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ABSTRACT

Most existing works focus on direct perturbations to the victim’s state/action or
the underlying transition dynamics to demonstrate the vulnerability of reinforce-
ment learning agents to adversarial attacks. However, such direct manipulations
may not be always realizable. In this paper, we consider a multi-agent setting
where a well-trained victim agent ν is exploited by an attacker controlling another
agent α with an adversarial policy. Previous models do not account for the pos-
sibility that the attacker may only have partial control over α or that the attack
may produce easily detectable “abnormal” behaviors. Furthermore, there is a lack
of provably efficient defenses against these adversarial policies. To address these
limitations, we introduce a generalized attack framework that has the flexibility
to model to what extent the adversary is able to control the agent, and allows the
attacker to regulate the state distribution shift and produce stealthier adversarial
policies. Moreover, we offer a provably efficient defense with polynomial conver-
gence to the most robust victim policy through adversarial training with timescale
separation. This stands in sharp contrast to supervised learning, where adversarial
training typically provides only empirical defenses. Using the Robosumo com-
petition experiments, we show that our generalized attack formulation results in
much stealthier adversarial policies when maintaining the same winning rate as
baselines. Additionally, our adversarial training approach yields stable learning
dynamics and less exploitable victim policies.1

1 INTRODUCTION

Despite the huge success of deep reinforcement learning (RL) algorithms across various domains
(Silver et al., 2017; Mnih et al., 2015; Schulman et al., 2015), it has been shown that deep reinforce-
ment learning policies are highly vulnerable to adversarial attacks. That is, a well-trained agent can
produce wrong decisions under small perturbations, making it risky to deploy RL agents in real-life
applications with noise and high stakes. The most popular attack methods focus on fooling the RL
agent by adversarially perturbing the states, actions, or transition dynamics of the victim (Huang
et al., 2017; Pattanaik et al., 2017; Zhang et al., 2020b; Sun et al., 2021; Tessler et al., 2019).

However, in practice, many applications, such as air traffic control systems, are well-protected,
meaning that direct perturbations to the observations or actions may not always be feasible. For
instance, to perturb the readings of an air traffic control radar, an attacker might need to physically
manipulate the sensor or infiltrate the communication system, tasks that can require significant effort.
In this context, our paper explores attacks on a victim agent, ν, executed by an attacker controlling
another agent, α, in the same environment. Specifically, in the air traffic control example, an attacker
could manipulate a commercial drone to interfere with the radar system of the victim. The strategy
employed by the attacker in this scenario is known as an “adversarial policy”.

Previous works (Gleave et al., 2019; Wu et al., 2021b; Guo et al., 2021) have adopted principled
approaches to attack well-trained RL agents by developing an adversarial policy to directly minimize

1Codes are available at https://github.com/xiangyu-liu/Rethinking-Adversarial-Policies-in-RL.git.
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the expected return of the victim. These methods have effectively defeated state-of-the-art agents
trained through self-play (Bansal et al., 2018), even when the adversarial policy has been trained for
less than 3% of the self-play training time steps. However, existing models do not adequately address
situations where the attacker might face resistance and only achieve partial control, which also
lead to conspicuous behaviors. Despite the common occurrence of such attacks, provably efficient
defenses are not well investigated yet.

To address these issues, our generalized attack formulation introduces an “attack budget”, effec-
tively capturing the attacker’s partial control. This metric accurately reflects the attacker’s capacity
to degrade a victim’s performance. Within this framework, the attacker can self-regulate the attack
budget, aligning with state distributions (Gleave et al., 2019) and marginalized transition dynam-
ics (Russo & Proutiere, 2021; Franzmeyer et al., 2022) to craft stealthier, less detectable attacks.
Notably, our attack model extends single-agent action adversarial RL (Tessler et al., 2019) to multi-
agent setting. On the defense side, merely retraining the victim agent against specific strong attacks
may not necessarily improve overall robustness; in some cases, it could even worsen performance
against other potential attacks. We propose an adversarial training algorithm featuring timescale
separation, which avoids overfitting to specific attacks and focuses on optimizing the agent’s worst-
case performance. Unlike existing methods of timescale separation in GANs and adversarial training
in supervised learning, which may converge to local solutions (Heusel et al., 2017) or provide only
empirical defenses (Madry et al., 2017; Shafahi et al., 2019), our algorithm converges to the most
robust policy globally, offering defenses with provably efficient guarantees — even in the face of
the problem’s non-convexity and non-concavity.

Our key contributions in the realm of both attack and defense are summarized as follows. (1) We
introduce a generalized attack formulation that captures the “partial control” of the attacker. This
formulation allows for stealthier attacks and extends the concept of action adversarial RL to more
generalized settings. (2) We address the issue of non-convergence in adversarial training within
our attack framework. By incorporating the principle of timescale separation, we achieve provable
defenses and ensure theoretical guarantees for convergence to the globally most robust policy. (3)
Empirical results affirm the efficacy of our generalized attack formulation in minimizing state dis-
tribution shifts and generating stealthier behaviors, compared to baseline unconstrained methods.
Additionally, in tasks like Kuhn Poker and Robosumo, our timescale-separated adversarial train-
ing demonstrates superior stability and robustness when compared to popular baselines, including
single-timescale adversarial training, self-play, and fictitious-play.

2 PRELIMINARIES
The extension of Markov decision processes (MDPs) with more than one agent is commonly mod-
eled as Markov games (Littman, 1994). A Markov game with N agents is defined by a tuple
G =< N,S, {Ai}Ni=1, P, {ri}Ni=1, ρ, γ >, where S denotes the state space and Ai is the action
space for agent i. The function P controls the state transitions by the current state and one action
from each agent: P : S × A1 × · · · × AN → ∆(S), where ∆(S) denotes the set of probability
distributions over the state space S. Given the current state st and the joint action (a1, . . . , aN ),
the transition probability to st+1 is given by P (st+1|st, a1, . . . , aN ). The initial state is sampled
from the initial state distribution ρ ∈ ∆(S). Each agent i also has an associated reward function
ri : S × A1 × · · · × AN → [0, 1], whose goal is to maximize the γ-discounted expected return
E[
∑∞

t=0 γ
tri(st, a

t
i, a

t
−i)], where −i is a compact representation of all complementary agents of i.

In Markov games, each agent is equipped with a policy πi : S → ∆(Ai) in policy class Πi and
the joint policy is defined as π(a|s) = ΠN

i=1πi(ai|s). Specifically, the value function for the victim
agent ν given joint policy (πν , πα) is defined by Vs(πν , πα) = Eπν ,πα [

∑∞
t=0 γ

trν(st,at) | s0 = s] ,
where agent ν attempts to maximize the value function and attacker aims to minimizes it. We abuse
the notation to use Vρ(πν , πα) := Es∼ρ[Vs(πν , πα)]. We further define state visitation, which
reflects how often the policy visits different states in the state space.
Definition 2.1. (Stationary State Visitation) Let dπρ ∈ ∆(S) denote the normalized distribu-
tion of state visitation by following the joint policy π in the environment: dπρ (s) = (1 −
γ)Es0∼ρ

∑∞
t=0 γ

tPπ(st = s|s0).

3 A GENERALIZED ATTACK FORMULATION

Problem description. For simplicity, we consider a multi-agent system with two agents, ν and α,
following policies π̂ν and π̂α respectively. The interactions between these agents can be cooperative,
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competitive, or mixed. As motivated earlier, we consider the attack scenario as described in Gleave
et al. (2019); Wu et al. (2021b); Guo et al. (2021), where the threat comes from an attacker control-
ling agent α. This attacker deviates from π̂α to an adversarial policy π̃α, aiming to minimize the
performance of the victim agent ν. Correspondingly, the victim’s goal is to develop a more robust
policy πν in anticipation of such adversarial policies. The interaction between the attacker and the
victim can thus be modeled as a zero-sum game, regardless of the initial relationship between the
two agents.2 This framework can also be extended to settings with more than two agents, where the
attacker controls multiple agents and adopts a joint adversarial policy.

Attack formulation. Although such attacks can effectively exploit the victim, in many practical
scenarios, unlike the attacks in Gleave et al. (2019); Wu et al. (2021b); Guo et al. (2021), the attacker
may face resistance and achieve only partial control of agent α, e.g., in a hijack scenario. Therefore,
we propose a more generalized attack framework. Here, the attacker aims to manipulate agent α
using an adversarial policy π̃α, but may not fully control the agent, which can still follow its original
benign policy π̂α with probability 1− ϵπ at each time step, where ϵπ ∈ [0, 1]. Formally, under these
conditions, the attacker solves the following attack objective:

min
π̃α

Vρ(π̂ν , πα) (3.1)

s.t. πα(· | s) = (1− ϵπ)π̂α(· | s) + ϵππ̃α(· | s), ∀s ∈ S. (3.2)

Objective 3.1 is a standard attack objective (Gleave et al., 2019; Guo et al., 2021; Wu et al., 2021b),
focused on minimizing the value of the victim ν. The additional constraint 3.2 captures the prob-
ability ϵπ at which the attacker can control agent α. When ϵπ = 1, the setting degenerates to full
control, aligning with Gleave et al. (2019); Guo et al. (2021); Wu et al. (2021b). Conversely, at
ϵπ = 0, no attack occurs. This probability, denoted as the attack budget, effectively models the
resistance encountered by the attacker. Its suitability as a budget will be further connected to action
adversarial RL later (Tessler et al., 2019).

(a) Effects of the attack budget. Our proposed attack budget effectively characterizes the vic-
tim’s performance degradation, serving as a viable measure of agent vulnerability. To substantiate
this, we note a key observation related to a standard discrepancy measure (Kakade & Langford,
2002; Schulman et al., 2015). Given the constraint in Equation 3.2, for any π̃α, the inequality
Dmax

TV (πα||π̂α) ≤ ϵπ holds. Here, Dmax
TV (πα||π̂α) is defined as maxs DTV(πα(·|s)||π̂α(·|s)), and

DTV(p||q) := 1
2

∑
i |pi−qi|. This observation allows us to establish an upper bound on the victim’s

performance under an attack budget of ϵπ .

Proposition 3.1 (Bounded policy discrepancy induces bounded value discrepancy). For two policy
pairs (π̂ν , π̂α) and (π̂ν , πα) such that Dmax

TV (πα||π̂α) ≤ ϵπ , the difference between the victim value
can be bounded as: |Vρ(π̂ν , π̂α)− Vρ(π̂ν , πα)| ≤ 2ϵπ

(1−γ)2 .

This establishes a link between the attack budget and |Vρ(π̂ν , π̂α) − Vρ(π̂ν , πα)|. Specifically, the
value function inherently satisfies a global Lipschitz condition. This implies that the attacker needs
a sufficiently large attack budget ϵπ to cause significant degradation in performance. This contrasts
with supervised learning attacks at test time, where small perturbations can result in large perfor-
mance shifts. Although this is a worst-case upper bound and may not be tight — especially when
γ is close to 1 — it still indicates that a longer effective game horizon grants the attacker greater
capacity to degrade the victim’s performance.

(b) Attack model’s stealthiness and detectability. While the unconstrained attack in Gleave et al.
(2019) significantly impairs the victim’s performance, its overt nature makes it easy to detect even
through static images. This deviates from the stealthy ethos of adversarial attacks in supervised
learning (Goodfellow et al., 2014). In contrast, our generalized attack framework allows for par-
tial control of an agent and enables stealthier attacks by regulating the attack budget ϵπ . Specif-
ically, leveraging insights that static images alone can reveal attacks, we use generative modeling
techniques for distribution matching to align the state distributions dπ̂ν ,π̂α

ρ and dπ̂ν ,πα
ρ induced by

(π̂ν , π̂α) and (π̂ν , πα) respectively. Though exact state visitation is difficult to compute, regulating
ϵπ allows us manage the discrepancy between these distributions. We adopt total variation distance
as our measure of discrepancy, offering the following guarantees.

2Even if π̂ν and π̂α are trained competitively, successful attacks can still occur due to sub-optimality of
training Gleave et al. (2019); Bansal et al. (2017).
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Proposition 3.2 (Bounded policy discrepancy induces bounded state distribution discrepancy). Fix
any ϵπ ∈ [0, 1]. For two policy pairs (π̂ν , π̂α) and (π̂ν , πα) such that Dmax

TV (πα||π̂α) ≤ ϵπ , the
discrepancy between the state distributions can be bounded as: ||dπ̂ν ,π̂α

ρ − dπ̂ν ,πα
ρ ||1 ≤ 2γϵπ

1−γ .

Proposition 3.2 demonstrates that as long as ϵπ is sufficiently small, the state distribution is well
preserved, thus yielding images that are visually more similar to the original ones. This suggests
that in practice, ϵπ can be treated as a hyper-parameter, balancing the attacker’s performance with
stealthiness. Finally, comparing actions or rewards is also a viable method to detect potential attacks.
However, in many practical multi-agent systems, agents are decentralized, and actions or rewards
are private to each agent (Zhang et al., 2018b), not always available to humans aiming to detect
potential adversarial attacks.

Comparison with single-agent stealthy attacks. Russo & Proutiere (2021); Franzmeyer et al. (2022)
consider stealthy attacks in a different setting, involving adversarial state or action perturbations,
within single-agent RL. Their concept of unstealthiness or detectability is predicated on the incon-
sistencies in the transition dynamics when states or actions are adversarially perturbed, necessitating
an accurate world model. However, in our scenario, even if such a world model is accessible, the
(global) transition dynamics P remain unaffected by the adversarial policy. Concurrently, compar-
ing the marginalized transition dynamics induced by π̂α and πα is plausible from the perspective of
the victim ν. Based on Proposition 3.3, inconsistencies in the marginalized transition dynamics can
also be upper-bounded by the variation in the policy space, assuring low detectability as considered
in Russo & Proutiere (2021); Franzmeyer et al. (2022). Thus, even if humans or detectors can ac-
cess the private actions of the agent ν and establish accurate corresponding marginalized transition
dynamics, discrepancies might remain undetected as long as ϵπ is maintained minimal.

Proposition 3.3 (Bounded policy discrepancy induces bounded marginalized transition dynamics
inconsistencies). We define the marginalized transition dynamic of agent ν as Pπα

ν (s′ | s, aν) :=
Eaα∼πα(· | s)[P (s′ | s, aα, aν)] for given πα. P π̂α

ν is defined similarly for the policy π̂α. Then for

any s ∈ S and aν ∈ Aν , we have Df

(
Pπα
ν (· | s, aν) || P π̂α

ν (· | s, aν)
)
≤ Df

(
πα(· | s) || π̂α(· | s)

)
,

where Df is any f -divergence, which includes DTV, connecting back to the attack budget.

(c) Connection to action adversarial RL. Intriguingly, our attack formulation also extends the
single-agent action adversarial RL (Tessler et al., 2019) to a multi-agent setting. Specifically, in
PR-MDP (cf. Definition 1 of Tessler et al. (2019)), the policy under attack aligns with our Equation
3.2. In the context of single-agent action adversarial RL, the policy π̃α is only a part of the finally
executed policy, while the policy π̂α represents the victim. Thus, our formulation broadens the
attack setting of Tessler et al. (2019) to multi-agent RL, considering the other agent ν as the victim
instead of the agent α itself. Moreover, determining the most robust policy for the victim using the
policy iteration scheme for PR-MDP from Tessler et al. (2019) becomes inefficient in our context
due to the absence of specific structures inherent in PR-MDP (Section 4 of Tessler et al. (2019)).

Henceforth, we will abbreviate π̃α as πα without ambiguity, and the actually deployed policy for
agent α is represented as (1− ϵπ)π̂α + ϵππα. Detailed proofs and discussions related to this section
are available in §D.

4 IMPROVED ADVERSARIAL TRAINING WITH TIMESCALE SEPARATION

On the necessity and challenge of provably efficient defenses. As discussed before, to provide
effective defenses, there are unique challenges standing out compared with single-agent robust RL
(Tessler et al., 2019). Meanwhile, finding the celebrated solution concept Nash Equilibrium (NE)
between the attacker and the victim suffices for finding the most robust victim policy during robust
training but may not be necessary since NE guarantees that the attacker is also non-exploitable. We
provide more detailed discussions on the relationship between NE and robustness in §B. There are
a bunch of existing works solving NE for structured extensive-form games (Lockhart et al., 2019;
Brown et al., 2019; Sokota et al., 2022) or for general games but without provably efficient guar-
antees (Fudenberg & Levine, 1995; Lanctot et al., 2017; Balduzzi et al., 2019; Muller et al., 2019).
In practice, general game-theoretical methods often require solving best response problems itera-
tively, thus being computationally expensive. In theory, simply plugging in black-box NE solvers
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may not solve our problem with provable efficiencies since finding even local NE for a general
nonconvex-nonconcave problem is computationally hard (Daskalakis et al., 2021). Therefore, in-
stead of adopting a black-box game-theoretical solver, we investigate adversarial training, a popular
and more efficient paradigm for robust RL (Pinto et al., 2017; Zhang et al., 2021a; Sun et al., 2021).

There are prior works that utilize well-trained attacks for re-training to fortify the robustness of the
victim (Gleave et al., 2019; Guo et al., 2021; Wu et al., 2021b). However, it has been demonstrated
that while re-training against a specific adversarial policy does augment robustness against it, the
performance against other policies may be compromised as validated by Gleave et al. (2019). In-
tuitively, if the victim is retrained against a specific attacker, its policy might be overfitted to that
attacker. Thus, it is vital to uphold the performance of the victim against all potential attackers.
Rather than merely re-training against a specific attacker, adversarial training methods have been
shown to be effective in bolstering robustness against a broad spectrum of adversarial attacks. In
these methods, the victim and the attacker are trained alternatively or simultaneously (Zhang et al.,
2020b; Pinto et al., 2017). Here, we re-examine adversarial training in the RL domain and demon-
strate that prevalent adversarial training methods encounter a non-converging problem with either
alternative or simultaneous training, for which we defer examples and detailed discussions to §C.
To address these issues formally, we contemplate the robustness of the victim and define the ex-
ploitability of πν under the worst-case attack as follows.

Definition 4.1 ((One-side) exploitability). Given ϵπ ∈ [0, 1] and π̂α, for a victim policy πν , we
measure the robustness of πν by: Expl(πν) = −minπα Vρ(πν , (1− ϵπ)π̂α + ϵππα).

Intuitions of timescale separation. The smaller Expl(πν) is, the more robust πν is. Therefore, to
ensure the worst-case performance against the strongest adversarial policy, the victim should opti-
mize the policy according to minπν Expl(πν). Ideally, if we can derive an analytical form of the
function Expl(·) or compute its gradient, then we can simply run gradient descent to optimize it.
Unfortunately, it is not obvious how to derive an analytical form and the function may not be even
differentiable, let alone computing the gradient since the function relies on solving a minimization
problem. However, it is possible to first solve the minimization problem, getting π⋆

α, and compute
the gradient w.r.t πν , namely ∇πν

− Vρ(πν , (1 − ϵπ)π̂α + ϵππ
⋆
α), as if π⋆

α is fixed, hoping it could
serve as a good descent direction. Formalizing this intuition, we propose to improve adversarial
training via timescale separation with Min oracle (shown in Algorithm 1), where timescale separa-
tion comes from the fact the attacker takes a min step against the victim in line 3 while the victim
takes only one gradient update in line 4. Note Lockhart et al. (2019) also considers directly minimiz-
ing the exploitability function but the algorithm and analysis are only applicable to extensive-form
games. Finally, we remark that Algorithm 1 is consistent with the leader-follower update style that
is developed for Stackelberg equilibrium in multi-agent RL (Gerstgrasser & Parkes, 2023).

Algorithm 1 Adversarial Training with Min-oracle

1: Input: random policy π0
ν , learning rate sequence {ηt}

2: for t = 0 to T do
3: πt

α ← argminπα Vρ(π
t
ν , (1− ϵπ)π̂α + ϵππα).

4: πt+1
ν ← PΠν

(πt
ν + ηt∇πν

Vρ(π
t
ν , (1− ϵπ)π̂α + ϵππ

t
α). // projection onto the simplex

5: Output: sample πt
ν with probability proportional to ηt.

Efficient approximation. The min oracle used in Algorithm 1 can be implemented with standard
RL algorithms like PPO. When the game has special structures like extensive-form games (Lockhart
et al., 2019) or one agent has a substantially smaller state/action space, such min oracle can be
even implemented quite efficiently. However, in general, to make one gradient update for agent ν,
agent α needs to compute a complete best response, which is computationally expensive in practice.
To fix this issue, we utilize the idea of using a much faster update scale for agent α so that when
agent ν performs the gradient update, the policy πt

α is always and already an approximate solution
of argminπα

Vρ(π
t
ν , (1 − ϵπ)π̂α + ϵππα). Formally, in addition to Algorithm 1, we present an

alternative efficient Algorithm 2, where the min oracle is replaced by a gradient update with a larger
step size and both agents only need to perform a gradient update independently. Therefore, our
final algorithm is simple and compatible with standard RL algorithms, like PPO to implement the
gradient update step for both agents, avoiding solving best responses at each iteration under popular
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game-theoretical approaches (Fudenberg & Levine, 1995; Lanctot et al., 2017; Balduzzi et al., 2019;
Muller et al., 2019). To validate our intuitions and verify that our algorithms do provide provably
efficient defenses, we shall prove the convergence guarantee of both algorithms in the next section.

Algorithm 2 Adversarial Training with Two Timescales

1: Input: random policy π0
ν , π0

α, learning rate sequence {ηtν}, {ηtα}, such that ηtν ≪ ηtα.
2: for t = 0 to T do
3: πt+1

α ← PΠα(π
t
α − ηtα∇παVρ(π

t
ν , (1− ϵπ)π̂α + ϵππ

t
α)).

4: πt+1
ν ← PΠν

(πt
ν + ηtν∇πν

Vρ(π
t
ν , (1− ϵπ)π̂α + ϵππ

t
α)).

5: Output: sample πt
ν with probability proportional to ηtν .

5 THEORETICAL ANALYSIS

To understand and verify our approaches, we start by considering direct policy parameterization for
both agents ν and α, which is already challenging due to the non-convexity, non-concavity, and
serves as the first step to analyze more complex function approximations.

Definition 5.1 (Direct parameterization). The policies πν and πα have the parameterization
πν(a | s) = νs,a, πα(a | s) = αs,a, where ν ∈ ∆(Aν)

|S| and α ∈ ∆(Aα)
|S|.

For convenience of discussions, given ϵπ and π̂α, we will write Jϵπ (πν , πα) := Vρ(πν , (1−ϵπ)π̂α+
ϵππα). Before proving the convergence of our methods, we define the mismatch coefficient to
measure the intrinsic hardness of the environment. This is achieved by comparing the stationary
state occupancy frequencies under certain policies against the initial state distribution. In simpler
terms, a smaller value of this quantity indicates that the environment is more easily explorable.

Definition 5.2. Given the Markov game G, benign policy π̂α, and attack budget ϵπ , we define the
minimax mismatch coefficient as

Cϵπ
G := max

{
max

πν∈Πν

min
πα∈Π⋆

α(πν)

∥∥∥∥∥dπν ,(1−ϵπ)π̂α+ϵππα
ρ

ρ

∥∥∥∥∥
∞

, max
πα∈Πα

min
πν∈Π⋆

ν(πα)

∥∥∥∥∥dπν ,(1−ϵπ)π̂α+ϵππα
ρ

ρ

∥∥∥∥∥
∞

}
,

where Π⋆
α (πν) := argminπα∈Πα

Jϵπ (πν , πα), and Π⋆
ν (πα) := argmaxπν∈Πν

Jϵπ (πν , πα).

With those two definitions, we can analyze how the robustness of the victim improves during adver-
sarial training as follows:

Theorem 5.3. Fix any δ > 0, ϵπ ∈ [0, 1]. For Algorithm 1, suppose the learning rate ηtν ≍ δ,
after T iterations, it is guaranteed that 1

T

∑T
t=1 Expl(π

t
ν) ≤ minπν Expl(πν) + δ, where T =

1
δ2 poly(C

ϵπ
G , |S|, |Aα|, |Aν |, 1

1−γ ); while for Algorithm 2, suppose the learning rate ηtν ≍ δ8, ηtα ≍
δ4, after T iterations, it is guaranteed that 1

T

∑T
t=1 Expl(π

t
ν) ≤ minπν Expl(πν) + δ, where T =

poly( 1δ , C
ϵπ
G , |S|, |Aα|, |Aν |, 1

1−γ ).

Remark 5.4. To get a non-vacuous finite time convergence, the mismatch coefficient needs to be
bounded, which is standard and necessary in the analysis of policy gradient methods (Daskalakis
et al., 2020; Agarwal et al., 2021), where our definition of Cϵπ

G is based on the definition in
(Daskalakis et al., 2020). It is worth noticing that such an assumption is weaker than other sim-
ilar notions such as concentrability (Munos, 2003; Chen & Jiang, 2019), without requiring every
visitable state to be visited at the first time step.

Implications. This theorem demonstrates that, on average, the victim policy πt
ν is assured to con-

verge to the most robust one; that is, the solution of argmaxπν
minπα

Vρ(πν , (1− ϵπ)π̂α+ ϵππα).
Theorem 5.3 reveals that Algorithm 1 achieves better iteration complexity owing to a larger learning
rate. Meanwhile, the convergence for Algorithm 2 also substantiates the necessity of timescale sep-
aration due to ηtν ≪ ηtα. To the best of our knowledge, the analysis for Algorithm 1 is new, even for
the ϵπ = 1 case, and the analysis for Algorithm 2 leverages Daskalakis et al. (2020); Jin et al. (2020);
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Figure 1: Visualization and comparison of our proposed constrained attack with ϵπ = 0.2 (first row)
vs. an unconstrained attack (second row, ϵπ = 1), under the condition that both achieve the same
attacking success rate. The most important state features are shown. It is clear that our constrained
adversarial policy induces much smaller state distribution shifts.

Zhang et al. (2021b) but addresses the more prevalent discounted reward setting without assuming
the game to cease at every state with a positive probability. It also permits the attacker to exert only
partial control over the agent α within any stipulated attack budget ϵπ . Importantly, our theorem
can be readily extended to encompass results of last-iterate convergence using the regularization
techniques highlighted in Zeng et al. (2022) and stochastic gradients by deploying popular gradient
estimators from finite samples, with the central concept remaining timescale separation. Detailed
proofs are available in §D.

6 RELATED WORK

Stealthy adversarial attacks in RL. To render attacks on RL policies more feasible and practi-
cal, Sun et al. (2020) demonstrates that targeting critical points can facilitate efficient and stealthy
attacks. Russo & Proutiere (2021) optimizes both attack detectability and victim performance, an-
alyzing the trade-off between them. Franzmeyer et al. (2022) introduces an illusionary attack that
maintains consistency with the environment’s transition dynamics, necessitating a world model. The
aforementioned stealthy attacks focus on perturbing the victim’s state observations/actions. In con-
trast, this paper presents a generalized attack framework for multi-agent systems, allowing for stealth
by managing the attack budget, wherein the attacker indirectly influences the victim by altering an-
other agent’s policy.

Timescale separation for adversarial training. Adversarial training is a widely-adopted method
for cultivating models robust against adversarial attacks. The efficacy of timescale separation in this
context has been empirically affirmed; having increased loops for the inner attack subroutine trans-
lates to enhanced robustness Madry et al. (2017); Shafahi et al. (2019). Likewise, in training GANs
(Heusel et al., 2017), utilizing a larger learning rate for the discriminator surpasses conventional
GAN training and ensures convergence to a local NE. Moreover, Fiez & Ratliff (2021) explores more
general non-convex non-concave zero-sum games and elucidates the local convergence to strict local
minimax equilibrium with finite timescale separation. Contrarily, our adversarial training algorithm
is assured to converge to the (globally) most robust policy.

7 EXPERIMENTS

Our experiments utilize two standard environments: Kuhn Poker (Kuhn, 1950; Lanctot et al., 2019)
and RoboSumo (Al-Shedivat et al., 2017). Detailed introductions to these environments, implemen-
tation specifics, and hyper-parameters are outlined in §E. Unless specified otherwise, the results are
averaged over 5 seeds. In this section, we seek to address the following pivotal questions:
▷ Q1. Can our generalized attack formulation produce fewer state distribution variations and more

stealthy behaviors compared to an unconstrained attack?
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(a) Exploitability of the victim when using RPG for policy gradient.
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(b) Exploitability of the victim when using A2C for policy gradient.

Figure 2: Exploitability of victim policy in Kuhn Poker trained by two timescale and single timescale
(min indicates the policy trained with a min oracle).
▷ Q2. Will adversarial training with timescale separation (involving a min oracle and two

timescales) exhibit more stable learning dynamics, and can the two timescales algorithm ef-
fectively approximate the adversarial training with a min oracle?

▷ Q3. In complex environments, where a min oracle may not be available, can adversarial training
with two timescales enhance robustness compared to prevalent and acclaimed baselines?

Controllable adversarial attack (Q1). We conduct experiments on the Robosumo
environment. To verify that our attack formulation indeed achieves smaller state
distribution variations, we choose an unconstrained adversarial policy and a con-
strained policy with the same winning rate for fair comparisons. Specifically, we in-
vestigate the distribution shift in the victim’s observation part of the state features.

Ant vs Ant Bug vs Bug Spider vs Spider
Environment
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300

400

500

W
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rs

te
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(s
q)

attack
Global
Local_1
Local_2

Figure 3: State-distribution shift w.r.t
Wasserstein-2 distance (squared) in-
curred due to the Global (ϵπ = 1), Lo-
cal 1 (ϵπ = 0.7), Local 2(ϵπ = 0.3) at-
tacks in 3 Robosumo environments.

To select essential state features, we employ the variance-
based feature importance method to filter out state fea-
tures with small variances as they are deemed unimpor-
tant. The sorted feature importance for the RoboSumo
games is depicted in Figure E.2. Figure 1 demonstrates
that the adversarial policy, derived from our generalized
attack framework, induces a much smaller state distribu-
tion shift compared to the unconstrained adversarial pol-
icy when assessed under the same winning rate. Addi-
tionally, we quantify the state-distribution shift brought
about by the constrained and unconstrained attacks by
calculating the Wasserstein-2 distance between their state
distributions, as illustrated in Figure 3. Our constrained
attack results in a significantly lower state distribution
shift compared to the unconstrained one. To confirm
that our generalized attack methods, with a regulated at-
tack budget, do indeed produce more stealthy behaviors,
we visualize agents with ϵπ ∈ 0.3, 0.7, 1; here, a smaller ϵπ induces behaviors that are visually
more similar to the system without an attack (see gifs at https://sites.google.com/view/stealthy-
attack). An ablation study on the trade-off between stealthiness and the attacker’s performance is
also presented in §E.4, also validating the effectiveness of ϵπ in regulating the attacker’s strength,
in line with Proposition 3.1. We show in §E.4, even when there is a mismatch for attack budgets
between training time and test time, the victim policy still shows greatly improved robustness.

Adversarial Training with Timescale Separation (Q2&3). To address Q2&3, we examine the
learning dynamics and robustness of policies trained with and without timescale separation, com-
paring these to other baselines in both Kuhn Poker and Robosumo environments.

Kuhn Poker. We implement Algorithm 1 and 2 under OpenSpiel (Lanctot et al., 2019), with the min
oracle achieved through game tree search. For gradient update, we utilize Regret Policy Gradient
(RPG) (Srinivasan et al., 2018) and Advantage Actor-Critic (A2C) (Mnih et al., 2016) in lieu of the
vanilla policy gradient. Figure 2 illustrates the exploitability of the victim policy πν , where adver-
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(a) Score of the victim policy, which is computed by winning rate + tie rate/2. Note here different from
other plots, to show the potential oscillation behaviors during training, we show just one seed instead of
multiple ones.
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(c) Score of the attacker against robustified policy (final output of adversarial training). Lower is better.

Figure 4: (a). The score of the victim policy trained with two timescales converges rapidly, while the
policy trained only with a single timescale suffers from much more oscillations. (b). The gradient
norm trained by two timescales is also much smaller. (c). Under different ϵπ = 1, 0.7, 0.3, when
attacking the robustified victim policy, i.e. computing minπα

Vρ(π
⋆
ν , (1−ϵπ)π̂+ϵππα) with standard

RL algorithm, victim trained by two timescales achieves the lowest exploitability/best robustness.

sarial training with the min oracle exhibits the fastest convergence, lowest exploitability, and
least variance. Meanwhile, policies trained with a sufficient timescale separation parameter ηtα/η

t
ν

closely approximate the algorithm with a min oracle, outperforming single timescale algorithms.

Robosumo Competition. To demonstrate the scalability of timescale separation, we evaluate our
methods on Robosumo—a high-dimensional, continuous control task, representing a significant
challenge in terms of both training and evaluation. Although a min oracle with game tree search is
unattainable in such a continuous control task, earlier experiments suggest that an ample timescale
separation ratio can effectively approximate it. We monitor the score, Vρ(π

t
ν , (1−ϵπ)π̂α+ϵππ

t
α), and

the norm of gradient ∇πν
Vρ(π

t
ν , (1− ϵπ)π̂α + ϵππ

t
α) during adversarial training. As per Figure 4a

and 4b, we ascertain that single timescale training results in unstable behaviors, large variance,
and gradient norm, while the two timescale training achieves quick convergence and signif-
icantly smaller gradient norm. Crucially, to affirm the robustness of our methods, we compare
them with single timescale adversarial training, self-play (Bansal et al., 2017), and fictitious-play
(Heinrich & Silver, 2016). Self-play and fictitious-play-based methods are renowned for training
adversarially robust RL agents (Pinto et al., 2017; Zhang et al., 2021a; Tessler et al., 2019). We
employ PPO to calculate the best response of the finalized robustified victim policy, illustrating the
performance of the attacker during the victim attack process in Figure 4c. Here, a lower winning rate
for the attacker signifies enhanced robustness. This demonstrates that our adversarial training
with two timescales leads to victim policies with enhanced robustness compared to popular
baseline methods, single timescale adversarial training, self-play, and fictitious-play.

8 DISCUSSION AND LIMITATIONS

In this paper, we reassess the threats posed to RL agents by adversarial policies by introducing a gen-
eralized attack formulation and develop the first provably efficient defense algorithm, “adversarial
training with timescale separation”, with convergence to the most robust policy under mild condi-
tions. Meanwhile, we leave how to scale our formulation to accommodate multiple independent
attackers with self-interested adversarial policies as future works.
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Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent rein-
forcement learning. Advances in neural information processing systems, 30, 2017.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay,
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A ADDITIONAL RELATED WORK

Two-player zero-sum games. The interaction between the attacker and the victim can be modeled
as a two-player zero-sum game. There is a large body of work using RL to solve Nash equilibrium
(NE). For example, Sokota et al. (2022); Perolat et al. (2021); McAleer et al. (2021); Brown et al.
(2019); Lockhart et al. (2019) considers the normal-form and extensive-form games. Heinrich &
Silver (2016); Lanctot et al. (2017); McAleer et al. (2020); Perez-Nieves et al. (2021); Liu et al.
(2021) deal with more general two-player zero-sum games and propose population-based RL al-
gorithms showing empirical success but lacking provable finite-time guarantees. Daskalakis et al.
(2020); Zeng et al. (2022) analyze the theory of independent gradient with different learning rates
in Markov game, which is a special case of our defense problem against unconstrained attack and
serves as the inspiration for us to develop provable adversarial training algorithms.

Adversarial attacks on RL policies. As deep neural networks are shown to be vulnerable to ad-
versarial attacks (Szegedy et al., 2014; Goodfellow et al., 2015), the adversarial robustness of deep
RL policies has also attracted increasing attention. One of the earliest works by Huang et al. (2017)
reveals the vulnerability of neural policies by adapting various adversarial attacks from supervised
learning to RL policies. Lin et al. (2019) consider an efficient attack that only perturbs the agent at a
subset of time steps. There has been subsequent research in developing stronger pixel-based attacks
(Qiaoben et al., 2021; Pattanaik et al., 2017; Oikarinen et al., 2020). Zhang et al. (2020b) built the
theoretical framework SA-MDP for adversarial state perturbation and proposed the corresponding
regularizer for more robust reinforcement learning policies. Subsequent work by Sun et al. (2021)
improves Zhang et al. (2020b) with the framework of PA-MDP for better efficiency. The major-
ity of related work on adversarial RL focuses on perturbing state observations (Huang et al., 2017;
Oikarinen et al., 2020; Sun et al., 2021), and assumes that the perturbation is small in ℓp distance. In
contrast, our paper considers the attack generated by other agents in a multi-agent system and does
not restrict the perturbation distance in every single step, allowing for more flexible and practical
attack models.

Adversarial attacks on multi-agent RL (MARL). Gleave et al. (2019) investigate adversarial poli-
cies in a two-player zero-sum game, where a victim can be exploited and significantly misled by the
opponent’s changed behavior. Guo et al. (2021) remove the zero-sum assumption in Gleave et al.
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(2019) and construct a new formulation for the adversarial policy. Lin et al. (2020) study adversarial
attacks in cooperative MARL systems and reveal that attacking one of the agents in the team can
greatly reduce the total reward. However, these adversarial policies are unconstrained and could
cause abnormal behaviors that are easily detectable, while our attack model can be made stealthy by
restricting the state distribution shifts. We also propose provably robust defense algorithms to learn
a policy that is unexploitable.

Attacks and defenses on communication in MARL. There is also a line of work studying attacks
and defenses on communications in MARL (Blumenkamp & Prorok, 2020; Tu et al., 2021; Mitchell
et al., 2020; Xue et al., 2022), where the communication among cooperative agents could be per-
turbed to influence the decisions of victims. However, we consider adversarial behaviors or policies
of other agents, which affect the victim by the actions taken by other agents.

Provably robust defenses. To provide guaranteed robustness for deep neural networks, many ap-
proaches have been developed to certify the performance of neural networks, including semidefi-
nite programming-based defenses (Raghunathan et al., 2018a;b), convex relaxation of neural net-
works (Gowal et al., 2019; Zhang et al., 2018a; Wong & Kolter, 2018; Zhang et al., 2020a; Gowal
et al., 2018), randomized smoothing of a classifier (Cohen et al., 2019; Hayes, 2020), etc. In an
effort to certify RL agents’ robustness, some approaches (Lütjens et al., 2020; Zhang et al., 2020b;
Oikarinen et al., 2020; Fischer et al., 2019) apply network certification tools to bound the Q net-
works. Kumar et al. (2021) and Wu et al. (2021a) apply randomized smoothing (Cohen et al., 2019)
to RL to achieve provable robustness. These defenses mainly focus on the adversarial perturbations
directly applied to the agent’s inputs. Sun et al. (2022) propose a certifiable defense against adver-
sarial communication in MARL systems. To the best of our knowledge, our paper is the first to
provide provable convergence guarantees for adversarial training against adversarial attacks on the
behaviors of other agents in the environment.

Improving policy robustness by adversarial training. Prior work shows that the competition
between the victim agent and the adversary can be regarded as a two-player zero-sum game while
training agents with learned adversarial attacks can improve the robustness of the victim. Such
an adversarial training paradigm has been shown effective under state perturbations (Zhang et al.,
2021a; Sun et al., 2021; Liang et al., 2022) and action perturbations (Pinto et al., 2017; Tessler et al.,
2019) on a single victim. In the context of perturbing the actions of the victim, Tessler et al. (2019)
presents a two-player policy iteration algorithm that is proved to converge to the Nash Equilibrium.
In contrast, we consider the adversarial behaviors of other agents, and we provide both theoretical
guarantees and empirical evidence for the effectiveness of our adversarial training.

B RELATIONSHIP BETWEEN NE AND ROBUSTNESS

To understand the relationship between NE and robustness, we formally define the NE as follows.

Definition B.1 (Nash equilibrium). Fix π̂α and ϵπ ≥ 0. We say a pair of policy (π⋆
ν , π

⋆
α) the Nash

equilibrium for the zero-sum game between the victim and the attacker if it holds that for any π′
ν and

π′
α:

Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππ

⋆
α) ≥ Vρ(π

′
ν , (1− ϵπ)π̂α + ϵππ

⋆
α), (B.1)

Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππ

⋆
α) ≤ Vρ(π

⋆
ν , (1− ϵπ)π̂α + ϵππ

′
α). (B.2)

Now we have the following proposition showing the robustness of the NE.

Proposition B.2. Fix π̂α and ϵπ ∈ [0, 1]. If (π⋆
ν , π

⋆
α) is the Nash equilibrium for the zero-sum game

between the victim and the attacker, then π⋆
ν is the minimizer for the function Expl(π′

ν).

Proof. According to Definition B.1, it holds that

min
π′
α

Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππ

′
α) = Vρ(π

⋆
ν , (1− ϵπ)π̂α + ϵππ

⋆
α) = max

π′
ν

Vρ(π
′
ν , (1− ϵπ)π̂α + ϵππ

⋆
α).

(B.3)
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Combining Equation equation B.3 with the fact that for any function f it holds that
minx maxy f(x, y) ≥ maxy minx f(x, y), we conclude that

Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππ

⋆
α) = max

π′
ν

min
π′
α

Vρ(π
′
ν , (1− ϵπ)π̂α + ϵππ

′
α)

= min
π′
α

max
π′
ν

Vρ(π
′
ν , (1− ϵπ)π̂α + ϵππ

′
α).

Now given an NE pair (π⋆
ν , π

⋆
α), we consider the exploitability of π⋆

ν :

Expl(π⋆
ν) = −min

πα

Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππα)

= −Vρ(π
⋆
ν , (1− ϵπ)π̂α + ϵππ

⋆
α)

= min
π′
ν

−min
π′
α

Vρ(π
′
ν , (1− ϵπ)π̂α + ϵππ

′
α)

= min
π′
ν

Expl(π′
ν).

Therefore, the solution concept NE guarantees the most robust policy for the victim. Indeed, it is
stronger than the goal of the most robust policy since by following exactly the same procedure, one
can verify NE also guarantees the most robust policy for the attacker. However, as we remarked
previously, we only care about the robustness of the victim.

C MOTIVATION AND EXAMPLES OF TIMESCALE SEPARATION

To motivate the necessity of timescale separation in adversarial training for robust RL policy, we
revisit some known issues of naive single-timescale methods including Gradient Descent Ascent
(GDA) and iterative best response (IBR) with both simultaneous and alternating update using a
simple normal-form game Rock-Paper-Scissor, which corresponds to our defense problem with a
single state and ϵπ = 1.

Example C.1. The zero-sum game Rock-Paper-Scissor includes two players with the same action

space A = {Rock, Paper, Scissor}. The payoff matrix P is given as P =

[
0 1 −1
−1 0 1
1 −1 0

]
for

the row player. The row player has the mixed strategy x ∈ X = ∆(A), where xi represents the
probability of choosing ith action. The column player holds a similar mixed strategy y ∈ Y . The cor-
responding payoff is given by V (x, y) = x⊤Py. Our objective is given by maxx∈X miny∈Y x⊤Py.
Note here ϵπ = 1.

Formally, we compare the following 5 methods; the first 4 methods have only a single timescale
while the last GAMin method highlights timescale separation, where one player takes a gradient
step, and then another one takes the best response.

• Simultaneous gradient descent ascent (SGDA): yt+1 = PY(yt−ηP⊤xt), xt+1 = PX (xt+
ηPyt).

• Alternate gradient descent ascent (AGDA): yt+1 = PY(yt − ηP⊤xt), xt+1 = PX (xt +
ηPyt+1)

• Simultaneous iterative best response (SIBR): yt+1 = argminy∈Y x⊤
t Py, xt+1 =

argminx∈X x⊤Pyt
• Alternate iterative best response (AIBR): yt+1 = argminy∈Y x⊤

t Py, xt+1 =
argminx∈X x⊤Pyt+1.

• (With timescale separation) Gradient ascent with min oracle (GAMin): yt+1 =
argminy∈Y x⊤

t Py, xt+1 = PX (xt + ηPyt+1).

We show the exploitability of the x player during the learning process in Figure 5. It is clear that
the first four single-timescale training methods (SGDA, AGDA, SIBR, AIBR) fail to achieve low
exploitability, while only GAMin achieves the near-optimal exploitability 0.
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Figure 5: Exploitability test on Rock-Paper-Scissor. Note that the green line is overlapped with the
red.

D FULL PROOF

D.1 PROOF OF PROPOSITION 3.1 AND 3.2

Proof. For simplicity, we shall prove Proposition 3.2 first, and then prove Proposition 3.1.

Let us first review the following facts for any joint policy π = (πν , πα), π′ = (πν , π
′
α) such that

Dmax
TV (πα||π′

α) ≤ ϵπ and the transition matrix Pπ , where Pπ(s
′, s) =

∑
a π(a|s)P (s′|s,a). In the

following proof, we use Pπ(i, j) to denote Pπ(si, sj).

• dπρ = (1− γ)(I − γPπ)
−1ρ.

• ||Pπ||1 = 1 and ||(I − γPπ)
−1||1 ≤ 1

1−γ .
• ||Pπ − Pπ′ ||1 ≤ 2ϵπ

According to Definition 2.1, one can verify that dπρ satisfies that:

dπρ = (1− γ)ρ+ γPπd
π
ρ ,

which gives the solution dπρ = (1− γ)(I − γPπ)
−1ρ.

For Pπ:

||Pπ||1 = max
j

∑
i

|Pπ(i, j)|

=max
j

∑
i

∑
a

π(a|sj)P (si|sj ,a)

=max
j

∑
a

π(a|sj)
∑
i

P (si|sj ,a)

=1

For ||(I − γPπ)
−1||1:

||(I − γPπ)
−1||1 = ||

∞∑
k=0

(γPπ)
k||1 ≤

∞∑
k=1

||(γPπ)
k||1 ≤

∞∑
k=1

γk||Pπ||k1 =
1

1− γ
.

For ||Pπ − Pπ′ ||1:
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To begin with, since πν remains unchanged in our proof, let us abuse the notation a little bit and
define the marginalized transition P (s′|s, aα) =

∑
aν

πν(aν |s)P (s′|s, aν , aα). We have

||Pπ − Pπ′ ||1 = max
j

∑
i

|Pπ(i, j)− Pπ′(i, j)|

= max
j

∑
i

|
∑
aα

(πα(aα|sj)− π′
α(aα|sj)

∑
aν

πν(aν |sj)P (si|sj , aν , aα)|

= max
j

∑
i

|
∑
aα

(πα(aα|sj)− π′
α(aα|sj))P (si|sj , aα)|.

Now fix any index j, define m⊤
i = (P (si|sj , akα))

|Aα|
k=1 , M⊤ = (m1, · · · ,m|S|), and n⊤ =

(πα(a
k
α|sj)− π′

α(a
k
α|sj))

|Aα|
k=1 . Then the following holds∑

i

|
∑
aα

(πα(aα|sj)− π′
α(aα|sj))P (si|sj , aα)| =

∑
i

|m⊤
i n| = ||Mn||1 ≤ ||M ||1||n||1 = 2ϵπ||M ||1.

According to the definition of M , it is easy to check

||M ||1 = max
k

∑
i

|P (si|sj , akα)| = 1.

Therefore, we conclude that for any fixed index j, we have∑
i

|
∑
aα

(πα(aα|sj)− π′
α(aα|sj))P (si|sj , aα)| ≤ 2ϵπ,

which proves ||Pπ − Pπ′ ||1 ≤ 2ϵπ .

Now we are ready to prove Proposition 3.2.

||dπρ − dπ
′

ρ ||1 = ||(1− γ)(I − γPπ)
−1ρ− (1− γ)(I − γPπ′)−1ρ||1

≤ (1− γ)||(I − γPπ)
−1 − (I − γPπ′)−1||1||ρ||1

≤ (1− γ)||(I − γPπ′)−1||1||γ(Pπ − Pπ′)||1||(I − γPπ)
−1||1||ρ||1

≤ 2ϵπγ

1− γ
.

Now we can use Proposition 3.2 to prove Proposition 3.1. To begin with, it is easy to verify that the
following holds

Vρ(π) =
∑
s

dπρ (s)
∑
a

π(a|s)r(s,a).

Now let us define the marginalized reward rπ(s) =
∑

a π(a|s)r(s,a), and further define the vector
notation r⊤π = (rπ(s

k))
|S|
k=1. Then for the difference of the value function, it holds that

|Vρ(π)− Vρ(π
′)| = 1

1− γ
|⟨dπρ , rπ⟩ − ⟨dπ

′

ρ , rπ′⟩|

=
1

1− γ
|⟨dπρ , rπ⟩ − ⟨dπρ , rπ′⟩+ ⟨dπρ , rπ′⟩ − ⟨dπ

′

ρ , rπ′⟩|

≤ 1

1− γ
(|⟨dπρ , rπ⟩ − ⟨dπρ , rπ′⟩|+ |⟨dπρ , rπ′⟩ − ⟨dπ

′

ρ , rπ′⟩|)

≤ 1

1− γ
(||dπρ ||1||rπ − rπ′ ||∞ + ||dπρ − dπ

′

ρ ||1||rπ′ ||∞)

≤ 1

1− γ
(2ϵπ +

2ϵπγ

1− γ
)

≤ 2ϵπ
(1− γ)2

.
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D.2 PROOF OF PROPOSITION 3.3

Proof. For any fixed s ∈ S and aν ∈ Aν , the channel that produces the distribution of next state s′

based on the input distribution of aα is exactly P (· | s, aν , ·). Therefore, applying the data processing
inequality for f -divergence, we prove our proposition.

D.3 PROOF OF THEOREM 5.3

In the following discussions, we will use Jϵπ (ν, α) and Jϵπ (πν , πα) interchangeably according to
Definition 5.1. Once we have a bounded mismatch coefficient in Definition 5.2, we are ready to
analyze the properties of the function Jϵπ (ν, α) in the following lemma.

Lemma D.1. For any ν, ν′ ∈ ∆(Aν)
|S| and α, α′ ∈ ∆(Aα)

|S|, the function Jϵπ satisfies

• Lipschitzness

∥∇νJϵπ (ν, α)∥ ≤
√
|Aν |

(1− γ)2
,

∥∇αJϵπ (ν, α)∥ ≤
ϵπ
√
|Aα|

(1− γ)2
.

• Smoothness

∥∇νJϵπ (ν, α)−∇νJϵπ (ν
′, α′)∥ ≤

2
√
|Aν |

(1− γ)3
(
√
|Aν |∥ν − ν′∥+

√
|Aα|∥α− α′∥),

∥∇αJϵπ (ν, α)−∇αJϵπ (ν
′, α′)∥ ≤

2ϵπ
√
|Aα|

(1− γ)3
(
√
|Aν |∥ν − ν′∥+

√
|Aα|∥α− α′∥).

• Gradient domination

Jϵπ (ν, α)−min
α′

Jϵπ (ν, α
′) ≤

Cϵπ
G

1− γ
max
ᾱ
⟨∇αJϵπ (ν, α), α− ᾱ⟩, (D.1)

max
ν′

Jϵπ (ν
′, α)− Jϵπ (ν, α) ≤

Cϵπ
G

1− γ
max

ν̄
⟨∇νJϵπ (ν, α), ν̄ − ν⟩. (D.2)

Proof. With the definition of the function Jϵπ , we have Jϵπ (ν, α) = Vρ(πν , (1− ϵπ)π̂α + ϵππα).

• For Lipschitzness, it is easy to compute of gradient of Jϵπ with respect to ν and α using
chain rules. Let’s denote πmix

α = (1−ϵπ)π̂α+ϵππα. Then the following holds using chain
rules and standard policy gradient expression Zhang et al. (2021b).

∂Jϵπ (ν, α)

∂νs,aν

=
∂Vρ(πν , π

mix
α )

∂νs,a
=

1

1− γ
d
πν ,π

mix
α

ρ (s)Eaα∼πmix
α

[Qπν ,π
mix
α (s, aν , aα)] ≤

d
πν ,π

mix
α

ρ (s)

(1− γ)2
,

∂Jϵπ (ν, α)

∂αs,aα

=
∂Vρ(πν , π

mix
α )

∂αs,aα

=
ϵπ

1− γ
d
πν ,π

mix
α

ρ (s)Eaν∼πν
[Qπν ,π

mix
α (s, aν , aα)] ≤

ϵπd
πν ,π

mix
α

ρ (s)

(1− γ)2
.

Therefore, we have ∥∇νJϵπ (ν, α)∥ ≤
√

|Aν |
(1−γ)2 , ∥∇αJϵπ (ν, α)∥ ≤

ϵπ
√

|Aα|
(1−γ)2 .

• For Smoothness, it holds that
∥∇νJϵπ (ν, α)−∇νJϵπ (ν

′, α′)∥
= ∥∇πν

V (πν , (1− ϵπ)π̂α + ϵππα)−∇πν
V (π′

ν , (1− ϵπ)π̂α + ϵππ
′
α)∥

≤
2
√
|Aν |

(1− γ)3
(
√
|Aν |∥ν − ν′∥+

√
|Aα|∥α− α′∥).

where the last step comes from Lemma 19 in (Zhang et al., 2021b). Similarly, using chain
rules, it holds that
∥∇αJϵπ (ν, α)−∇αJϵπ (ν

′, α′)∥
= ϵπ∥∇πmix

α
V (πν , π

mix
α )

∣∣
πmix
α =(1−ϵπ)π̂α+ϵππα

−∇πmix
α

V (π′
ν , π

mix
α )

∣∣
πmix
α =(1−ϵπ)π̂α+ϵππ′

α
∥

≤
2ϵπ

√
|Aα|

(1− γ)3
(
√
|Aν |∥ν − ν′∥+

√
|Aα|∥α− α′∥).
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• The most challenging step is establishing the gradient domination properties. We will show
that our objective Jϵπ (πν , πα) is indeed a value function of some other Markov games G̃
with modified transition and reward compared with the original G, which is defined as for
any given s, aν , aα, s

′,

rmix
ν (s, aν , aα) = (1− ϵπ)

∑
a′
α

rν(s, aν , a
′
α)π̂α(a

′
α | s) + ϵπrν(s, aν , aα),

Pmix(s′|s, aν , aα) = (1− ϵπ)
∑
a′
α

P (s′ | s, aν , a′α)π̂α(a
′
α | s) + ϵπP (s′ | s, aν , aα).

For this modified Markov game, we denote the corresponding value function as Ṽρ(πν , πα),
and the stationary state visitation as d̃πν ,πα

ρ . Then it is easy to verify that for any πν ∈ Πν ,
πα ∈ Πα

Jϵπ (πν , πα) = Ṽρ(πν , πα), (D.3)

dπν ,(1−ϵπ)π̂α+ϵππα
ρ = d̃πν ,πα

ρ . (D.4)

Similarly, we define the mismatch coefficient for G̃ as follows:

CG̃ := max{ max
πν∈Πν

min
πα∈Π̃⋆

α(πν)

∥∥∥∥∥ d̃πν ,πα
ρ

ρ

∥∥∥∥∥
∞

, max
πα∈Πα

min
πν∈Π̃⋆

ν(πα)

∥∥∥∥∥ d̃πν ,πα
ρ

ρ

∥∥∥∥∥
∞

},

where Π̃⋆
α (πν) := argminπα∈Πα Ṽρ(πν , πα), and Π̃⋆

ν (πα) := argmaxπν∈Πν Ṽρ(πν , πα).
Next, we use the gradient domination property of the value function of Lemma 3 (Zhang
et al., 2021b). It holds that for any π′

α and π′
ν :

Ṽρ(π
′
ν , πα)− Ṽρ(πν , πα) ≤

∥∥∥∥∥ d̃
π′
ν ,πα

ρ

d̃πν ,πα
ρ

∥∥∥∥∥
∞

max
π̄ν

⟨∇πν
Ṽρ(πν , πα), π̄ν − πν⟩,

Ṽρ(πν , πα)− Vρ(πν , π
′
α) ≤

∥∥∥∥∥ d̃
πν ,π

′
α

ρ

d̃πν ,πα
ρ

∥∥∥∥∥
∞

max
π̄α

⟨∇πα
Ṽρ(πν , πα), πα − π̄α⟩.

To prove Equation equation D.1, we denote π⋆
α ∈ Π̃⋆

α(πν) to be the policy minimizing the

quantity
∥∥∥∥ d̃πν,πα

ρ

ρ

∥∥∥∥
∞

. Then, we have

Jϵπ (ν, α)−min
α′

Jϵπ (ν, α
′) = Ṽρ(πν , πα)−min

π′
α

Ṽρ(πν , π
′
α)

= Ṽρ(πν , πα)− Ṽρ(πν , π
⋆
α)

≤

∥∥∥∥∥ d̃
πν ,π

⋆
α

ρ

d̃πν ,πα
ρ

∥∥∥∥∥
∞

max
π̄α

⟨∇πα
Ṽρ(πν , πα), π̄α − πα⟩

≤ 1

1− γ

∥∥∥∥∥ d̃
πν ,π

⋆
α

ρ

ρ

∥∥∥∥∥
∞

max
π̄α

⟨∇πα
Ṽρ(πν , πα), π̄α − πα⟩

≤ 1

1− γ
CG̃ max

π̄α

⟨∇πα
Ṽρ(πν , πα), π̄α − πα⟩.

Note due to Equation equation D.3 and equation D.4, we have CG̃ = Cϵπ
G , and

∇πα Ṽρ(πν , πα) = ∇παJϵπ (πν , πα) = ∇αJϵπ (ν, α), proving Equation equation D.1.
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To prove Equation equation D.2, we denote π⋆
ν ∈ Π̃⋆

ν(πα) to be the policy minimizing the

quantity
∥∥∥∥ d̃πν,πα

ρ

ρ

∥∥∥∥
∞

. Therefore, we have that

max
ν′

Jϵπ (ν
′, α)− Jϵπ (ν, α) = max

π′
ν

Ṽρ(π
′
ν , πα)− Ṽρ(πν , πα)

= Ṽρ(π
⋆
ν , πα)− Ṽρ(πν , πα)

≤

∥∥∥∥∥ d̃
π⋆
ν ,πα

ρ

d̃πν ,πα
ρ

∥∥∥∥∥
∞

max
π̄ν

⟨∇πν
Ṽρ(πν , πα), π̄ν − πν⟩

≤ 1

1− γ

∥∥∥∥∥ d̃
π⋆
ν ,πα

ρ

ρ

∥∥∥∥∥
∞

max
π̄ν

⟨∇πν Ṽρ(πν , πα), π̄ν − πν⟩

≤ 1

1− γ
CG̃ max

π̄ν

⟨∇πν
Ṽρ(πν , πα), π̄ν − πν⟩.

Note due to Equation equation D.3 and equation D.4, we have CG̃ = Cϵπ
G , and

∇πν
Ṽρ(πν , πα) = ∇πν

Jϵπ (πν , πα) = ∇νJϵπ (ν, α), proving Equation equation D.2.

Before proving Theorem 5.3, we need the following additional lemmas. Firstly, we define ϕ(·) :=
minα Jϵπ (·, α), and the Moreau envelope for any λ > 0 as ϕλ(ν) := maxν′ ϕ(ν′)− 1

2λ∥ν − ν′∥2.

Lemma D.2 (Theorem 31 (Jin et al., 2020)). Suppose the function Jϵπ is l-smooth and L-Lipschitz.
Then the output of Algorithm 1 with step size ηt = 1√

T+1
satisfies

1

T

T∑
t=1

∥∇ϕ1/2l(ν
t)∥2 ≤ 2 · maxν ϕ(ν)− ϕ(ν0) + lL2

√
T + 1

.

Lemma D.3 (Lemma 12 (Daskalakis et al., 2020)). Suppose Jϵπ is l-smooth and L-Lipschitz. If
there is some uν such that for any ν, α

max
ν⋆

Jϵπ (ν
⋆, α)− Jϵπ (ν, α) ≤ uν max

ν̄
⟨∇νJϵπ (ν, α), ν̄ − ν⟩,

then it holds that

max
ν⋆

ϕ(ν⋆)− ϕ(ν) ≤ (uν +
L

2l
)∥∇ϕ1/2l(ν)∥2.

Lemma D.4 (Theorem 2a (Daskalakis et al., 2020)). Suppose Jϵπ is l-smooth and L-Lipschitz. If
there is some uν , uα such that for any ν, α

max
ν⋆

Jϵπ (ν
⋆, α)− Jϵπ (ν, α) ≤ uν max

ν̄
⟨∇νJϵπ (ν, α), ν̄ − ν⟩,

Jϵπ (ν, α)−min
α⋆

Jϵπ (ν, α
⋆) ≤ uα max

ᾱ
⟨∇αJϵπ (ν, α), α− ν̄⟩.

Then it holds that for ηtα = ηα = Θ
(

δ4u2
α

l3L2(L/l+1)2

)
, and ηtν = ην = Θ

(
min{ δ8u4

α

l5(L/l+1)4L4 ,
δ2

lL2 }
)

,
we have that

1

T

T∑
t=1

max
ν⋆

ϕ(ν⋆)− ϕ(νt) ≤
(
uν +

L

2l

)
δ,

for T ≥ Ω
(

(DΠν+DΠα )L
δ2ην

)
iterations, where DΠν

and DΠα
is the radius of the set Πν , and Πα.

Now we are ready to prove Theorem 5.3.
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Proof. We start from proving the convergence of Algorithm 1. By substituting the parameters into
Lemma D.2, we notice that the parameters satisfy that L ≤ |Aν |+|Aα|

(1−γ)2 , l ≤ 2(|Aν |+|Aα|)
(1−γ)3 , uν =

Cϵπ
G

1−γ

and ϕ(ν) ≤ 1
1−γ . Therefore, we get

1

T

T∑
t=1

∥∇ϕ1/2l(ν
t)∥2 ≤ 2 · maxν ϕ(ν)− ϕ(ν0) + lL2

√
T + 1

≤ 2

(1− γ)
√
T + 1

+
4(|Aν |+ |Aα|)2

(1− γ)7
√
T + 1

.

Now we use Lemma D.3, and conclude that

1

T

T∑
t=1

max
ν⋆

ϕ(ν⋆)− ϕ(νt) ≤ 1√
T + 1

poly(
1

1− γ
, |S|, |Aν |, |Aα|, Cϵπ

G ).

Therefore, for Algorithm 1 to achieve accuracy δ, combined with the fact that ϕ(·) = −Expl(·),
one needs T = 1

δ2 poly(
1

1−γ , |S|, |Aα|, |Aν |, Cϵπ
G ) total number of iterations, concluding the proof

for Algorithm 1.

The proof for Algorithm 2 follows similar steps. We notice the instantiation of the parameters
L ≤ |Aν |+|Aα|

(1−γ)2 , l ≤ 2(|Aν |+|Aα|)
(1−γ)3 , uν , uα ≤

Cϵπ
G

1−γ , DΠν
, DΠα

≤
√
|S|. Bt substituting the

parameters into Lemma D.4 and combing it with the fact that ϕ(·) = −Expl(·), we set total number
of iterations T = poly( 1δ , C

ϵπ
G , |S|, |Aα|, |Aν |, 1

1−γ ) to achieve accuracy δ, concluding the proof
for Algorithm 2.
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E EXPERIMENTAL DETAILS

E.1 INTRODUCTION TO THE ENVIRONMENT

Kuhn Poker is a popular research game, which is extensive-form and zero-sum with discrete obser-
vation and action space. There exists an efficient min oracle with game tree search. For Robosumo
competition, both agents are multi-leg robots and observe the position, velocity, and contact forces
of joints in their body, and the position of their opponent’s joints, which is much more challenging
due to the high dimensional observation and action space.

E.2 FEATURE IMPORTANCE IN ROBOSUMO ENVIRONMENTS

We show the important features for the Robosumo environment in Table 1, 2, 3.

Original Local Global
38 32 31
32 43 39
33 38 29
43 37 43
41 31 41
29 35 34
35 42 42
39 41 35
42 40 37
26 28 44

Table 1: Feature Importance (Subset) in Robosumo Spider vs Spider. ”Original”: Index of the most
important features of the victim’s observation while playing against normal opponents. ”Local”:
Index of the most important features of the victim’s observation while playing against the attacker
trained via our constrained attack method. ”Global”: Index of the most important features of the
victim’s observation while playing against the attacker trained via the unconstrained attack method
as done in (Gleave et al., 2019)

.

Original Local Global
25 25 23

145 26 146
26 145 145

146 24 25
24 22 22

142 146 21
144 23 24
22 143 144

143 27 142
23 142 143

Table 2: Feature Importance (Subset) in Robosumo Ant vs Ant. ”Original”: Index of the most
important features of the victim’s observation while playing against normal opponents. ”Local”:
Index of the most important features of the victim’s observation while playing against the attacker
trained via our constrained attack method. ”Global”: Index of the most important features of the
victim’s observation while playing against the attacker trained via the unconstrained attack method
as done in (Gleave et al., 2019)

.
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Original Local Global
193 27 33
197 35 25
25 25 29
35 197 27
27 193 35
29 189 31

191 199 36
199 34 34
190 191 28
36 36 26

Table 3: Feature Importance (Subset) in Robosumo Bug vs Bug. ”Original”: Index of the most
important features of the victim’s observation while playing against normal opponents. ”Local”:
Index of the most important features of the victim’s observation while playing against the attacker
trained via our constrained attack method. ”Global”: Index of the most important features of the
victim’s observation while playing against the attacker trained via the unconstrained attack method
as done in (Gleave et al., 2019)

.

E.3 IMPLEMENTATION DETAILS.

Kuhn Poker. For implementing our adversarial training approach, we adopt both advanced A2C
and RPG policy gradient methods. The policy is parameterized by an MLP with a hidden layer size
of 128. We use a batch size of 16 and SGD as the optimizer.

Robosumo competition. We use PPO as our base policy optimization algorithm. We use a clip
range of 0.2 and 0.95 for GAE. The number of hidden units for parameterization of the policy is
64. For all adversarial training algorithms with both a single timescale and two timescales and the
baseline algorithm self-play and fictitious-play, we train by 3e7 timesteps with a batch size of 64.
For attack, we train for 2e7 timesteps with a batch size of 2048. We use Adam as the optimizer.

E.4 ADDITIONAL EXPERIMENTAL RESULTS

Trade-off between stealthiness and winning rate. We have mentioned that there is a trade-off
between stealthiness and the winning rate. To quantitatively show the trade-off, we show the com-
parison of our constrained attack and unconstrained one in Figure 6, where ϵπ = λ in the figures.
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Figure 6: Winning rate and Non-fail rate of different attack methods.

Additional results on the state-distribution shifts. To quantify the state-distribution shift in-
duced due to the unconstrained (global) and constraint (local) attacks, in addition to the Wasserstein
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Figure 7: This figure compares the state-distribution shift w.r.t KL-Divergence(Scaled) and
Hellinger Distance(scaled) incurred due to the Global (ϵπ = 1), Local-1 (ϵπ = 0.7), Local-
2(ϵπ = 0.3) attacks in 3 Robosumo environments. The plot clearly demonstrates the Stealthiness of
constraint (local) attacks in preserving the state-distribution shifts and achieving stealthiness.

distance in Figure 3, we also compute the KL-Divergence and Hellinger distance between the state-
distribution of the unattacked policy with the global and local attacks respectively. We observe that
the state-distribution shift incurred is much lesser in local attacks than global, as also can be seen in
Figure 1,3, highlighting the stealthiness of our attack.

Mismatch of attack budgets between training time and test time. We show the attacker’s per-
formance when there is a mismatch between the actual attack budget and the budget used to train
the robust victim in the following table. It is clear that even if the defense budget is not correctly
specified, the victim policy still shows greatly improved robustness, although a bit worse than
the case when the defense budget is correctly specified.

Attacker score Attack budget 0.3 Attack budget 0.7 Attack budget 1.0
Defense budget 0.3 0.38 0.50 0.71
Defense budget 0.7 0.41 0.43 0.53
Defense budget 1.0 0.44 0.45 0.50
No defense 0.59 0.78 0.90

Table 4: Attacker’s score with different attack budgets against robust victim policies with different
defense budgets and without defenses
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