captures” paragraph below.

To synchronize multiple cameras, we leverage the “audio-based multi-camera synchronization”
functionality in Adobe Premiere Pro, as per [22], which achieves millisecond-level accuracy. In
Figure 2, we show visualizations of our multi-camera captures after time synchronization. To ensure
that our input sequence covers most of the scene regions in evaluation, we intentionally move the
training camera in front of each test camera at certain frames. When we do so, that particular test
frame is excluded due to severe occlusion (shown as “Excluded” in the figure). For the WHEEL

sequence (last row), we only employ the right camera due to the limited physical space to set up the
multi-camera rig in that scene.

After time synchronization, we calibrate the multi-camera system. The Record3D app provides
camera parameters and poses at each time step, but the poses only relate to each other within each
capture sequence. In fact, each camera pose is recorded as relative pose to the first frame in each
sequence, with the first pose being identity. We therefore need to solve the relative SE(3) transforms
between the first frame in each test sequence with respect to the first training frame. This problem
can be formulated as a Perspective-n-Point (PnP) problem where, given a set of 3D points and their
corresponding 2D pixels in two sequences, we aim to solve the camera pose. In practice, given a
training RGBD frame and a testing RGB frame, we compute a set of 2D correspondences by SIFT
feature matching [23] and obtain their 3D point positions (in the training sequence’s world space) by
back-projecting the 2D keypoints with the training frame depth map. This process is repeated for
all time steps. We exploit our problem structure by constraining the camera poses within each test
sequence to be the same, i.e., static camera. We use the RANSAC PnP solver [24] in OpenCV [25].

Single-camera captures. We treat the single-camera captures as the training sequence in our
multi-camera capture setup. In effect, the single-camera capture setup will not have validation data
for novel-view synthesis evaluation. We preprocess the depth data for the training sequence by
applying a Sobel filter [26] to filter out inaccurate depth values around object edges. In Figure 3, we
visualize our depth data before and after filtering. We find that NeRF is particularly sensitive to depth
noise and this filtering step is necessary. Finally, we manually annotate keypoints for correspondence
evaluation. For sequences of humans and quadrupeds (dogs or cats), we annotate keypoints based
on the skeleton defined in the COCO challenge [27] and StanfordExtra [28]. For sequences that
focus on more general objects (e.g., our BLOCK and TEDDY sequences), we manually identify and
annotate 5 to 15 trackable keypoints across frames. We visualize keypoint annotations (with skeleton
if available) for both our proposed iPhone dataset and the Nerfies-HyperNeRF dataset in Figure 4.

Note that both Nerfies [4] and HyperNeRF [3] use background regularization which requires a point
cloud of the background static scene. We first extract the object mask over time by MTTR, an
off-the-shelf video segmentation network [6], which takes a text prompt of the foreground object as
input. Since our foreground objects are quite diverse (e.g., backpack and block), the segmentation
results are usually noisy. Thus we apply TSDF Fusion [29] to the background point clouds over the
whole sequence to get a completed background point cloud. We find that this point cloud can be
noisy when segmentation fails, and that it is necessary to manually filter the background point cloud
to make sure that it does not include any foreground regions. We consider this manual process a
weakness of the previous background regularization [4].

F Summary of the implementation details and remaining differences

To ensure a fair comparison, we align numerous training details between the models that we
investigate in this paper: T-NeRF, NSFF [2], Nerfies [4] and HyperNeRF [3]. Code and checkpoints
are available on our project page.

To start with, we align the total number of rays seen during training. We add support of ray
undistortion [3] in the third-party implementation of NSFF [30] to make sure that the training rays
are the same across codebases. All models are trained with view-dependency modeling turned on.
We did not find appearance encoding [31] helpful in terms of quantitative results. This might due
to the lighting difference between training and validation captures – a common issue in evaluation
discussed in mip-NeRF 360 [32].

7

http://hangg7.com/dycheck


BROOM

Ω = 3.40, ω = 128.54
CURLS

Ω = 1.20, ω = 138.55
TAIL

Ω = 3.30, ω = 160.55
TOBY SIT

Ω = 2.18, ω = 110.51

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Nerfies [4] 19.40 - 0.323 - - - - - - - - -

Nerfies (repo) 19.40 - 0.325 24.40 - 0.392 21.90 - 0.245 18.44 - 0.384

Nerfies (our reimpl.) 19.70 0.216 0.296 24.04 0.670 0.245 21.79 0.314 0.236 18.48 0.355 0.375

HyperNeRF [3] 19.30 - 0.296 - - - - - - - - -

HyperNeRF (repo) 19.30 - 0.308 24.60 - 0.363 22.10 - 0.226 18.40 - 0.330

HyperNeRF (our reimpl.) 19.36 0.210 0.314 24.59 0.686 0.247 22.16 0.329 0.231 18.41 0.345 0.339

3D PRINTER

Ω = 3.13, ω = 251.37
CHICKEN

Ω = 7.38, ω = 212.58
PEEL BANANA

Ω = 1.26, ω = 237.66

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Nerfies [4] 20.20 - 0.115 26.00 - 0.084 21.70 - 0.157

Nerfies (repo) 20.20 - 0.118 26.80 - 0.081 22.00 - 0.179

Nerfies (our reimpl.) 20.30 0.639 0.115 26.54 0.823 0.079 21.11 0.693 0.174

HyperNeRF [3] 20.00 - 0.111 26.90 - 0.079 23.30 - 0.133

HyperNeRF (repo) 20.10 - 0.110 27.70 - 0.076 22.20 - 0.140

HyperNeRF (our reimpl.) 20.12 0.638 0.110 27.74 0.834 0.077 22.25 0.729 0.144

Table 2: Our re-implementation reproduces Nerfies [4]’s and HyperNeRF [3]’s results. The official numbers
for both Nerfies and HyperNeRF are taken from the HyperNeRF paper. Our results matches closely to their
numbers and the ones that we obtained by running the officially released repositories (denoted as “repo”). All
models are trained under the teleporting setting.

JUMPING

Ω = 0.68, ω = 53.79

Method PSNR↑ SSIM↑ LPIPS↓

NSFF (repo) 27.41 0.900 0.057

NSFF (our reimpl.) 27.80 0.908 0.051

Table 3: Our modified third-party re-implementation reproduces NSFF [2]’s results on one sequence from
Yoon et al. [11]. Due to the absence of per-sequence results in the original paper, we compare to the numbers
that we obtained by evaluating the officially released checkpoints (denoted as “repo”). Our results matches
closely to their numbers. All models are trained under the teleporting setting.

T-NeRF, Nerfies, and HyperNeRF share the exact same training setup since they are implemented
within our codebase. We follow the hyper-parameters specified in their official repositories. We use
a batch size B = 6144 for a total number of iterations N = 2.5× 105, optimized by ADAM [33]
with an initial learning rate η = 1 × 10−3 exponentially decayed to 1×−4 at the end. We use this
training recipe for all of our experiments across all datasets. On 4 NVIDIA RTX A4000 or 2 NVIDIA
A100 GPUs with 24GB memory, it takes roughly 12 hours to train a T-NeRF and 24 hours to train a
Nerfies or a HyperNeRF. In Table 2, we show that our codebase reproduces the numbers from the
original papers and official repositories.

Due to no publicly available code to train NSFF on the Nerfies-HyperNeRF dataset. We adapt and
extend the third-party implementation of NSFF (which we find to perform better than the official
repo [34]). We confirm the finding from HyperNeRF that the default hyper-parameters in the NSFF
paper are not suitable for long video sequences, and use their hyper-parameters instead. In Table 3,
we check on one sequence that our modified re-implementation of NSFF can reproduce the numbers
from the ones we obtain by running the released code. On 1 NVIDIA RTX A4000 or NVIDIA
A100 GPU, it takes roughly 72 to train a NSFF. With better implementation, we hypothesize that the
training process can be largely accelerated.

While we try to ensure the fairness in our comparison, there are still four main remaining differences,
namely: (1) static scene stablization, (2) sampling and rendering, (3) NeRF coordinates, and (4)
flow supervision. First, Nerfies and HyperNeRF use additional background points from SfM system
as supervision to stabilize the static region of the scene, which we find sensitive to foreground
segmentation errors as mentioned in Section E. On the other hand, NSFF stabilizes the static region by
composing the samples from a time-invariant static NeRF and a time-varying dynamic NeRF. Second,
Nerfies and HyperNeRF sample S = 128 points during the coarse stage, and another 2S points

8



during the fine stage, evaluating 3S = 384 points in total. NSFF, on the other hand, only samples
S points for dynamic NeRF and another S points for static NeRF, without coarse-to-fine sampling,
evaluating 2S = 256 points in total. Third, Nerfies and HyperNeRF sample points in world space,
while NSFF samples in normalized device coordinates (NDC), which can cause issues when applying
to non-forward-facing scenes like the ones we use in this paper. Finally, NSFF uses additional optical
flow supervision, while Nerfies and HyperNeRF do not. In fact, we consider the fact that NSFF can
leverage correspondence supervision as a merit in the sense that it is non-trivial to apply optical flow
supervision to Nerfies and HyperNeRF since their warp representation is not fully invertible.

G Additional results on the impact of effective multi-view

In Figure 5, we provide more qualitative comparisons between models that are trained with and
without camera teleportation on the Nerfies-HyperNeRF dataset.

H Additional results on per-sequence quantitative performance breakdown

BROOM (Ω =2.57, ω =60.4) CURLS (Ω =0.90, ω =118.7)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 20.04(20.17) 0.344(0.257) 0.590(0.624) - 21.86(21.75) 0.677(0.597) 0.284(0.341) -

NSFF 20.36(20.46) 0.335(0.247) 0.776(0.813) 0.119 18.74(18.85) 0.616(0.531) 0.378(0.423) 0.212

Nerfies 19.34(19.51) 0.293(0.202) 0.294(0.327) 0.460 23.28(23.03) 0.707(0.630) 0.220(0.266) 0.782

HyperNeRF 19.04(19.23) 0.288(0.197) 0.279(0.313) 0.471 23.13(22.98) 0.700(0.625) 0.220(0.266) 0.838

TAIL (Ω =1.31, ω =28.6) TOBY-SIT (Ω =1.28, ω =26.4)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 22.56(22.11) 0.460(0.385) 0.305(0.365) - 18.53(18.53) 0.428(0.330) 0.421(0.471) -

NSFF 21.94(21.72) 0.461(0.388) 0.522(0.579) 0.323 18.66(18.65) 0.429(0.329) 0.600(0.634) 0.666

Nerfies 21.46(21.17) 0.385(0.305) 0.213(0.261) 0.645 18.45(18.41) 0.423(0.326) 0.249(0.307) 0.914

HyperNeRF 21.54(21.13) 0.382(0.301) 0.218(0.263) 0.623 18.40(18.33) 0.422(0.324) 0.242(0.300) 0.883

3DPRINTER (Ω =1.22, ω =59.4) CHICKEN (Ω =1.52, ω =33.5)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 19.69(18.60) 0.665(0.591) 0.205(0.238) - 25.54(24.41) 0.802(0.764) 0.131(0.158) -

NSFF 16.89(16.26) 0.526(0.426) 0.443(0.492) 0.797 21.47(20.72) 0.671(0.619) 0.290(0.325) 0.604

Nerfies 19.67(18.81) 0.661(0.588) 0.148(0.175) 0.998 23.78(22.71) 0.784(0.742) 0.114(0.142) 0.978

HyperNeRF 19.58(18.73) 0.656(0.583) 0.147(0.175) 0.994 24.90(23.88) 0.792(0.753) 0.101(0.125) 1.000

PEEL-BANANA (Ω =0.33, ω =33.8)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 22.64(22.07) 0.787(0.721) 0.142(0.185) -

NSFF 18.68(18.62) 0.613(0.530) 0.293(0.335) 0.233

Nerfies 19.97(19.85) 0.677(0.609) 0.161(0.206) 0.514

HyperNeRF 21.34(21.08) 0.707(0.641) 0.135(0.173) 0.540

Table 4: Per-scene breakdowns of the quantitative results on the Nerfies-HyperNeRF dataset. Numbers in
gray are calculated without using the co-visibility mask. All models are trained under the non-teleporting setting.

We document the per-sequence quantitative performances of different models on both the Nerfies-
HyperNeRF dataset (under non-teleporting setting) in Table 4 and the proposed iPhone dataset in
Table 5.

I Additional results on novel-view synthesis

We provide additional novel-view synthesis qualitative results under the non-teleporting setting. In
Figure 6, we show qualitative results on the Nerfies-HyperNeRF dataset. In Figure 7, we show
qualitative results on the multi-camera captures from the proposed iPhone dataset. All models except
NSFF [2] are trained with all the additional regularizations that we find helpful through ablation,

9



APPLE (Ω =0.75, ω =3.8) BLOCK (Ω =0.04, ω =11.5)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 17.43(15.98) 0.728(0.375) 0.508(0.598) - 17.52(17.15) 0.669(0.521) 0.346(0.449) -

NSFF 17.54(16.50) 0.750(0.432) 0.478(0.548) 0.599 16.61(16.34) 0.639(0.494) 0.389(0.482) 0.274

Nerfies 17.64(16.34) 0.743(0.411) 0.478(0.563) 0.318 17.54(17.35) 0.670(0.528) 0.331(0.424) 0.216

HyperNeRF 16.47(16.07) 0.754(0.425) 0.414(0.505) 0.132 14.71(14.93) 0.606(0.460) 0.438(0.517) 0.180

PAPER-WINDMILL (Ω =0.38, ω =10.7) SPACE-OUT (Ω =0.13, ω =6.4)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 17.55(17.55) 0.367(0.349) 0.258(0.268) - 17.71(17.04) 0.591(0.521) 0.377(0.438) -

NSFF 17.34(17.35) 0.378(0.362) 0.211(0.218) 0.113 17.79(17.25) 0.622(0.560) 0.303(0.359) 0.812

Nerfies 17.38(17.39) 0.382(0.366) 0.209(0.215) 0.107 17.93(18.10) 0.605(0.546) 0.320(0.369) 0.859

HyperNeRF 14.94(14.98) 0.272(0.254) 0.348(0.361) 0.163 17.65(17.79) 0.636(0.578) 0.341(0.390) 0.598

SPIN (Ω =0.15, ω =7.9) TEDDY (Ω =0.20, ω =7.6)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑ mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 19.16(18.17) 0.567(0.441) 0.443(0.490) - 13.71(13.32) 0.570(0.331) 0.429(0.565) -

NSFF 18.38(16.97) 0.585(0.445) 0.309(0.380) 0.177 13.65(12.91) 0.557(0.302) 0.372(0.508) 0.801

Nerfies 19.20(18.59) 0.561(0.436) 0.325(0.377) 0.115 13.97(13.91) 0.568(0.327) 0.350(0.479) 0.775

HyperNeRF 17.26(16.52) 0.540(0.414) 0.371(0.437) 0.083 12.59(12.78) 0.537(0.304) 0.527(0.635) 0.291

WHEEL (Ω =0.03, ω =58.5)

Method mPSNR↑ mSSIM↑ mLPIPS↓ PCK-T↑

T-NeRF 15.65(14.42) 0.548(0.405) 0.292(0.363) -

NSFF 13.82(13.19) 0.458(0.312) 0.310(0.366) 0.394

Nerfies 13.99(13.35) 0.455(0.307) 0.310(0.366) 0.408

HyperNeRF 14.59(13.31) 0.511(0.359) 0.331(0.402) 0.346

Table 5: Per-scene breakdowns of the quantitative results on the proposed iPhone dataset. Numbers in gray
are calculated without using the co-visibility mask.

Method CREEPER BACKPACK HANDWAVY HARU MOCHI PILLOW SRIRACHA MEAN

NSFF [2] 0.560 0.269 0.178 0.699 0.624 0.154 0.616 0.443

Nerfies++ 0.708 0.329 0.685 0.942 0.908 0.575 0.737 0.698

HyperNeRF++ 0.702 0.260 0.708 0.817 0.891 0.602 0.617 0.657

Table 6: Additional quantitative results of the PCK-T evaluation on the single-camera captures from the
proposed iPhone dataset. The correspondence evaluation is applicable when multi-camera validation is not
available. All numbers are computed with α = 0.05.

denoted with “++” to distinguish with the original models. In Figure 8, we show qualitative results
on the single-camera captures from the proposed iPhone dataset. We render novel views using the
camera pose from the first captured frame. Finally, in Figure 9, we show the rendering results with
and without co-visibility mask applied.

J Additional results on inferred correspondence

In Table 6, we provide additional quantitative results of the inferred correspondence on the single-
camera captures from the proposed iPhone dataset. In Figure 10 and 11, we provide additional
qualitative results of the inferred correspondence on both the Nerfies-iPhone dataset and the proposed
iPhone dataset. Note that all models are trained with additional regularizations on the proposed
iPhone dataset except NSFF.

References

[1] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV, 2020.

10



[2] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, 2021.

[3] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M. Seitz. Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields. ACM TOG, 2021.

[4] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan B Goldman, Steven M. Seitz,
and Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021.

[5] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In ICCV,
2021.

[6] Adam Botach, Evgenii Zheltonozhskii, and Chaim Baskin. End-to-end referring video object segmentation
with multimodal transformers. In CVPR, 2022.

[7] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In CVPR, 2016.

[8] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. CACM, 1981.

[9] Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim Weickert. High accuracy optical flow estimation
based on a theory for warping. In ECCV, 2004.

[10] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF: Neural
Radiance Fields for Dynamic Scenes. In CVPR, 2021.

[11] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park, and Jan Kautz. Novel view synthesis of
dynamic scenes with globally coherent depths from a monocular camera. In CVPR, 2020.

[12] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE TIP, 2004.

[13] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan Catanzaro. Image
inpainting for irregular holes using partial convolutions. In ECCV, 2018.

[14] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

[15] Leon A Gatys, Alexander S Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Controlling
perceptual factors in neural style transfer. In CVPR, 2017.

[16] Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris, and Aaron Hertzmann. Transforming and
projecting images into class-conditional generative networks. In ECCV, 2020.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. CACM, 2017.

[18] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

[19] Richard Newcombe, Dieter Fox, and Steve Seitz. Dynamicfusion: Reconstruction and tracking of non-rigid
scenes in real-time. In CVPR, 2015.

[20] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger. Snarf: Differentiable
forward skinning for animating non-rigid neural implicit shapes. In ICCV, 2021.

[21] Marek Simonik. Record3D – Point Cloud Animation and Streaming, year = 2019, url =
https://record3d.app/, urldate = 2022-10-14.

[22] Hao Ouyang, Bo Zhang, Pan Zhang, Hao Yang, Jiaolong Yang, Dong Chen, Qifeng Chen, and Fang Wen.
Real-time neural character rendering with pose-guided multiplane images, 2022.

[23] David G Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

[24] Marco Zuliani. Ransac for dummies. Vision Research Lab, University of California, Santa Barbara, 2009.

[25] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[26] Irwin Sobel. An isotropic 3x3 image gradient operator. Presentation at Stanford A.I. Project 1968, 2014.

11



[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014.

[28] Benjamin Biggs, Oliver Boyne, James Charles, Andrew Fitzgibbon, and Roberto Cipolla. Who left the
dogs out? 3d animal reconstruction with expectation maximization in the loop. In ECCV, 2020.

[29] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J Davison,
Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion: Real-time dense
surface mapping and tracking. In IEEE ISMAR, 2011.

[30] kwea123. Neural scene flow fields for space-time view synthesis of dynamic scenes: Pytorch re-
implementation, 2021.

[31] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and
Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In CVPR,
2021.

[32] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In CVPR, 2022.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

[34] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes: Official code release, 2021.

[35] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim, Tanner
Schmidt, Steven Lovegrove, Michael Goesele, and Zhaoyang Lv. Neural 3d video synthesis from multi-view
video. In CVPR, 2022.

12



A
P

P
L

E

Excluded

B
L

O
C

K
P

A
P

E
R

W
IN

D
M

IL
L Excluded

S
P

A
C

E
O

U
T

S
P

IN
T

E
D

D
Y

Excluded

W
H

E
E

L

Unavailable Unavailable

Test view (left) Train view Test view (right) Test view (left) Train view Test view (right)

Figure 2: Visualizations of the multi-camera captures after time synchronization from the proposed iPhone
dataset. In each row, we visualize the frames from both the training camera and two testing cameras at two time
steps. We intentionally move the training camera in front of each test camera at certain times to ensure that our
input sequence covers most of the scene in evaluation. When a particular test frame depicts the training camera,
we exclude the test frame (denoted as “Excluded”). For the WHEEL sequence in the last row, we only employ
the right test camera due to limited space to set up the multi-camera rig.

13



S
R

IR
A

C
H

A
M

O
C

H
I

RGB Depth
Depth

(filtered)
RGB

(reproj.)
RGB

(reproj., filtered)

Figure 3: Visualizations of the depth filtering during data preprocessing of the proposed iPhone dataset.
The depth sensing is particularly noisy around the object edges, which we filtered out by Sobel filter [26]. We
visualize the re-projected RGB image with the original (2nd column) or filtered depth (3rd column) from the
captured view to the first view in each sequence at the last two columns. Without filtering (4th column), there are
erroneous floaters which cause too much noise for training supervision. With filtering (last column), we have a
crisper depth map which is used for improving the state-of-the-art methods.

Figure 4: Visualizations of the keypoint annotation during data preprocessing of the proposed iPhone
dataset. We manually annotate keypoints for correspondence evaluation. For sequences of humans and
quadrupeds (dogs or cats), we annotate based on the skeleton defined in the COCO challenge [27] and Stan-
fordExtra [28]. For sequences that focus on more general objects, we manually identify and annotate 5 to 15
trackable keypoints across frames.

14



B
R

O
O

M

3.40/128.54

2.57/60.36

3
D

P
R

IN
T

E
R

3.13/251.37

1.22/59.40

C
H

IC
K

E
N

7.38/212.58

1.52/33.46

P
E

E
L

B
A

N
A

N
A

1.26/237.66

0.33/33.77

Training view Test view T-NeRF NSFF [2] Nerfies [4] HyperNeRF [3]

Figure 5: Additional qualitative results on the impact of effective multi-view on the Nerfies-HyperNeRF
dataset. Ω/ω metrics of the input sequence are shown on the top-left. We compare the existing camera
teleporting setting and our non-teleporting setting. For every two rows, we show the results trained with and
without camera teleportation in the first and second rows. Two settings use the same set of co-visibility masks
computed from common training images.

15



B
R

O
O

M

2.57/60.36

C
U

R
L

S

0.90/118.65

T
A

IL

1.31/28.63

T
O

B
Y

S
IT

1.28/26.43

3
D

P
R

IN
T

E
R

1.22/59.40

C
H

IC
K

E
N

1.52/33.46

P
E

E
L

B
A

N
A

N
A

0.33/33.77

Training view Test view T-NeRF NSFF [35] Nerfies [4] HyperNeRF [3]

Figure 6: Additional qualitative results on the Nerfies-HyperNeRF dataset without camera teleportation.
Ω/ω metrics of the input sequence are shown on the top-left.

16



A
P

P
L

E

0.75/3.79
B

L
O

C
K

0.75/3.79

P
A

P
E

R
W

IN
D

M
IL

L 0.38/10.71

S
P

A
C

E
O

U
T

0.13/6.37

S
P

IN

0.15/7.86

T
E

D
D

Y

0.20/7.62

W
H

E
E

L

0.03/58.45

Training view Test view Depth re-proj. T-NeRF++ NSFF [2] Nerfies++ HyperNeRF++

Figure 7: Additional qualitative results on the multi-camera captures from the proposed iPhone dataset.
Ω/ω metrics of the input sequence are shown on the top-left. The models shown here are trained with all the
additional regularizations (+B+D+S) except NSFF.

17



C
R

E
E

P
E

R

0.23/14.05

B
A

C
K

P
A

C
K

0.26/5.59

H
A

N
D

W
A

V
Y

0.05/13.66

H
A

R
U

0.30/30.32

M
O

C
H

I

0.07/14.49

P
IL

L
O

W

0.06/13.19

S
R

IR
A

C
H

A

0.18/18.56

Training view Depth re-proj. T-NeRF++ NSFF [2] Nerfies++ HyperNeRF++

Figure 8: Additional qualitative results on the single-camera captures from the proposed iPhone dataset.
Ω/ω metrics of the input sequence are shown on the top-left. The models shown here are trained with all the
additional regularizations (+B+D+S) except NSFF. We re-render the scene from the first viewpoint in each
sequence. Note that there are no ground-truth validation frames.

18



3
D

P
R

IN
T

E
R

1.22/59.40
C

H
IC

K
E

N

1.52/33.46

S
P

IN

0.15/7.86

Training view Test view T-NeRF++ NSFF [2] Nerfies++ HyperNeRF++

Figure 9: Additional qualitative results on the full image rendering on both the Nerfies-HyperNeRF dataset
and the proposed iPhone dataset. Ω/ω metrics of the input sequence are shown on the top-left. All models
are trained under non-teleporting setting. For every two rows, we show the results with and without applying
co-visibility mask. All models are not able to reconstruct the unseen regions.

19



B
R

O
O

M

2.57/60.36

0px

6px

12px

18px

>24px

T
A

IL

1.31/28.62

T
O

B
Y

S
IT

1.28/26.43

3
D

P
R

IN
T

E
R

1.22/59.40

C
H

IC
K

E
N

1.52/33.46

P
E

E
L

B
A

N
A

N
A

0.33/33.77

Source Kpt. Target Kpt. NSFF [2] Nerfies++ HyperNeRF++

Figure 10: Additional qualitative results of keypoint transferring on the Nerfies-HyperNeRF dataset
without camera teleportation. Ω/ω metrics of the input sequence are shown on the top-left. All models are
trained under non-teleporting setting. Transferred keypoints are colorized by a heatmap of end-point error,
overlaid on the ground-truth target frame.

20



B
A

C
K

P
A

C
K

0.26/5.59

0px

6px

12px

18px

>24px

C
R

E
E

P
E

R

0.23/14.05

H
A

N
D

W
A

V
Y

0.05/13.66

M
O

C
H

I

0.07/14.49

S
R

IR
A

C
H

A

0.18/18.56

T
E

D
D

Y

0.20/7.62

Source Kpt. Target Kpt. NSFF [2] Nerfies++ HyperNeRF++

Figure 11: Additional qualitative results of keypoint transferring on the proposed iPhone dataset. Ω/ω
metrics of the input sequence are shown on the top-left. All models are trained under non-teleporting setting.
Transferred keypoints are colorized by a heatmap of end-point error, overlaid on the ground-truth target frame.

21


	Outline
	Computation for effective multi-view factors (EMFs)
	Full EMF : Ratio of camera-scene motion magnitude
	Angular EMF : Camera angular velocity

	Computation for co-visibility mask and masked image metrics
	Co-visibility mask
	Masked image metrics

	Correspondence readout from existing works
	Formulation of existing works
	Correspondence readout

	Summary of the capture setup and data processing for our iPhone dataset
	Summary of the implementation details and remaining differences
	Additional results on the impact of effective multi-view
	Additional results on per-sequence quantitative performance breakdown
	Additional results on novel-view synthesis
	Additional results on inferred correspondence

