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1 Datasets and Experimental Settings
Pan-sharpening Benchmark.We compare the quantitative and
qualitative performance of our model with state-of-the-art meth-
ods on the pan-sharpening task. Three traditional methods includ-
ing: BDSD-PC [19], MTF-GLP-FS [21], BT-H [14]; and nine deep-
learning based methods: PNN [15], DiCNN [7], MSDCNN [27], Fu-
sionNet [2], DCFNet [25], SFIIN [32], PanViT [16], InvFormer [30],
and Fourmer [31] are selected.
Dataset Simulation.We assess our proposed methods using two
popular commercial satellites over pan-sharpening task: World-
View3 (WV3) and GaoFen2 (GF2). In detail, each satellite dataset
includes numerous image pairs for training, validation, and testing.
The training set has a spatial resolution of 64 × 64 for LRMS, PAN,
and GT, while 16×16 for MS. The reduced-resolution testing dataset
adopts 256 × 256 for LRMS, PAN, and GT, and 64 × 64 for MS. In
contrast, the full-resolution dataset employs 512 × 512 for LRMS
and PAN, and 128× 128 for MS. More details about the datasets can
refer to [3].
Metrics. In our experiments, we employ the spectral angle mapper
(SAM) [28], the dimensionless global error in synthesis (ERGAS)
[23], the Q2n (Q8 for 8-band datasets and Q4 for 4-band datasets)
[6], and the peak signal to noise ratio (PSNR) indicators for reduced-
resolution evaluation. Additionally, for full-resolution assessment,
we incorporate three non-reference metrics: the hybrid quality with
no reference (HQNR) index, the spectral distortion 𝐷𝜆 index, and
spatial distortion 𝐷𝑠 index [20].
Experimental Settings.All deep learningmodels are implemented
using PyTorch, trained on a single NVIDIA RTX 4090 GPU. We
employ the Adam [12] algorithm with beta values of (0.9, 0.999) and
weight decay of 0.1 for model training. The minibatch size is 32, and
the initial learning rate is 3×10−4. The learning rate decay is applied
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by multiplying 0.1 at 300 and 500 epochs, with training concluding
after 800 epochs. In all experiments, the hyperparameter 𝜆 in the
loss function is fixed at 0.1, and we utilize 5 LFormer modules.

2 Hyperspectral Image Super-resolution
Dataset Simulation. To further evaluate the robustness and adapt-
ability of our approach, we apply it to another analogous appli-
cation, i.e., the hyperspectral image super-resolution (HISR). We
conduct the experiment on the widely used CAVE dataset 1. The raw
CAVE dataset includes 32 hyperspectral images (HSIs) with a size of
512×512×31. In the experiment, we follow the protocols of existing
methods [4, 11, 18], thus using 20 images for training and valida-
tion, while 11 images for testing. Like the pan-sharpening task, the
ground truth images (GTs), i.e., HR-HSIs, are usually unavailable
in HISR. Therefore, we need to simulate the LR-HSIs and high-
resolution multispectral images (HR-MSIs). According to Wald’s
protocol [24], we view the original HSIs as HR-HSIs (i.e., GTs) and
simulate the LR-HSIs and HR-MSIs from them. Specifically, we first
crop the original HSIs into 3920 overlapping patches with a size of
64 × 64 × 31, respectively. Next, we employ a Gaussian blur with a
kernel of 3 × 3 and a standard deviation of 0.5 to HR-HSIs and then
conduct 4× bicubic downsampling to obtain the LR-HSIs with a size
of 16× 16× 31. In addition, we also generate the paired RGB images
(i.e.,HR-MSIs) with a size of 64 × 64 × 3 using a general spectral
response function R of Nikon D700 camera [4, 11, 18]. Finally, we
obtain 3920 training patches, including LR-HSIs, HR-HSIs (GTs),
and HR-MSIs, which are divided into two parts: 1) training set (90%)
and 2) validation set (10%). Note that we use the original 11 testing
examples to evaluate the trained model.
HISR Benchmark. For the HISR task, we also select three tradi-
tional methods including LTMR [5], MTF-HS [22], UTV [26]; and
seven deep-learning based methods: ResTFNet [13], SSRNet [29],
1https://www.cs.columbia.edu/CAVE/databases/multispectral/.



Conference’17, July 2017, Washington, DC, USA Junming Hou et al.

Fusformer [8], HSRNet [9], U2Net [17], HyperTransformer [1],
DHIF [10] for comparison purpose. All comparison networks are
trained using the same methodology. Moreover, the related hyper-
parameters are selected consistent with the original papers.

3 Additional Visual Results
We provide more visual results to further demonstrate the superi-
ority of our LFormer. Figure 1 and Figure 2 show the qualitative
outcomes of all compared methods and ground truth (GT) on a
reduced-resolution WV3 example and GF2 example, respectively.
To be specific, the first two rows display the RGB visualization,
while the last two rows illustrate the error maps between the fused
images and GT. It is clearly observed that the images yielded by
our model achieve smaller differences with GT as indicated by the
dark blue residual maps.

Figure 3 demonstrates the visual results of all compared tech-
niques on a real-world full-resolution GF2 sample. The products
generated by our model exhibit clear edges and textures while pre-
serving realistic spectral information, as clearly depicted in the
enlarged areas. As displayed in the third row of Figure 3, moreover,
our model showcases a deep hot HQNR map with sparse bright
spots, consistent with the higher HQNR score reported in quantita-
tive measurement, further substantiating its comprehensive spatial
and spectral reconstruction quality.

Figure 4 gives the RGB visualization and the corresponding resid-
ual maps of all approaches on a CAVE case. Again, our model shows
the desired textures and colors, and lower deviations from the GT,
as illustrated by its dark blue residual map.

Figure 5 provides the feature maps of different LFormer layers on
a testing example from the CAVE dataset, the WV3 dataset, and the
GF2 dataset, respectively. It is evident that the feature maps display
differing levels of granularity across various layers. Moreover, the
detail information becomes increasingly discriminative throughout
the linearly-evolved process.

Figure 6 illustrates the feature maps of the proposed LFormer
(i.e., Baseline) and its two variants over the GF2 dataset, corre-
sponding to the ablation experiment: "Effect of Attention Evolu-
tion" in section 5. Although the feature maps of the Config.I with
dense cross-attention computations, resulting in significant compu-
tational overhead, can capture global information to some extent,
they struggle to learn more fine-grained local details. While the
feature maps of the Config.II not only fail to represent the long-
range feature information but also exhibit blurry texture details. In
contrast, the feature maps of the baseline can effectively model the
global feature dependencies and demonstrate more intricate details
compared to the two variants as the block number increases.
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Figure 1: RGB visualization for both our model and other state-of-the-art approaches over reduced resolution WV3 Dataset.
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Figure 2: RGB visualization for both our model and other state-of-the-art approaches over reduced resolution GF2 Dataset.

https://doi.org/10.1109/JSTARS.2018.2794888
https://doi.org/10.1109/JSTARS.2018.2794888
https://doi.org/10.1109/JSTARS.2018.2794888


Conference’17, July 2017, Washington, DC, USA Junming Hou et al.

FusionNet InvFormer Fourmer LFormerPNN

0 . 8

1 . 0

FusionNetBDSD-PC MTF-GLP-FS BT-H PNN DiCNN MSDCNN

PANDCFNet SFIIN PanViT InvFormer Fourmer LFormer

0 . 0

0 . 2

0 . 4

0 . 6

BDSD-PC MTF-GLP-FS BT-H DiCNN MSDCNN DCFNet SFIIN PanViT

Figure 3: RGB visualization and HQNR map for both our model and other state-of-the-art approaches over real-world full
resolution GF2 Dataset.

Figure 4: RGB visualization for both our model and other state-of-the-art approaches over the CAVE×4 Dataset.

https://doi.org/10.1109/JSTARS.2018.2794888
https://doi.org/10.1109/JSTARS.2018.2794888
https://doi.org/10.1109/JSTARS.2018.2794888


Supplementary Material: Linearly-evolved Transformer for Pan-sharpening Conference’17, July 2017, Washington, DC, USA

Figure 5: Additional feature map visualization. The first row, the second row and the third row depict the feature maps
derived from various LFormer blocks over CAVE dataset, WV3 dataset, and GF2 dataset, respectively. It is evident that as the
block number increases, all three groups of feature maps display progressively clearer contours and more intricate details,
underscoring the potential effectiveness of the proposed key linear evolution design.

Figure 6: Feature map visualization on the "Effect of Attention Evolution" in section 5. It can be observed that the feature maps
of the baseline exhibits more intricate details compared to the two variants as the block number increases.
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