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Appendix A: Preliminaries

We start from the definition of a unitary t-design [1]. Consider a ensemble V of unitaries V on a d-dimensional Hilbert space,
and denote Pt,t(V ) as an arbitrary polynomial of degree at most t in the entries of V and at most t in those of V †. Then V is a
unitary t-design if

1

|V|
∑
V ∈V

Pt,t(V ) =

∫
U(d)

dµ(V )Pt,t(V ), (A1)

where |V| is the size of the set V, U(d) is the unitary group of degree d and dµ(V ) is the Haar measure on U(d). Namely, Pt,t(V )
averaging over the t-design V will yield exactly the same result as averaging over the entire unitary group U(d). Fortunately,
these integrals over polynomials can be analytically solved and expressed into closed forms. For example, the following element-
wise identities hold for the first two moments [2, 3]∫

U(d)

dµ(V )vi,jv
∗
i′,j′ =

δi,i′δj,j′

d
, (A2a)∫

U(d)

dµ(V )vi1,j1vi2,j2v
∗
i′1,j

′
1
v∗i′2,j′2 =

1

d2 − 1

(
δi1,i′1δi2,i′2δj1,j′1δj2,j′2 + δi1,i′2δi2,i′1δj1,j′2δj2,j′1

)
− 1

d (d2 − 1)

(
δi1,i′1δi2,i′2δj1,j′2δj2,j′1 + δi1,i′2δi2,i′1δj1,j′1δj2,j′2

)
, (A2b)

where vi,j and v∗i′,j′ denote the entries of V and V ∗, respectively, and δi,j denotes the Kronecker delta. For practical purposes,
these element-wise identities need to be transformed into various matrix forms, during which one will encounter many contrac-
tion operations. Here we take advantage of tensor network notations to deal with the contraction operations. For example, if we
arrange the indices like

vi,j =
(

Vi j

)
, v∗i′,j′ =

(
V ∗i′ j′

)
, (A3)

(A2a) could be represented as the following diagram

∫
U(d)

dµ(V )

 V

V ∗

 =
1

d

( )
, (A4)

where the arcs on the right hand side of (A4) represent identity matrices, i.e. the Kronecker delta δi,i′ and δj,j′ . As a simple
instance, we first prove Lemma 1 using (A4).

Lemma 1 For an arbitrary linear operator A on the d-dimensional Hilbert space, the following equality holds∫
U(d)

V AV †dµ(V ) =
tr(A)

d
I, (A5)

where I is the identity operator on the d-dimensional Hilbert space.

Proof By tensor network notations and (A4), we have

∫
U(d)

V AV †dµ(V ) =

∫
U(d)

dµ(V )

 V

V ∗

A

 =
1

d

(
A

)
=

tr(A)

d
I, (A6)

which is exactly the same with (A5). ■
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Similarly, (A2b) could be represented by tensor network notations as the following diagram

∫
U(d)

dµ(V )


V

V ∗

V

V ∗

 =
1

d2 − 1

 +

− 1

d(d2 − 1)

 +

 . (A7)

Now we utilize (A7) to derive a central identity used in the proof in the next section as Lemma 2.

Lemma 2 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V is
a unitary 2-design. For any linear operators P,Q on HA ⊗HB , the following identity holds

EV

[∥∥trB (QV PV †)∥∥2
2

]
=

1

d2 − 1

[
∥ trB Q∥22

(
| trP |2 − ∥P∥22)

d

)
+ dA∥Q∥22

(
∥P∥22 −

| trP |2

d

)]
, (A8)

where ∥ · ∥2 is the Schatten 2-norm and d = dAdB denotes the dimension of the whole Hilbert space HA ⊗HB .

Proof Note that V is a unitary 2-design and
∥∥trB (QV PV †)∥∥2

2
is a polynomial of degree at most 2 in the entries of V . By the

definition of unitary 2-designs in (A1), the left hand side of (A8) could be rewritten as

EV

[∥∥trB (QV PV †)∥∥2
2

]
=

∫
U(d)

dµ(V ) tr
(
trB(QV PV †) trB(V P †V †Q†)

)
. (A9)

Since the Hilbert space HA⊗HB has a bipartite tensor product structure, the linear operators on HA⊗HB could be represented
as 4-degree tensors. We take the convention for the arrangement of the indices of V and V ∗ corresponding to HA, HB as follows(

V
HA HA

HB HB

)
,

(
V ∗HB HB

HA HA

)
. (A10)

The arrangements of indices for P,Q and P ∗, Q∗ are the same as V and V ∗, respectively. The integrand on the right hand side
of (A9) could be represented diagrammatically as

V

V ∗

V

V ∗

P

P∗

Q

Q∗

, (A11)

Combining (A7), (A9) and (A11), the left hand side of (A8) is equal to

EV

∥∥trB (QV PV †)∥∥2
2

=
1

d2 − 1


P

P∗

Q

Q∗

+

P

P∗

Q

Q∗



− 1

d(d2 − 1)


P

P∗

Q

Q∗

+

P

P∗

Q

Q∗


=

1

d2 − 1

[
tr(trB Q† trB Q)

(
| tr(P )|2 − tr(P †P )

d

)
+ dA tr(Q†Q)

(
tr(P †P )− | trP |2

d

)]
,

(A12)

which is exactly the desired identity (A8). ■
Then, we will explicitly write down several special cases of Lemma 2 for the sake of convenience.
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Corollary 3 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V
is a unitary 2-design. Let ρ be an arbitrary density matrix on HA ⊗ HB and ρA = trB(V ρV †) be the reduced density matrix
on HA from V ρV †. The expectation of the purity of ρA is

EV

[
tr
(
ρ2A
)]

=
(d2A − 1)dB

d2 − 1
tr(ρ2) +

(d2B − 1)dA
d2 − 1

. (A13)

where d = dAdB denotes the dimension of the whole Hilbert space HA ⊗HB . Since pure states satisfy tr(ρ2) = 1, (A13) can
be further simplified for pure states as

EV

[
tr
(
ρ2A
)]

=
dA + dB
dAdB + 1

. (A14)

Proof This is a special case of Lemma 2 by taking P = ρ and Q = IA ⊗ IB . ■

Corollary 4 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V
is a unitary 2-design. Let ρ be an arbitrary density matrix on HA ⊗HB . For any traceless operator OB on HB , the following
identity holds

EV

[∥∥trB (IA ⊗OBV ρV †)∥∥2
2

]
=

d2A∥OB∥22
d2 − 1

(
tr(ρ2)− 1

d

)
, (A15)

where d = dAdB denotes the dimension of the whole Hilbert space HA ⊗HB and IA is the identity on HA.

Proof This is a special case of Lemma 2 by taking P = ρ, Q = IA ⊗OB with tr(OB) = 0. ■

Corollary 5 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V
is a unitary 2-design. For any traceless operator P on HA ⊗ HB and any linear operators OA, OB on HA, HB respectively,
the following identity holds

EV

[∥∥trB (OA ⊗OBV PV †)∥∥2
2

]
=

∥OA∥22∥P∥22
d2 − 1

[
dA∥OB∥22 −

| trOB |2

d

]
, (A16)

where d = dAdB denotes the dimension of the whole Hilbert space HA ⊗HB .

Proof This is a special case of Lemma 2 by taking tr(P ) = 0 and Q = OA ⊗OB . ■
In the end of this section, we recall several fundamental inequalities in linear algebra and probability theory to make our

proofs in the next section more self-contained.

Lemma 6 (Hölder’s inequality for tracial matrices) For any linear operators X,Y , the following inequality holds∣∣tr(X†Y )
∣∣ ≤ ∥X∥p∥Y ∥q, (A17)

where p, q satisfy 1
p + 1

q = 1 and ∥ · ∥p denotes the Schatten p-norm defined by ∥A∥p = (tr |A|p)1/p, |A| =
√
A†A.

Lemma 7 (Partial trace monotonicity) For any linear operator H on the Hilbert space HA ⊗ HB with dimHB = dB , the
following inequality holds [4]

∥ trB H∥p ≤ d
(p−1)/p
B ∥H∥p. (A18)

Namely, the Schatten p-norm is non-increasing under partial tracing up to a constant coefficient. Specially, we have

∥ trB H∥1 ≤ ∥H∥1, ∥ trB H∥2 ≤
√

dB∥H∥2, ∥ trB H∥∞ ≤ dB∥H∥∞. (A19)

Lemma 8 (Markov’s inequality) Let X be a random variable taking non-negative real value. For any ϵ > 0, the following
inequality holds

Pr[X ≥ ϵ] ≤ E[X]

ϵ
, (A20)

where Pr[X ≥ ϵ] denotes the probability of X ≥ ϵ and E[X] denotes the expectation of the random variable X .
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Lemma 9 (Jensen’s inequality) Let X be a random variable and f : R → R is a convex function. The following inequality
holds

f(E[X]) ≤ E[f(X)]. (A21)

Lemma 10 Suppose that X is a random variable taking real values in [0, a]. The following inequality holds

Var[X] ≤ a · E[X]. (A22)

Proof According to the relation x2 ≤ ax, we have

Var[X] ≤ E[X2] ≤ E[aX] = a · E[X]. (A23)

■

Appendix B: Proof of Theorem 1

To make the proof easy to read and emphasize important intermediate results, we prove Lemma 11-16 first and derive Theo-
rem 1 by use of these lemmas.

Lemma 11 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V is
a unitary 2-design. Let ρ be an arbitrary density matrix on HA ⊗HB and ρA = trB(V ρV †) be the reduced density matrix on
HA from V ρV †. The expectation of the 2-norm distance between ρA and the maximally mixed state IA/dA satisfies

EV

∥∥∥∥ρA − IA
dA

∥∥∥∥
2

≤
√

1

dB
. (B1)

Proof According to the concavity of the square root function and Jensen’s inequality in Lemma 9, we have

EV

∥∥∥∥ρA − IA
dA

∥∥∥∥
2

≤

√√√√EV

[∥∥∥∥ρA − IA
dA

∥∥∥∥2
2

]
. (B2)

Using Corollary 3, the expectation under the square root on the right hand side of (B2) can be exactly calculated as

EV

[∥∥∥∥ρA − IA
dA

∥∥∥∥2
2

]
= EV tr

[(
ρA − IA

dA

)2
]
= EV tr

(
ρ2A − 2

dA
ρA +

IA
d2A

)
=

(d2A − 1)dB
d2 − 1

tr(ρ2) +
(d2B − 1)dA

d2 − 1
− 1

dA
.

(B3)

By the upper bound of the purity tr(ρ2) ≤ 1, (B3) could be further relaxed to

EV

[∥∥∥∥ρA − IA
dA

∥∥∥∥2
2

]
≤ (d2A − 1)dB

d2 − 1
+

(d2B − 1)dA
d2 − 1

− 1

dA

=
dA + dB
dAdB + 1

− 1

dA
≤ 1

dB
.

(B4)

Combining (B2) and (B4), we arrive at (B1). ■

Lemma 12 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗HB with dim (HA) = dA and dim (HB) = dB where V is
a unitary 2-design. For any density matrix ρ on HA⊗HB and any traceless operator OB on HB , the following inequality holds

EV

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2
≤ ∥OB∥∞

√
1

dB
. (B5)
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Proof According to the concavity of the square root function and Jensen’s inequality in Lemma 9, we have

EV

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2
≤
√
EV

[
∥trB ((IA ⊗OB)V ρV †)∥22

]
. (B6)

Using Corollary 4, the expectation under the square root in (B6) can be exactly calculated as

EV

[∥∥trB ((IA ⊗OB)V ρV †)∥∥2
2

]
=

d2A∥OB∥22
d2 − 1

(
tr(ρ2)− 1

d

)
, (B7)

By the upper bound of the purity tr(ρ2) ≤ 1, (B7) could be further relaxed to

EV

[∥∥trB ((IA ⊗OB)V ρV †)∥∥2
2

]
≤ d2A∥OB∥22

d2 − 1

(
1− 1

d

)
=

d2A∥OB∥22
d(d+ 1)

≤ ∥OB∥22
d2B

. (B8)

Considering ∥OB∥2 ≤
√
dB∥OB∥∞, we further obtain

EV

[∥∥trB ((IA ⊗OB)V ρV †)∥∥2
2

]
≤ ∥OB∥2∞

dB
. (B9)

Combining (B6) and (B9), we arrive at (B5). ■

Lemma 13 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗ HB with dim (HA) = dA and dim (HB) = dB where
V is a unitary 2-design. Let OA be an arbitrary traceless operator on HA and OB be either an arbitrary traceless operator
or a homothety cIB on HB , where IB is the identity operator on HB and c ∈ C is an arbitrary complex number. Denote
UA ∈ U(dA) as a unitary operator on HA. For any density matrix ρ on HA ⊗HB , the following inequality holds

EV

[
max
UA

∣∣∣tr [(OA ⊗OB)(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

]∣∣∣] ≤ ∥OA∥∞∥OB∥∞
√

dA
dB

. (B10)

Proof The trace expression on the left hand side of (B10) can be rewritten as

tr
[
(OA ⊗OB)(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
]
= tr

[
(U†

AOAUA) trB
(
(IA ⊗OB)V ρV †)] . (B11)

On the one hand, if OB is traceless, by using Hölder’s inequality in Lemma 6, we obtain∣∣∣tr [(U†
AOAUA) trB

(
(IA ⊗OB)V ρV †)]∣∣∣ ≤ ∥∥∥U†

AOAUA

∥∥∥
2

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2

≤
√
dA ∥OA∥∞

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2
,

(B12)

where we have used the unitary invariance of the Schatten norms to eliminate UA. Since (B12) holds for any UA, it certainly
holds when taking the maximum, i.e.

max
UA

∣∣∣tr [(U†
AOAUA) trB

(
(IA ⊗OB)V ρV †)]∣∣∣ ≤√dA ∥OA∥∞

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2
. (B13)

Together with Lemma 12, we arrive at

EV

[
max
UA

∣∣∣tr [(OA ⊗OB)(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

]∣∣∣]
≤
√
dA ∥OA∥∞ EV

∥∥trB ((IA ⊗OB)V ρV †)∥∥
2
≤ ∥OA∥∞∥OB∥∞

√
dA
dB

.

(B14)

On the other hand, if OB = cIB , the right hand side of (B11) can be further rewritten as

tr
[
(U†

AOAUA) trB
(
(IA ⊗OB)V ρV †)] = c · tr

[
U†
AOAUAρA

]
= c · tr

[
U†
AOAUA

(
ρA − IA

dA

)]
. (B15)
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where we have used the traceless condition of OA and ρA = trB(V ρV †) is the reduced density matrix on HA from V ρV †.
Again, by Hölder’s inequality in Lemma 6, we obtain∣∣∣∣c · tr [U†

AOAUA

(
ρA − IA

dA

)]∣∣∣∣ ≤ |c|
∥∥∥U†

AOAUA

∥∥∥
2

∥∥∥∥ρA − IA
dA

∥∥∥∥
2

≤
√

dA ∥OB∥∞ ∥OA∥∞

∥∥∥∥ρA − IA
dA

∥∥∥∥
2

.

(B16)

Since (B16) holds for any UA, it certainly holds when taking the maximum. Together with (B11), (B15) and Lemma 11, we
arrive at

EV

[
max
UA

∣∣∣tr [(OA ⊗OB)(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

]∣∣∣]
≤
√
dA ∥OB∥∞ ∥OA∥∞ EV

∥∥∥∥ρA − IA
dA

∥∥∥∥
2

≤ ∥OB∥∞ ∥OA∥∞

√
dA
dB

.

(B17)

Combining (B14) and (B17), we know that (B10) holds whether OB is traceless or OB = cIB , c ∈ C. ■

Lemma 14 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗ HB with dim (HA) = dA and dim (HB) = dB where
V is a unitary 2-design. Let OA,OB be arbitrary linear operators on HA,HB , respectively. Denote UA ∈ U(dA) as a unitary
operator on HA. For any traceless matrix H on HA ⊗HB , the following inequality holds

EV

∥∥tr ((OA ⊗OB)V HV †)∥∥
2
≤ ∥OA∥2∥OB∥2∥H∥∞

√
dA

d− 1
, (B18)

where d = dAdB denotes the dimension of the whole Hilbert space HA ⊗HB .

Proof According to the concavity of the square root function and Jensen’s inequality in Lemma 9, we have

EV

∥∥trB ((OA ⊗OB)V HV †)∥∥
2
≤
√
EV

[
∥trB ((OA ⊗OB)V HV †)∥22

]
. (B19)

Using Corollary 5, the expectation under the square root in (B19) can be exactly calculated as

EV

[∥∥trB ((OA ⊗OB)V HV †)∥∥2
2

]
=

∥OA∥22∥H∥22
d2 − 1

[
dA∥OB∥22 −

| trOB |2

d

]
. (B20)

Combining (B19), (B20) and ∥H∥2 ≤
√
d∥H∥∞, we arrive at

EV

∥∥trB ((OA ⊗OB)V HV †)∥∥
2
≤
√

1

d2 − 1
∥OA∥2∥H∥2

√
dA∥OB∥22 −

| trOB |2
d

≤
√

dA
d2 − 1

∥OA∥2∥OB∥2∥H∥2 ≤
√

dA
d− 1

∥OA∥2∥OB∥2∥H∥∞,

(B21)

which is exactly the same as (B18). ■

Lemma 15 (Local unitary behind 2-design circuit) Suppose V ∈ V is a unitary on the Hilbert space HA⊗HB with dim (HA) =
dA and dim (HB) = dB where V is a unitary 2-design. Denote UA ∈ U(dA) as a unitary operator on HA. For any density
matrix ρ and any traceless Hermitian operator H on HA ⊗HB , the following inequality holds

EV

[
max
UA

[
tr
(
H(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

≤ ∥H∥∞(2d2A − 1)

√
dA
dB

, (B22)

Proof Any traceless Hermitian operator H could be expanded as

H = HA +HB +HAB , (B23a)

HA := trB(H)⊗ IB
dB

, (B23b)

HB :=
IA
dA

⊗ trA(H), (B23c)

HAB := H −HA −HB , (B23d)
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where HA, HB only act on HA, HB non-trivially, respectively. HAB acts on HA and HB both non-trivially. Here a linear
operator acting HA(HB) non-trivially means that the operator can not be decomposed to the tensor product form of IA ⊗
QB(QA ⊗ IB) where QB(QA) is an arbitrary operator on HB(HA). Denote {ΛA

j }
d2
A−1

j=0 is the set of clock-and-shift matrices [5]
on HA which is an orthogonal basis in the linear operator space with respect to the Hilbert-Schmidt inner product. ΛA

j are all
unitary and hence ∥ΛA

j ∥∞ = 1. We assume ΛA
0 = IA without loss of generality. Then ΛA

j are all traceless except ΛA
0 . Thus,

HAB could be further expanded in terms of ΛA
j as

HAB =

d2
A−1∑
j=1

ΛA
j ⊗OB

j . (B24)

where the explicit expression of OB
j could be derived from (B23d) as

OB
j =

1

dA
trA

((
ΛA†
j ⊗ IB

)
HAB

)
=

1

dA
trA((Λ

A†
j ⊗ IB)H)− 1

dA
trA[(Λ

A†
j ⊗ IB)H

A]

=
1

dA
trA((Λ

A†
j ⊗ IB)H)− 1

dAdB
trA(Λ

A†
j trB(H))⊗ IB .

(B25)

By definition, OB
j are all traceless. Combining (B23a) and (B24), we expand H as a summation of bipartite tensor product

operators. Next, we will take the maximum for each term in the summation to obtain the desired bound, i.e.

EV

[
max
UA

[
tr
(
H(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

(B26a)

≤EV

[
max
UA

[
tr
(
HA(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

(B26b)

+ EV

[
max
UA

[
tr
(
HB(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

(B26c)

+

d2
A−1∑
j=1

EV

[
max
UA

∣∣∣tr((ΛA
j ⊗OB

j )(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

)∣∣∣] . (B26d)

For (B26b) involving HA from (B23b), Lemma 13 together with ∥ trB(H)∥∞ ≤ dB∥H∥∞ from Lemma 7 gives

EV

[
max
UA

[
tr

((
trB(H)⊗ IB

dB

)
(UA ⊗ IB)V ρV †(U†

A ⊗ IB)

)]]
≤ ∥ trB(H)∥∞

dB

√
dA
dB

≤ ∥H∥∞
√

dA
dB

. (B27)

For (B26c) involving HB from (B23c), Lemma 1 together with the given condition tr(H) = 0 gives

EV

[
max
UA

[
tr

(
(
IA
dA

⊗ trA H)(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

)]]
= EV

[
tr

(
(
IA
dA

⊗ trA H)V ρV †
)]

=
tr(ρ)

d
tr(H) = 0.

(B28)

For each term in (B26d) involving OB
j from (B23d) and (B24), Lemma 13 gives

EV

[
max
UA

[
tr
(
(ΛA

j ⊗OB
j )(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

≤ ∥ΛA
j ∥∞∥OB

j ∥∞
√

dA
dB

= ∥OB
j ∥∞

√
dA
dB

, (B29)

Here ∥OB
j ∥∞ can be bounded using Lemma 7 as

∥OB
j ∥∞ =

∥∥∥∥ 1

dA
trA((Λ

A†
j ⊗ IB)H)− 1

dAdB
trA(Λ

A†
j trB(H))⊗ IB

∥∥∥∥
∞

≤ 1

dA

∥∥∥trA((ΛA†
j ⊗ IB)H)

∥∥∥
∞

+
1

dAdB

∥∥∥trA(ΛA†
j trB(H))⊗ IB

∥∥∥
∞

≤
∥∥∥(ΛA†

j ⊗ IB)H
∥∥∥
∞

+
1

dB

∥∥∥ΛA†
j trB(H)

∥∥∥
∞

= ∥H∥∞ +
1

dB
∥trB(H)∥∞ ≤ ∥H∥∞ + ∥H∥∞ = 2 ∥H∥∞ ,

(B30)
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where we have used the unitarity of ΛA
j and the unitary invariance of the Schatten norms. (B29) and (B30) are summarized as

EV

[
max
UA

∣∣∣tr((ΛA
j ⊗OB

j )(UA ⊗ IB)V ρV †(U†
A ⊗ IB)

)∣∣∣] ≤ 2∥H∥∞
√

dA
dB

. (B31)

Finally, combining (B27), (B28) and (B31), we obtain

EV

[
max
UA

[
tr
(
H(UA ⊗ IB)V ρV †(U†

A ⊗ IB)
)]]

≤ ∥H∥∞
√

dA
dB

+ (d2A − 1) · 2∥H∥∞
√

dA
dB

= (2d2A − 1)∥H∥∞
√

dA
dB

,

(B32)

which is exactly the desired inequality (B22). ■

Lemma 16 (Local unitary before 2-design circuit) Suppose V ∈ V is a unitary on the Hilbert space HA⊗HB with dim (HA) =
dA and dim (HB) = dB where V is a unitary 2-design. Denote UA ∈ U(dA) as a unitary operator on HA. For any density
matrix ρ and any traceless Hermitian operator H on HA ⊗HB , the following inequality holds

EV

[
max
UA

[
tr
(
HV (UA ⊗ IB)ρ(U

†
A ⊗ IB)V

†
)]]

≤ ∥H∥∞
d2A√

dAdB − 1
. (B33)

Proof Similar with the proof of Lemma 15, we denote {ΛA
j }

d2
A−1

j=0 is the set of clock-and-shift matrices [5]. Any density matrix
ρ can be expanded in terms of ΛA

j as

ρ =

d2
A−1∑
j=0

ΛA
j ⊗OB

j , (B34)

where OB
j can be explicitly expressed as

OB
j =

1

dA
trA((Λ

A†
j ⊗ IB)ρ). (B35)

Next, we will take the maximum for each term in the summation in (B34) to obtain the desired bound, i.e.

EV

[
max
UA

[
tr
(
HV (UA ⊗ IB)ρ(U

†
A ⊗ IB)V

†
)]]

(B36a)

≤
d2
A−1∑
j=0

EV

[
max
UA

∣∣∣tr(HV (UA ⊗ IB)(Λ
A
j ⊗OB

j )(U†
A ⊗ IB)V

†
)∣∣∣] (B36b)

=

d2
A−1∑
j=0

EV

[
max
UA

∣∣∣tr(UAΛ
A
j U

†
A trB(V

†HV (IA ⊗OB
j ))
)∣∣∣] (B36c)

For each term in (B36c), we employ Hölder’s inequality in Lemma 6 to obtain∣∣∣tr(UAΛ
A
j U

†
A trB(V

†HV (IA ⊗OB
j ))
)∣∣∣ ≤ ∥UAΛ

A
j U

†
A∥2

∥∥trB(V †HV (IA ⊗OB
j ))
∥∥
2

≤
√
dA
∥∥trB(V †HV (IA ⊗OB

j ))
∥∥
2
.

(B37)

Since (B37) holds for any UA, it certainly holds when taking the maximum, i.e.

max
UA

∣∣∣tr(UAΛ
A
j U

†
A trB(V

†HV (IA ⊗OB
j ))
)∣∣∣ ≤√dA

∥∥trB(V †HV (IA ⊗OB
j ))
∥∥
2
. (B38)

Together with Lemma 14, we obtain

EV

[
max
UA

∣∣∣tr(UAΛ
A
j U

†
A trB(V

†HV (IA ⊗OB
j ))
)∣∣∣] ≤√dAEV

∥∥trB(V †HV (IA ⊗OB
j ))
∥∥
1

≤ dA√
dAdB − 1

∥OB
j ∥2∥H∥∞,

(B39)
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where ∥OB∥2 can be bounded using (B35) and Lemma 7 as

∥OB∥2 ≤ ∥OB∥1 =
1

dA
∥ trA((ΛA†

j ⊗ IB)ρ)∥1 ≤ 1

dA
∥(ΛA†

j ⊗ IB)ρ∥1 =
1

dA
∥ρ∥1 =

1

dA
, (B40)

where we have used the unitarity of ΛA
j and the unitary invariance of the Schatten norms. Combining (B36), (B39) and (B40),

we arrive at

EV

[
max
UA

∣∣∣tr(HV (UA ⊗ IB)ρ(U
†
A ⊗ IB)V

†
)∣∣∣] ≤ d2A · dA√

dAdB − 1
· 1

dA
∥H∥∞ = ∥H∥∞

d2A√
dAdB − 1

, (B41)

which is exactly the same as (B33). ■
In fact, in the proofs of Lemma 15 and 16 above, the clock-and-shift matrices could be replaced by Pauli strings specially for

qubit systems. Finally, we provide a proof for Theorem 1, which we recall for convenience. Note that compared to Theorem 1 in
the manuscript, here we prove a more general version where the Hilbert space dimension is no more restricted to qubit systems.

Theorem 1 Suppose V1 ∈ V1, V2 ∈ V2 are unitaries on the Hilbert space HA⊗HB with dim (HA) = dA and dim (HB) = dB .
Denote UA ∈ U(dA) as a unitary on HA. If either V1 or V2, or both are unitary 2-designs, then for any density matrix ρ and
any Hermitian operator H on HA ⊗HB , then the following inequality holds

EV1,V2
[∆H,ρ(V1, V2)] ≤ 4w(H)d2A

√
dA
dB

. (B42)

where EV1,V2 denotes the expectation over V1,V2 independently. w(H) = λmax(H) − λmin(H) denotes the spectral width of
H , where λmax(H) is the maximum eigenvalue of H and λmin(H) is the minimum.

Proof By definition, we have U = V2(UA ⊗ IB)V1 and

∆H,ρ(V1, V2) = max
UA

[
tr
(
HUρU†)]−min

UA

[
tr
(
HUρU†)] , (B43)

where the maximum and minimum with respect to UA are taken over the entire unitary group U(dA) of degree dA. Without
loss of generality, we assume that H is traceless since (B42) is invariant if H is added by a homothety H → H + cI , c ∈ R.
Moreover, considering that the minimization term in (B43) could be written as

−min
UA

[
tr
(
HUρU†)] = max

UA

[
tr
(
(−H)UρU†)] , (B44)

and w(H) = w(−H), in order to prove (B42), we only need to prove that

EV1,V2

[
max
UA

[
tr
(
HUρU†)]] ≤ 2w(H)d2A

√
dA
dB

, (B45)

holds for any traceless Hermitian operator H . On the one hand, if V1 is a unitary 2-design, Lemma 15 gives

EV1,V2

[
max
UA

[
tr
(
HUρU†)]] = EV2

{
EV1

[
max
UA

[
tr
(
V †
2 HV2(UA ⊗ IB)V1ρV

†
1 (U

†
A ⊗ IB)

)]]}
≤ EV2

[
∥V †

2 HV2∥∞(2d2A − 1)

√
dA
dB

]
= ∥H∥∞(2d2A − 1)

√
dA
dB

.

(B46)

where we have used the unitary invariance of the Schatten norms and the normalization condition EV2
[1] = 1. On the other

hand, if V2 is a unitary 2-design, Lemma 16 gives

EV1,V2

[
max
UA

[
tr
(
HUρU†)]] = EV1

{
EV2

[
max
UA

[
tr
(
HV2(UA ⊗ IB)V1ρV

†
1 (U

†
A ⊗ IB)V

†
2

)]]}
≤ EV1

{
∥H∥∞

d2A√
dAdB − 1

}
= ∥H∥∞

d2A√
dAdB − 1

.

(B47)

where we have used the fact that V1ρV
†
1 is also a density matrix and the normalization condition EV1

[1] = 1. Note that for any
traceless Hermitian operator H , we have λmax(H) ≥ 0, λmin(H) ≤ 0 and

∥H∥∞ = max{λmax(H),−λmin(H)} ≤ λmax(H)− λmin(H) = w(H). (B48)
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Combining (B46), (B47), (B48) and

(2d2A − 1)

√
dA
dB

< 2d2A

√
dA
dB

,

d2A√
dAdB − 1

<
d2A√

(dA − 1)dB
< 2d2A

√
dA
dB

,

(B49)

for dA ≥ 2, we know that the inequality

EV1,V2

[
max
UA

[
tr
(
HUρU†)]] ≤ 2w(H)d2A

√
dA
dB

, (B50)

holds if either V1 or V2 is a unitary 2-design. Certainly, (B50) also holds if both V1 and V2 are 2-designs. Together with (B44),
we arrive at (B42). ■

Note that for qubit systems where dA = 2m and dB = 2n−m, the upper bound in (B42) reduces to that in the manuscript, i.e.

EV1,V2 [∆H,ρ(V1, V2)] ≤
w(H)

2n/2−3m−2
. (B51)

Although Theorem 1 only establish an upper bound on the expectation of ∆H,ρ(V1, V2), we can derive the upper bound on
the variance of ∆H,ρ(V1, V2) from Theorem 1 with the non-negativity and boundedness of ∆H,ρ(V1, V2). Namely, since
∆H,ρ(V1, V2) ∈ [0, w(H)], Lemma 10 gives

VarV1,V2 [∆H,ρ(V1, V2)] ≤ w(H) · EV1,V2 [∆H,ρ(V1, V2)] ≤ 4w2(H)d2A

√
dA
dB

. (B52)

Furthermore, Theorem 1 together with the non-negativity of ∆H,ρ(V1, V2) can also provide an upper bound of the probability
that ∆H,ρ(V1, V2) deviates from zero. Specifically, according to Theorem 1 and Markov’s inequality in Lemma 8, the following
concentration inequality

Pr [∆H,ρ(V1, V2) ≥ ϵ] ≤ EV1,V2 [∆H,ρ(V1, V2)]

ϵ
≤ 4w(H)d2A

ϵ

√
dA
dB

, (B53)

holds for any ϵ > 0. It is worth noticing that the upper bound in (B42) only involves w(H) and does not depend on any detail of
the Hermitian operator H . In order to derive this compact and general upper bound in (B42), we perform many relaxations such
as in (B24), (B48) and (B49). Otherwise, if some specific structures about H are known, a more complicated but tighter bound
could be obtained as

EV1,V2 [∆H,ρ(V1, V2)] ≤ max{NA + 2NAB , dA

√
d

d− 1
} ·
∥∥∥∥H − tr(H)

I

d

∥∥∥∥
∞

√
dA
dB

, (B54)

where NA ≤ 1 denotes the number of non-vanishing terms in (B23b) and NAB ≤ (d2A − 1) denotes the number of non-
vanishing terms in (B24), which can be seen as a “coupling rank” or say “coupling complexity” between subsystem A and B

of the Hamiltonian H . The variational quantum eigensolver (VQE) example of the Heisenberg model Ĥ in the main text has
NA = 0, NAB = 3 and that of quantum autoencoder (QAE) has NA = 1, NAB = 0. Therefore, we have two tighter bound for
these two examples as

Heisenberg: EV1,V2 [∆VQE(V1, V2)] ≤ 24 · w(Ĥ) · 1

2n/2
,

Autoencoder: EV1,V2 [∆QAE(V1, V2)] ≤
8√
3
· 1

2n/2
,

(B55)

which are used in the figure of the numerical simulation section in the main text.

Appendix C: Proof of Proposition 2

In this section, we prove Lemma 17-19 first and derive Proposition 2 by use of these lemmas.
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Lemma 17 For any density matrices ρ and σ we have

F (ρ, σ) ≤ rank(ρσ) tr(ρσ), (C1)

where F (ρ, σ) =
(
tr
√
ρ1/2σρ1/2

)2
denotes the Bures fidelity.

Proof Let λi be the i-th eigenvalue of
√
ρ1/2σρ1/2 in the non-increasing order. Note that λi ≥ 0 holds for any i due to the

positive semi-definite property of
√
ρ1/2σρ1/2. By definition, the square root of the Bures fidelity can be represented as√

F (ρ, σ) =
∑
i

λi, (C2)

while the square root of the Hilbert-Schmidt inner product of ρ and σ can be represented as

√
tr(ρσ) =

√
tr(ρ1/2σρ1/2) =

√∑
i

λ2
i . (C3)

According to the inequality between the vector 1-norm and 2-norm ∥x∥1 ≤
√
n∥x∥2 for any n-dimensional vector x, (C2) and

(C3) lead to √
F (ρ, σ) ≤

√
rank(ρσ)

√
tr(ρσ). (C4)

Take the square of both sides and we arrive at (C1). ■

Lemma 18 Suppose V ∈ V is a unitary on the Hilbert space HA ⊗ HB with dim (HA) = dA and dim (HB) = dB where V
is a unitary 1-design. Denote UA ∈ U(dA) as a unitary operator on HA. For any density matrices ρ and σ on HA ⊗HB , the
following inequality holds

EV

[
max
UA

F ((UA ⊗ IB)V ρV †(UA ⊗ IB)
†, σ)

]
≤ dA

dB
. (C5)

where F denotes the Bures fidelity.

Proof According to the monotonicity of the Bures fidelity under the action of quantum channels [6], we have

F ((UA ⊗ IB)V ρV †(UA ⊗ IB)
†, σ) ≤ F (trA

(
(UA ⊗ IB)V ρV †(UA ⊗ IB)

†) , trA σ) = F (trA
(
V ρV †) , trA σ). (C6)

Since (C6) holds for any UA, it certainly holds when taking the maximum. Together with Lemma 17, it holds that

max
UA

F ((UA ⊗ IB)V ρV †(UA ⊗ IB)
†, σ) ≤ F (trA

(
V ρV †) , trA σ) ≤ dA tr(trA

(
V ρV †) trA σ). (C7)

Because V is a unitary 1-design, we can apply Lemma 1 to obtain

EV

[
tr(trA

(
V ρV †) trA σ)

]
= tr

(
trA

(
tr(ρ)

d
I

)
trA σ

)
= tr(ρ) tr(σ)

1

dB
≤ 1

dB
, (C8)

where d = dAdB denotes the dimension of HA ⊗HB . Combining (C7) and (C8), we arrive at (C5). ■

Lemma 19 Suppose V1 ∈ V1, V2 ∈ V2 are independent unitaries on the Hilbert space HA ⊗ HB with dim (HA) = dA and
dim (HB) = dB . Denote UA ∈ U(dA) as a unitary operator on HA. If either V1 or V2, or both are unitary 1-designs, then for
any density matrix ρ and σ on HA ⊗HB , the following inequality holds

EV1,V2

[
max
UA

F
(
UρU†, σ

)]
≤ dA

dB
, (C9)

where U = V2(UA ⊗ IB)V1 and F is the Bures fidelity.
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Proof On the one hand, if V1 is a unitary 1-design, Lemma 18 gives

EV1,V2

[
max
UA

F
(
UρU†, σ

)]
= EV2

{
EV1

[
max
UA

F
(
(UA ⊗ IB)V1ρV

†
1 (UA ⊗ IB)

†, V †
2 σV2

)]}
≤ EV2

[
dA
dB

]
=

dA
dB

,

(C10)

where we have used the unitary invariance of the fidelity and the normalization condition EV2 [1] = 1. Note that in this case there
is no restriction on V2. On the other hand, if V2 is a unitary 1-design, similarly, Lemma 18 gives

EV1,V2

[
max
UA

F
(
UρU†, σ

)]
= EV1

{
EV2

[
max
UA

F
(
V1ρV

†
1 , (UA ⊗ IB)

†V †
2 σV2(UA ⊗ IB)

)]}
≤ EV1

[
dA
dB

]
=

dA
dB

,

(C11)

where we have used the unitary invariance of the fidelity again and the normalization condition EV1
[1] = 1. Combining (C10)

and (C11), we know that (C9) holds if either V1 or V2 is a unitary 1-design. Certainly, (C9) also holds if both V1 and V2 are
1-designs. ■

Finally, we provide a proof for Proposition 2. Compared to Proposition 2 in the manuscript, here we prove a more general
version where the Hilbert space dimension is no more restricted to qubit systems.

Proposition 2 Suppose V1 ∈ V1, V2 ∈ V2 are independent unitaries on the Hilbert space HA ⊗HB with dim (HA) = dA and
dim (HB) = dB . Denote UA ∈ U(dA) as a unitary operator on HA. If either V1 or V2, or both are from unitary 1-designs, then
for any density matrices ρ and σ, the following inequality holds

EV1,V2 [∆QSL(V1, V2)] ≤
dA
dB

, (C12)

where EV1,V2
denotes the expectation over V1,V2 independently.

Proof By definition, we have U = V2(UA ⊗ IB)V1 and

∆QSL(V1, V2) = max
UA

F
(
UρU†, σ

)
−min

UA

F
(
UρU†, σ

)
. (C13)

According to Lemma 19 and the non-negativity of the fidelity, it holds that

EV1,V2 [∆QSL(V1, V2)] ≤ EV1,V2

[
max
UA

F
(
UρU†, σ

)]
≤ dA

dB
, (C14)

if either V1 or V2, or both are from unitary 1-designs. ■
For qubit systems where dA = 2m and dB = 2n−m, the upper bound in (C12) reduces to that in the manuscript, i.e.

EV1,V2 [∆QSL(V1, V2)] ≤
1

2n−2m
. (C15)

Importantly, due to the non-negativity and boundedness of ∆QSL(V1, V2), we can derive the upper bound on the variance and
the probability tail from Proposition 2 using Lemma 10 and Markov’s inequality in Lemma 8, i.e.

VarV1,V2
[∆QSL(V1, V2)] ≤ 1 · EV1,V2

[∆QSL(V1, V2)] ≤
dA
dB

,

Pr [∆QSL(V1, V2) ≥ ϵ] ≤ EV1,V2
[∆QSL(V1, V2)]

ϵ
≤ 1

ϵ

dA
dB

, ∀ ϵ > 0.

(C16)

Appendix D: Numerical simulation with varying layers

This section provides some experimental results on how the variation range of the cost function caused by a local unitary
varies with the number of circuit layers. We construct circuits of V1 with different numbers of layers to perform experiments
with other settings the same as those in the manuscript. As shown in Fig. 1, different lines with markers represent the average
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FIG. 1. The semi-log plot of the average value of the variation range ∆VQE(V1, V2) vs. the number of qubits. The cost function used here is
the energy expectation of the 1-dimensional antiferromagnetic Heisenberg model. Different lines represent different numbers of circuit layers
from 5 to 95 with step length 10, with the line for 5 layers on the top and 95 layers on the bottom. And the dashed line, as a guide to the eye,
has a slope of −0.5, which is the exponential decay rate we derived in Theorem 1.

value of ∆VQE(V1, V2) over samples vs. the number of qubits n corresponding to different numbers of layers we laid in V1. We
can see that as the number of layers increases, these lines become more and more parallel to the dashed reference line, which
has a slope of −0.5, i.e., the exponential decay rate we derived in Theorem 1. Thus there is a transition to 2-design where
EV1,V2

[∆H,ρ(V1, V2)] converges. This implies that Theorem 1 is valid when the circuit is sufficiently deep, practically with
depth around 10× n.
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