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ABSTRACT

Quantifying uncertainty is an essential part of predictive modeling, especially in
the context of high-stakes decision-making. While classification output includes
data uncertainty by design in the form of class probabilities, the regression task
generally aims only to predict the expected value of the target variable. Prob-
abilistic extensions often assume parametric distributions around the expected
value, optimizing the likelihood over the resulting explicit densities. However,
using parametric distributions can limit practical applicability, making it difficult
for models to capture skewed, multi-modal, or otherwise complex distributions. In
this paper, we propose optimizing a novel nondeterministic neural network regres-
sion architecture for loss functions derived from a sample-based approximation
of the continuous ranked probability score (CRPS), enabling a truly distribution-
free approach by learning to sample from the target’s aleatoric distribution, rather
than predicting explicit densities. Our approach allows the model to learn well-
calibrated, arbitrary uni- and multivariate output distributions. We evaluate the
method on a variety of synthetic and real-world tasks, including uni- and multi-
variate problems, function inverse approximation, and standard regression uncer-
tainty benchmarks. Finally, we make all experiment code publicly available1.

1 INTRODUCTION

With the continued development of machine learning, more and more industries consider using ad-
vanced predictive modeling to influence automated or human made decisions. Modern methodolo-
gies such as deep learning offer unparalleled accuracy for modeling complex real-world processes,
with the potential to greatly enhance efficiency in many applications. Uncertainty quantification
(UQ) is an essential part of predictive modeling, especially in applications where the prediction
has the potential to influence high-stakes decision making. A large body of research deals with
predicting the target value along with its uncertainty, such as Bayesian Neural Networks (BNN).

In a prediction task, uncertainty comes from multiple different sources. BNN-s are primarily con-
cerned with epistemic (or knowledge) uncertainty, the uncertainty of how a model should predict the
future based on the limited data we have at our disposal. In use-cases where data is limited, such
approaches are invaluable for acknowledging potential blind spots in the modeling process.

However, in many industry applications, data is abundant. Still, a different kind of uncertainty
remains even when data is plentiful: aleatoric (or data) uncertainty arises from constraints in the
problem setup, where the model lacks information to make an exact prediction. Most tasks involve
key pieces of information missing, factors which influence the target, yet ones we cannot provide
to the model as inputs. Either due to inherent randomness or unobservable latent variables, in most
real-world scenarios it is theoretically impossible to always predict the exact target value. As an
inherent constraint, aleatoric uncertainty cannot be reduced with additional data of the same kind.

Classification tasks are capable of expressing aleatoric uncertainty by design in the form of class
probabilities. However, in the case of regression, the models traditionally only output a single value,
or a simple parametric distribution at best. An expectation of 10mm of rainfall could indicate relative
certainty of a rainy day with actual 10mm of rainfall, but could also indicate 10% chance of a deadly
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storm with 100mm of rain. In such cases, even a heteroscedastic distributional regression model
with a simple unimodal output lacks the nuance required for informed decision making.

In this work, we propose a novel nonparametric way to model aleatoric uncertainty, relaxing the
usual constraints of simple parametric distributions such as unimodality, and enabling the approxi-
mation of arbitrary distributions. We introduce new nondeterministic neural network architectures to
generate samples from the aleatoric distribution of the target, and train the resulting models by draw-
ing upon the theory of scoring rules, originally developed for evaluating probabilistic forecasts in
fields such as meteorology and economics. We derive a novel, sample-based loss function based on
an unbiased O(n log n) formulation of the empirical continuous ranked probability score (CRPS), a
strictly proper scoring rule for regression, describing both unweighted and weighted variants.

The resulting method is capable of learning arbitrary probability distributions from sample data in
a well-calibrated manner, no longer being restricted to simple parametric uni-modal distributions,
at the same time remaining conceptually simple and easy to implement. Further, it generalizes for
multivariate regression, and is capable of learning the joint distribution of hundreds of output values.
We evaluate our approach on multiple tasks, including synthetic uni- and multivariate examples,
the inverse problem of MNIST classification, and also on the standard UCI regression uncertainty
benchmark. The method consistently exhibits favorable behavior in practice, making it an appealing
choice for modeling aleatoric uncertainty. Our contributions can be summarized as follows:

• We propose multiple novel architectures of nondeterministic neural networks for producing
samples from the aleatoric target distribution with an efficient optimization procedure.

• We derive a loss function for optimizing neural networks using a novel unbiased empirical
approximation of the CRPS, describing the loss for both unweighted and weighted samples.

• Finally, we extensively test the resulting method, comparing it against prior work such as
BNN-s (Gawlikowski et al., 2023) or Mixture Density Networks (MDN) (Bishop, 1994).

Scaling. Our approach scales well to larger network sizes. While part of the model is evaluated
multiple times, the incurred cost scales with target rather than input complexity, see Appendix C.8.
Our experiments show that our models can represent a wide range of complex distributions, using a
relatively small nondeterministic part considering modern deep learning hardware and model sizes.

2 BACKGROUND

2.1 TYPES OF UNCERTAINTY

In prediction tasks, different sources of uncertainty can be distinguished. This section briefly sum-
marizes the two main types we focus on; for a general overview, see (Gawlikowski et al., 2023).

Generally, the data we record and collect comes from a real-world process that is only partially
observed. In regression, the target value (i.e., the value that we aim to predict) can be modeled
as a random variable Y : Ω → R, where elementary events ω ∈ Ω are assumed to represent the
true state of the world. Although we are unable to directly observe ω, we can observe a number of
feature variables X : Ω → Rm, which give us partial information about ω. The classic regression
task is then defined as approximating the conditional expectation E[Y | X = x,D], where the data
D is a sample of past values of (X,Y ). In multivariate regression, Y takes on values from Rk.
Uncertainty quantification extends the regression task so that we are no longer simply interested in
the conditional expectation, but rather the entire conditional distribution of y, i.e., p(y | X = x,D).

Aleatoric uncertainty (Kendall & Gal, 2017) arises from X giving us limited information about ω.
We can express aleatoric uncertainty through the conditional cumulative distribution function as

FY |X(y0) =

∫
Ω

1{Y (ω) < y0} p(ω | X) dω. (1)

Many constraints can be modeled through aleatoric uncertainty, for example measurement error,
or uncertainty due to unobservable latent variables that affect Y . This kind of uncertainty cannot
be reduced with more data (i.e., a larger sample D), as the uncertainty arises from constraints in
the problem setup. In other words, aleatoric uncertainty is the uncertainty that remains even if we
assume to have perfect knowledge of the relationships between X,Y, and ω.
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Epistemic uncertainty on the other hand stems the fact that we have no perfect knowledge of the
relationship of X,Y, and ω. Equation (1) is described in idealistic terms, and in fact neither term of
the integration is known in practice, as our only information about X and Y comes from the sample
D. Epistemic uncertainty is then modeled as the uncertainty of selecting f such that f(y) ≈ p(y |
X = x,D), with larger dataset D implying less uncertainty. The majority of uncertainty research is
focused on epistemic uncertainty, for example the research of BNN-s, see Section 2.2.

In classification, aleatoric uncertainty is expressed through class probabilities, while regression tra-
ditionally focuses on point estimates like the expectation. In probabilistic regression, aleatoric re-
gression uncertainty is often modeled using parametric distributions, with the normal distribution
being a particularly common choice (Jospin et al., 2022; Abdar et al., 2021; Magris & Iosifidis,
2023). However, parametric distributions are limited in their expressive power, and the wrong choice
of distribution may undermine the entire learning process. Nevertheless, little attention is usually
paid to the representation of the distribution of Y , with most uncertainty-related work either simply
assuming the existence of a likelihood function or explicitly predicting the parameters of a normal
distribution. This oversight persists despite the fact that that arbitrary-shaped aleatoric distributions
can arguably be learned even when only a single value y is recorded for each input X , by leveraging
the same implicit assumptions of smoothness that supervised learning generally relies on.

2.2 BAYESIAN NEURAL NETWORKS

Bayesian neural networks (or BNN-s) (Blundell et al., 2015) are nondeterministic neural networks
whose stated goal is to quantify epistemic uncertainty. Using the terminology of Section 2.1, BNN-s
model the conditional density of Y through a neural network parameterized by θ ∈ Θ, i.e., fθ(y) ≈
p(y | X = x,D). Epistemic uncertainty is then expressed as the uncertainty of Θ, i.e.,

p(y | X = x,D) =

∫
Θ

p(y | θ,X = x) p(θ | D) dθ, (2)

where the first term being integrated is the aleatoric likelihood, in practice output by the neural
network after having sampled θ according to the second term. A large body of research deals with
the theory of the optimization of BNN-s, see (Gawlikowski et al., 2023) for an overview.

Each evaluation of a BNN yields a separate aleatoric uncertainty distribution, while epistemic un-
certainty is captured by the nondeterminism of the network, with subsequent runs yielding different
aleatoric uncertainty distributions sampled from the epistemic uncertainty distribution. In other
words, epistemic uncertainty can be interpreted as the uncertainty of aleatoric uncertainty. Accord-
ingly, they are sometimes referred to as first- and second-order uncertainties (Bengs et al., 2023).

Generally, aleatoric uncertainty is expressed in the form of a parametric distribution, while epistemic
uncertainty is usually treated as nonparametric: while the distribution of the weights θ is individually
assumed to be parametric, the resulting distribution of the output of the whole network can take
arbitrary shapes. In this paper, we propose modeling both kinds as nonparametric distributions.

2.3 PROPER SCORING RULES

When a model outputs a distribution, scoring rules can be used to quantify the accuracy of predic-
tions based on a sample from the target, i.e., they are analogous to metrics like RMSE and AUC but
specifically for probabilistic predictions. Generally, a scoring rule S takes a predicted distribution P
and a sample y from the target, and assigns a score S(P, y). Denoting EY∼Q [S(P, Y )] as S(P,Q), a
scoring rule is proper if S(Q,Q) ≤ S(P,Q) for all P , and strictly proper if equality implies P = Q
and vice versa. Strictly proper scoring rules encourage predictors to provide honest predictive dis-
tributions that accurately reflect the target’s distribution (Gneiting & Raftery, 2007). An example is
the logarithmic score (Good, 1952), defined as LogS(F, y) = − log(f(y)), where f is the density
of F , more commonly known in machine learning literature as the negative log-likelihood.

A strictly proper scoring rule for regression is the continuous ranked probability score (CRPS):

CRPS(F, y) =

∫
R
(F (z)− 1{y ≤ z})2 dz, (3)

where F is the cumulative distribution function (CDF) of the predicted distribution and y is the
target sample. The CRPS can be analytically computed for a number of parametric distributions,
see Jordan et al. (2019) for a comprehensive list.
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2.4 EMPIRICAL CRPS

To approximate Equation (3) in practice, we can compute the formula substituting F for the em-
pirical CDF of a sample. As described by (Gneiting & Raftery, 2007), an equivalent formulation
(Baringhaus & Franz, 2004; Székely & Rizzo, 2005) of Equation (3), assuming E[F ] < ∞, is

CRPS(F, y) = E |Y − y| − 1

2
E |Y − Y ′|, where Y, Y ′ ∼ F, Y |= Y ′. (4)

When evaluating Equation (4) for the empirical CDF (FECDF) (Krüger et al., 2021) of a (ŷ1, . . . , ŷn)
sample distributed according to F , the resulting empirical score CRPS(FECDF, y) is given by

1

n

n∑
i=1

|y − ŷi| −
1

2n2

n∑
i=1

n∑
j=1

|ŷi − ŷj | =
2

n2

n∑
i=1

(
ŷ(i) − y

)(
n1
{
y < ŷ(i)

}
− i+

1

2

)
. (5)

While the naive formula on the left hand side is O(n2) complexity, the right hand side gives a
relatively well-known (Murphy, 1970; Jordan, 2016; Laio & Tamea, 2007; Jordan et al., 2019) alge-
braically equivalent O(n log n) formula, with

(
ŷ(1), . . . , ŷ(n)

)
denoting the ordered sample statistic.

2.5 MIXTURE DENSITY NETWORKS

While most uncertainty-related work does not investigate distribution-free approaches for aleatoric
regression uncertainty, one exception is Mixture Density Networks (MDN) (Bishop, 1994). MDN
expresses the density as a mixture of a fixed number Gaussians. As the number of components tends
to infinity, a Gaussian mixture is capable of approximating any distribution, therefore we consider
MDN one of the strongest prior art in this field, also belonging to the class of models capable of
learning aleatoric uncertainty in a distribution-free manner. However, MDN models often have
practical limitations. In our experiments, using our own robust implementation we achieve much
stronger scores for MDN then previously reported, see Appendix C.2 and the source code for details.

3 RELATED WORK

The literature of uncertainty quantification is vast, with the majority of works focusing on quan-
tifying epistemic uncertainty, for example the BNN (Blundell et al., 2015), or its many enhance-
ments (Sun et al., 2017; Gawlikowski et al., 2023). The UCI Benchmark (Hernández-Lobato &
Adams, 2015) has become the standard benchmark to measure regression uncertainty, with many
papers reporting RMSE and (negative) log-likelihood (NLL) results along with standard error. See
Appendix A.1 for a list. While certain nonparametric regression approaches, e.g., some variants of
as Gaussian Process Regression (Rasmussen, 2003; Sendera et al., 2021), are capable of modeling
the output in a distribution-free manner, the area of distribution-free approaches for neural network-
based aleatoric regression uncertainty is relatively under-researched. Such methods, for example
MDN (Bishop, 1994), seem to be under-utilized and under-reported in uncertainty-related literature,
with most surveys barely mentioning or omitting the topic, see Appendix A.2 for a small survey.
MDN itself rarely appears as baseline. We are only aware of (El-Laham et al., 2023) on the UCI
benchmark, however with substantially lower scores. See Appendix C.2 for more information.

Minimizing proper scoring rules to learn is common practice, either implicitly or explicitly. Both
maximum likelihood for regression and cross entropy for binary classification coincide with min-
imizing the logarithmic score (Good, 1952), also a main component of variational inference for
BNN-s (Blundell et al., 2015). Maximum likelihood estimation with an assumed Gaussian likeli-
hood coincides with the Dawid-Sebastiani score (Dawid & Sebastiani, 1999; Gneiting & Raftery,
2007; Czado et al., 2009). Examples of explicitly using scoring rules to learn include Lakshmi-
narayanan et al. (2017); Bengs et al. (2023); Vahidi et al. (2023); Bouchacourt et al. (2016). Prior
work using the CRPS for learning often does so to learn combination weights (Thorey et al., 2017;
Berrisch & Ziel, 2023; van der Meer et al., 2024). An analytic expression of the CRPS for the
Gaussian is used for optimization in Rasp & Lerch (2018); Gebetsberger et al. (2018).

The biased sample-based O(n log n) CRPS formula is well-known (Murphy, 1970; Jordan, 2016;
Laio & Tamea, 2007; Jordan et al., 2019), and the bias of the O(n2) formula has also been noted
before (Ferro et al., 2008; Thorey et al., 2017), however to our knowledge we are the first to describe
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the unbiased O(n log n) formula. Weighted CRPS versions exist (Gneiting & Ranjan, 2011; Allen,
2023; Taggart, 2023; Pic et al., 2023), however in the sense of weights over the range of Y to em-
phasize certain target values. In contrast, we introduce a weighted-sample-based approximation for
the CRPS and, to our knowledge, are first to describe both the O(n2) and the O(n log n) formulas.

Non-gaussian output distributions beyond MDN have been studied before, e.g., the method of (De-
peweg et al., 2018) is capable of representing complex distributions, including multi-modal ones. In
the context of generative modeling, related concepts are, e.g., Normalizing Flows (Ardizzone et al.,
2018), and Maximum Mean Discrepancy (MMD) (Li et al., 2015; Dziugaite et al., 2015; Du et al.,
2023; Hertrich et al., 2024; Cui et al., 2020), which has a close connection to kernel scoring rules
(such as the CRPS) (Zawadzki & Lahaie, 2015; Schölkopf, 2000; Sejdinovic et al., 2012).

Closest to our approach is Bouchacourt et al. (2016) (DISCO Nets), a probabilistic method for hand-
pose estimation. They also use injected random noise for nondeterminism (as in Section 4.1), and
derive a dissimilarity coefficient (Rao, 1982) based loss function that reduces to the Energy Score as
special case (see Section 4.5), which the authors also highlight. Developed independently, our work
focuses on optimizing the CRPS, whose multivariate generalization also coincides with the Energy
Score. Our work extends beyond DISCO Nets through an O(n log n) loss formula instead of O(n2),
weighted and multi-head architectures, explicit handling of epistemic uncertainty, and further adap-
tations for traditional regression. We believe the connections between the two approaches serve to
further emphasize the broader applicability of the shared ideas behind both.

4 LEARNING TO SAMPLE FROM THE ALEATORIC DISTRIBUTION

We propose optimizing neural networks using CRPS(FECDF, y) from Equation (5) as a loss function.
By taking multiple samples from a nondeterministic neural network, we leverage automatic differ-
entiation to backpropagate the loss across multiple evaluations at the same time. Note that since the
ordered sample is a sufficient statistic, the sort operation does not need to be backpropagated.

The effects of Equation (5) interpreted as a loss function are quite intuitive. The first term is equiv-
alent to the mean absolute error (MAE), forcing the network to center its predictions around the
median of the target distribution. The second term is being maximized due to its negative sign, forc-
ing the distribution to spread out, increasing its variance. With the 1

2 coefficient, balance is found
exactly when the predicted distribution follows the target distribution (Gneiting & Raftery, 2007).

4.1 FAST UNBIASED SAMPLE-BASED CRPS LOSS

The formula for the O(n log n) sample-based CRPS of Equation (5) is relatively well-known. Less
widely known is the fact that the formulas of Equation (5) are biased, not unlike the naive estimate
for empirical variance. As described by Ferro et al. (2008), Equation (5) underestimates the second
term because the diagonal is always constant zero, unlike in the original of Equation (4). As a
result, the naive formula underestimates prediction variance, making the model underconfident. An
unbiased version (Ferro et al., 2008; Thorey et al., 2017) can be calculated by using the coefficient

1
2n(n−1) instead of 1

2n2 . We derive the corresponding modification of the O(n log n) formula as

CRPS′(FECDF, y) =
2

n(n− 1)

n∑
i=1

(
ỹ(i) − y

)(
(n− 1)1

{
y < ỹ(i)

}
− i+ 1

)
, (6)

where CRPS′ denotes the unbiased version of the empirical CRPS, see Appendix B.4 for proof.

4.2 OPTIMIZING NEURAL NETWORKS FOR THE EMPIRICAL CRPS

While any kind of nondeterministic neural network with sufficient expressive power should work in
theory, we see no point in, e.g., sampling different weights for the network with each evaluation,
as BNN-s do. Instead, we propose injecting the randomness through independent standard normal
random samples ε concatenated to the input or a hidden layer activation, see Figure 1a. Exploring
other nondeterminism injection methods is an interesting research topic, however is out of scope.

Using the terminology of Section 2.1, the resulting network can be interpreted as follows. First,
the network transforms X into a latent representation ωx revealing partial information about ω.
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(d) Layered heads

Figure 1: Illustration of nondeterministic neural network architectures. The top (empty) part of each
network is evaluated once, responsible for transforming the input. The yellow (solid) parts of each
network are evaluated multiple times, with ε being randomly sampled each time.

Second, we sample ε in place of the unobservable latent variables that, together with X, are assumed
to identify ω with certainty. Finally, the second part learns the deterministic mapping (ωx, ε) 7→
y which draws samples from the target distribution, with random ε values sampled in each run.
In practice, only the second part needs to be evaluated multiple times. For further efficiency, the
network can be implemented to compute multiple samples in a single batch, with output of shape
[b× n× k], where b is batch size, n is the number of samples, and k is the dimension of Y .

In theory, such a network can learn to produce samples from arbitrary probability distributions, and
CRPS being a strictly proper scoring rule guarantees that the global optimum corresponds to the real
aleatoric distribution under ideal conditions (i.e., assuming infinite data and MLP-s to be universal
function approximators). Ultimately, the described setup provides a truly nonparametric way to
learn aleatoric uncertainty for neural network regression.

4.3 WEIGHTED CRPS LOSS

The simple architecture described in Section 4.2 needs to model distributions by not only covering
the full range of possible outputs depending on the injected randomness, but also making sure that
potential outputs get sampled proportionally from the target distribution. Consequently, output re-
gions with small probability get sampled infrequently during training, possibly leading to the model
being unable to learn them in detail. Further, neural networks have an inherent bias towards learning
smooth mappings from input to output, leading to the learned distribution possibly becoming overly
smoothed when the network is limited in its capacity or cannot be trained until convergence (i.e.,
early stopping is used), both of which are common in practical applications.

An implicit bias towards smooth functions can be useful in certain applications, however it is also
a limitation of the simple unweighted architecture. To improve the expressivity of the network, we
introduce the weighted-sample-based CRPS loss (weighted CRPS for short), along with a modified
architecture which produces a weighted sample as its output. By allowing a weighted sample, we are
essentially allowing the model to draw samples (ŷi) from distribution Q′ instead of Q, along with
the change-of-measure coefficients w = dQ

dQ′ (also known as likelihood-ratio or importance weight).

We derive the unbiased approximation of the CRPS in Appendix B.1 from a weighted sample as

CRPSw(F
w
ECDF, y) =

1

n

n∑
i=1

wi|y−ŷi| −
1

2n(n− 1)

n∑
i=1

n∑
j=1

wiwj |ŷi−ŷj |, (7)

where wi = dQ
dQ′(ŷi), and Fw

ECDF denotes the empirical CDF of the weighted sample (ŷi, wi). We
also derive an algebraically equivalent unbiased O(n log n) formula, analogous to Equation (6), as

CRPS′w(F
w
ECDF, y) =

2

n(n−1)

n∑
i=1

w(i)

(
ŷ(i)−y

)(
(n−1)1

{
y<ŷ(i)

}
−si+

W−n+w(i)+1

2

)
, (8)

denoting W =
∑n

i=1 w(i) and si =
∑i

j=1 w(j). See Appendix B.2 and B.3 for proof.

4.4 WEIGHTED SAMPLING ARCHITECTURES

While the weighted loss may in itself enhance model expressivity, its more significant impact is
enabling advanced network architectures. A simple architecture must evaluate the non-deterministic
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network component to generate new samples, requiring non-negligible compute time for larger sam-
ple sizes during both training and prediction. The weighted formula improves sampling efficiency
by allowing the network to produce multiple weighted samples in each evaluation (see Figure 1c).
Without weighting, such a network would be problematic, as all samples from the same evaluation
would share the same frequency in the overall sample.

The weighted formula can leverage multiple such sampling heads while still ultimately being capa-
ble of representing arbitrary distributions. This increases expressivity, as each head samples from
distinct parts of the output distribution, modeling simpler distributions individually. However, early
stopping can cause transitions between heads to be non-seamless. A convenient solution is to apply
the loss function separately to multiple sets of heads (see Figure 1d), resulting in heads with over-
lapping ranges. This approach resembles an in-network ensemble, however to avoid confusion with
traditional ensembling, we refer to it as layered sampling heads. The synthetic task in Section 5.1
serves as a good visual illustration of the effects of different sampling architectures.

4.5 MULTIVARIATE REGRESSION

The formulas described so far only apply to univariate targets. Fortunately, a multivariate general-
ization of the CRPS exists, called the energy score (Gneiting & Raftery, 2007; Jordan et al., 2019):

ES(F, y) =
1

n

∑
i

∥y − ỹi∥2 −
1

2n2

∑
i

∑
j

∥ỹi − ỹj∥2, (9)

with the same caveats as Equation (5) regarding complexity and bias. While unbiased and weighted
versions can be calculated analogously, the O(n log n) formula is only valid for the univariate case.
Potential ways to speed up the calculation do exist, see for example Hertrich et al. (2024). However,
investigating the multivariate case in detail is out of scope for this work. Nevertheless, we do conduct
experiments on multivariate problems using Equation (9) in its quadratic form, see Section 5.2.

4.6 EPISTEMIC UNCERTAINTY

The primary goal of our approach is to learn the aleatoric uncertainty of the target variable Y in a
frequentist manner, without the use of Bayesian techniques. Although our method could be extended
by mixing samples from a prior distribution into the training data as a way to mimic Bayesian priors,
as it is sometimes done for example with out-of-distribution data (Malinin, 2019; Lakshminarayanan
et al., 2017; Chen et al., 2018; Hafner et al., 2020), we do not attempt such approaches in this
paper. Still, the benchmark used in Section 5.3 involves a large number of relatively small datasets,
making it essential to account for epistemic uncertainty. Fortunately, the ensemble-based method
of Lakshminarayanan et al. (2017) combines well with our proposed approach, as the output of
multiple independently trained models can be mixed by simply pooling the samples.

4.7 LIKELIHOOD ESTIMATION

Since our method represents the output distribution through producing samples, it is very easy to
estimate, e.g., percentiles. On the other hand, without an explicit density, it is nontrivial to evaluate
likelihood at a given point. However, we still need to do so to compare against prior work, which
generally evaluate methods using the negative log-likelihood metric (see Section 5).

In general, a sample-based unbiased estimator for the likelihood can not exist (Rosenblatt, 1956).
However, the literature on nonparametric density estimation (Izenman, 1991) is vast, with many
methods not only guaranteeing convergence, but providing useful estimates at smaller sample sizes.
Given the ease of sampling in our case, the lack of explicit density in theory becomes a non-issue. In
practice, we found Wang & Wang (2007) to work well together with out method, see Appendix C.1.

5 EXPERIMENTS

5.1 UNIVARIATE REGRESSION ON SYNTHETIC TASKS

In theory, both MDN and our new CRPS-based networks can learn to represent arbitrary univari-
ate distributions. To test their expressiveness visually, we train both methods to learn a synthetic
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(a) Original (b) MDN (c) Simple (d) Weighted (e) MH (f) LMH

Figure 2: Learning the Mona Lisa as output distribution after 40 epochs (top) and after 2000 epochs
(bottom). Each row of pixels in the images displays the heatmap of a predicted density based on the
row number as input. MH stands for multiple heads, while LMH stands for layered multiple heads.
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(a) Inverting z2 = x2 + y2
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(b) Modeling the distribution of MNIST pixel data from the label.

Figure 3: Multivariate tasks. Image (a) shows 2D densities, while (b) displays random samples.

distribution x → p(y), where we sample (x, y) points based on the luminance of an image of the
Mona Lisa with x as row, and y as column index. As a result, the methods are required to learn
many different, but continuously changing distributions, for each row of the image. Note that during
training, the models only ever see separate (x, y) pairs at a time, i.e., not (x; y1, . . . , yn) samples.

We train multiple models of the same size, including an MDN model with 100 components, along
with multiple kinds of CRPS-based models, and plot the output distributions as 2D heatmaps on
Figure 2 after training for 40 and 2000 epochs. The MDN model learns quickly, however ends up
with an overly smooth representation. Both single-head CRPS models fail to ultimately represent the
details of the image, with perhaps the weighted version performing slightly better. The multi-head
and layered-multi-head model both learn fast and manage to learn the baseline distribution in high-
detail. However, without layering, visible artifacts remain even after 2000 epochs. Ultimately, the
layered-multi-head variant learns fast and ends up representing the distribution with high-accuracy
at the same time. See Appendix C.3 for experimental setup and more samples during training.

5.2 MULTIVARIATE REGRESSION

For multivariate regression, we run two experiments, one with synthetic and one with real-world
data. For exact experimental setups, please refer to Appendix C.4, or the code repository. First, we
train the networks to produce solutions to the equation z2 = x2 + y2 with z as input and the joint
distribution of (x, y) as output. We plot the resulting distributions for z = 1 in Figure 3a for four
models of the same size: a simple (CRPS) and a weighted (WCRPS) CRPS-based model, and MDN
models with 10 (MDN10) and 100 components (MDN100). As we can observe, all models learn
to invert the equation, however the CRPS-based models provide a much more robust contour of the
resulting circle-shaped distribution.

Having successfully learned the joint distribution of 2 variables, we now turn to a much more chal-
lenging task: learning the joint distribution of 784 variables. We reverse the input-output structure of
the MNIST classification task (LeCun, 1998), turning it into a multivariate regression problem, with
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the label as input and image pixels as output, similar to generative modeling, however without the
use of locality structures. Note that we model MNIST solely to stress-test the multivariate formula,
not for actual generative modeling purposes. In Figure 3b, we display samples from the predicted
distributions. Since multivariate likelihood is hard to estimate, we instead indicate the likelihood of
the sampled latent noise corresponding to the sampled outputs. Remarkably, the model is able to
learn the joint distribution of the 784 output variables, producing coherent hand-written digits.

5.3 UCI REGRESSION UNCERTAINTY BENCHMARK AND BASELINES

The UCI Benchmark (Hernández-Lobato & Adams, 2015) has become the standard benchmark
to measure regression uncertainty, with many papers reporting RMSE and (negative) log-likelihood
(NLL) results along with standard error. We run our experiments on the exact train-test splits defined
by Hernández-Lobato & Adams (2015), using the setup and code from the repository of Gal &
Ghahramani (2016). See Appendix C.5 for discussion of hyperparameters and optimization.

Strongest baselines are Sun et al. (2017) (PBP-MV) for BNN, and Gal & Ghahramani (2016)
(Dropout), covering best overall NLL from the literature (Mukhoti et al., 2018), except for boston
(2.33, El-Laham et al. (2023)), naval (−5.64, Lakshminarayanan et al. (2017)) and yacht (1.10,
Springenberg et al. (2016)). We run our experiments with the network sizes of Sun et al. (2017)
(PBP-MV), using two hidden layers with 50 neurons each. We reimplement the method of Lak-
shminarayanan et al. (2017) (Ensembles) and evaluate it at the same network size. For MDN, we
use our own robust implementation, achieving much stronger scores then previously reported, see
Appendix C.2. Baselines compute NLL analytically, while CRPS-based methods are evaluated as
described in Section 4.7. For more discussion of baselines, please refer to Appendix C.6. Further
comparison against simpler models is presented in Appendix C.11. We compare against Boucha-
court et al. (2016) in Appendix C.13 and against Depeweg et al. (2018) in Appendix C.14.

5.3.1 RESULTS

We benchmark multiple variants of our CRPS-based networks, including versions with unweighted,
weighted, multi-head, layered-multi-head versions, with and without ensembling. The overall best-
performing variant turns out to be the single-head weighted version with ensembling (WCRPSe) on
Tables 1 and 2, where we present negative log-likelihood (NLL) and root mean square error (RMSE)
scores along with baseline results. Scores without ensembling are also included (WCRPS). The
most direct competition for WCRPSe and WCRPS are MDNbnn and MDN respectively, i.e., non-
Gaussian methods with and without techniques for epistemic uncertainty. Best scores are highlighted
in bold, however one should also note the error ranges included with scores when reading the results.

Overall, it is clear that relaxing the Gaussian assumption generally helps achieve higher NLL scores,
except on concrete with Dropout winning, and naval where a simple BNN dominates (−6.84, see
Appendix C.11). Strongest scores are mostly shared between MDNbnn and WCRPSe, with the latter
scoring best overall. We present scores for variants of CRPS-based methods in an ablation study in
Appendix C.7, revealing that the method is also capable of achieving the best NLL result on the
concrete dataset, with a score of 2.73 (MH variant with ensembling). Multi-head variants under-
perform WCRPSe on many (though not all) datasets, indicating that the single-head architecture’s
strong implicit bias towards smooth distributions appears to be an advantage in most cases.

The wine dataset is unique as it is in fact a classification task with 6 discrete target values (see
Appendix C.10). MDN outperforms others by 5 orders of magnitude in likelihood by using separate
mixture components with increasingly small variances on each value. Note that this approach can
theoretically produce NLL values converging to −∞ even while assigning equal probabilities to all
outputs, thus offering no useful prediction. Hence, on discrete datasets, NLL is an unreliable metric.

In RMSE, WCRPSe dominates, with only a small advantage of MDNbnn on yacht. As an explanation
for the superior performance, while CRPS includes the mean absolute error (MAE) explicitly, all
other methods optimize for NLL, which only indirectly optimizes the expectation of the prediction.

Total running time depends not only on raw numeric computation, but also on factors like batch size,
data access patterns, convergence speed, and evaluation speed for early stopping. To provide a sense
of relative speed, we report running time on the full UCI benchmark suite, which includes datasets
with varying characteristics. With MDN at just a bit over 1.5 hours, WCRPS completes in about
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Table 1: NLL results on the UCI Datasets benchmark (lower is better)

dataset n Dropout PBP-MV Ensembles MDN MDNbnn WCRPS WCRPSe

boston 0.5k 2.40±0.04 2.54±0.08 2.44±0.05 2.52±0.04 2.36±0.03 2.40±0.05 2.32±0.05

concrete 1.0k 2.94±0.02 3.04±0.03 2.97±0.04 3.13±0.04 2.99±0.03 3.09±0.04 2.95±0.05

energy 0.8k 1.21±0.01 1.01±0.01 0.62±0.08 0.77±0.04 0.65±0.02 0.47±0.04 0.31±0.03

kin8nm 8.2k -1.14±0.01 -1.28±0.01 -1.34±0.00 -1.22±0.01 -1.30±0.01 -1.32±0.01 -1.38±0.01

naval 11.9k -4.45±0.00 -4.85±0.06 -6.49±0.02 -6.24±0.04 -6.72±0.01 -6.65±0.05 -6.51±0.03

power 9.6k 2.81±0.01 2.78±0.01 2.69±0.01 2.65±0.01 2.62±0.01 2.66±0.01 2.57±0.01

protein 45.7k 2.87±0.00 2.77±0.01 2.66±0.02 2.00±0.01 1.96±0.01 2.22±0.01 2.05±0.01

wine 1.6k 0.93±0.01 0.97±0.01 0.91±0.01 -3.48±0.03 -5.11±0.09 0.90±0.03 0.80±0.03

yacht 0.3k 1.25±0.02 1.64±0.02 -0.02±0.04 0.26±0.09 0.63±0.04 0.07±0.06 -0.16±0.05

Table 2: RMSE results on the UCI Datasets benchmark (lower is better)

dataset n Dropout PBP-MV Ensembles MDN MDNbnn WCRPS WCRPSe

boston 0.5k 3.61±0.23 3.11±0.15 3.37±0.17 3.73±0.25 2.93±0.20 3.07±0.23 2.91±0.18

concrete 1.0k 5.45±0.19 5.08±0.14 5.19±0.19 5.99±0.12 5.25±0.11 5.51±0.14 4.94±0.17

energy 0.8k 0.97±0.06 0.45±0.01 0.86±0.12 1.17±0.09 0.51±0.01 0.45±0.02 0.41±0.01

kin8nm 8.2k 0.09±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.06±0.00

naval2 11.9k 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

power 9.6k 4.18±0.04 3.91±0.04 3.73±0.03 3.93±0.04 3.86±0.04 3.79±0.04 3.62±0.04

protein 45.7k 4.39±0.02 3.94±0.02 4.20±0.03 3.96±0.02 4.09±0.02 3.76±0.02 3.47±0.02

wine 1.6k 0.66±0.01 0.64±0.01 0.63±0.00 0.66±0.01 0.66±0.01 0.64±0.01 0.63±0.01

yacht 0.3k 1.23±0.37 0.81±0.06 0.92±0.08 1.97±0.25 0.77±0.07 0.96±0.13 0.78±0.09

2.1×, Ensembles in 3.4×, WCRPSens in 7×, and MDNbnn in 17.1× time, the latter being impacted
by both slower per-epoch computation and slow convergence. See Appendix C.8 for details.

5.3.2 CALIBRATION
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Figure 4: Calibration of WCRPSe on the
UCI Datasets benchmark.

Calibration is measured as described in Kuleshov
et al. (2018). We take 1000 samples from the pre-
dicted distribution, take every 10th as an estimate of
percentiles, and measure the ratio of test samples for
which the ground truth falls below them. See Fig-
ure 4, with the ideal calibration as a dashed red line.

The method displays good calibration on most
datasets, except yacht and naval, where it is under-
confident. However, on both datasets, the under-
confidence is also reflected on the train set (see Ap-
pendix C.9), implying that it is most likely a short-
coming of training, e.g., too large learning rate.

6 CONCLUSIONS

In this paper, we proposed optimizing nondeterministic neural networks using loss functions derived
from the continuous ranked probability score (CRPS). We derived unbiased O(n log n) formulas for
both unweighted and weighted sample-based approximations of the CRPS, and proposed multiple
architectures for sampling from the aleatoric distribution of the target, enabling truly distribution-
free learning. Through extensive experiments on both univariate and multivariate synthetic and
real-world datasets, our method consistently demonstrates superior performance compared to base-
line models, making it an attractive choice for capturing aleatoric uncertainty. Ultimately, we believe
CRPS optimization is an effective and novel way of training neural networks for predicting regres-
sion uncertainty in a distribution-free manner, while at the same time remaining conceptually simple
and easy to implement. Finally, we make our implementations and experiment code freely available.

2We have no exact baseline RMSE scores for naval, as prior work reports only 2 decimals (Sun et al., 2017).
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A BACKGROUND

A.1 LIST OF PRIOR WORK EVALUATING ON THE UCI REGRESSION UNCERTAINTY
BENCHMARK

The UCI Benchmark was originally defined by Hernández-Lobato & Adams (2015). We are aware
of results being reported for the benchmark in Louizos & Welling (2016); Springenberg et al. (2016);
Gal & Ghahramani (2016); Sun et al. (2017); Lakshminarayanan et al. (2017); Mukhoti et al. (2018);
Ghosh et al. (2019); Amini et al. (2020); Goulet et al. (2021); El-Laham et al. (2023); Gawlikowski
et al. (2023); Deka et al. (2024).

A.2 SMALL SURVEY OF UNCERTAINTY SURVEYS

To provide evidence for our claim that the distribution-free modeling of aleatoric uncertainty for
neural network regression is a relatively under-researched and under-reported area, we conduct a
small survey, where we list uncertainty-adjacent survey papers and examine them based on four
criteria:

MDN Whether the survey mentions the use of mixture models for aleatoric uncertainty in regres-
sion, cites MDN (Bishop, 1994), or other works using MDN

NF Whether the survey mentions the use of Normalizing Flows for aleatoric uncertainty

MMD Whether the survey mentions the Maximum Mean Discrepancy loss in the context of learn-
ing aleatoric uncertainty

ES Whether the survey mentions the Energy score / CRPS in the context of aleatoric uncer-
tainty or cites DISCO Nets (Bouchacourt et al., 2016)

We summarize our findings in Table 3. To elaborate further on each:

• Goan & Fookes (2020) is a survey of Bayesian Neural Networks, and as such is primarily
concerned with epistemic uncertainty. However, it does cite SiriTeam (2017) which uses
MDN.

• Abdar et al. (2021) is a general survey of uncertainty techniques in deep learning. In the
main text, it describes MDN under the name Gaussian Mixture Model and cites Choi et al.
(2018) which uses MDN.

• Kabir et al. (2018) is survey of uncertainty quantification in deep learning. Does not men-
tion or cite any of the above.

• Hüllermeier & Waegeman (2021) is a general introduction to epistemic and aleatoric un-
certainty in machine learning. Does not mention or cite any of the above.

• Jospin et al. (2022) is a tutorial on Bayesian Neural Networks, and (somewhat appropriately
in this case) does not mention or cite any of the above

• Magris & Iosifidis (2023) is a survey on Bayesian learning for neural networks in general.
Does not mention or cite any of the above.

• Gawlikowski et al. (2023) is a survey of uncertainty in deep neaural networks. Cites Cor-
duneanu & Bishop (2001), therefore indirectly references MDN.

• Tyralis & Papacharalampous (2024) is a review of predictive uncertainty in machine learn-
ing. It does describe the CRPS, but mentions uses for learning only in context of ensembles
or with a Gaussian assumption. It also mentions the Energy Score, but does not describe
any uses. Does not cite Bouchacourt et al. (2016).

Many of these works describe using non-Gaussian distributions, however usually in the context of
variational distributions, (i.e., the distribution of weights in a BNN). Some mention the use of MMD
for quantile regression or calibration, but not for distributional regression.
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Table 3: A small survey of uncertainty surveys.

Paper MDN NF MMD ES

Goan & Fookes (2020) ! - - -
Abdar et al. (2021) ! ! - -
Kabir et al. (2018) - - - -
Hüllermeier & Waegeman (2021) - - - -
Jospin et al. (2022) - - - -
Magris & Iosifidis (2023) - - - -
Gawlikowski et al. (2023) ! - - -
Tyralis & Papacharalampous (2024) - - - !

B PROOFS AND DERIVATIONS

B.1 WEIGHTED CRPS FORMULA

The classic formula estimates the first term of Equation (4) by taking a samples (ŷi) from Ŷ ∼ Q
and calculating

E
∣∣∣y − Ŷ1

∣∣∣ = ∫
Ω

|y − ŷ|dQ(ŷ) ≈ 1

n

n∑
i=1

|y − ŷi|. (10)

If Q is absolutely continuous w.r.t. Q′ (or Q ≪ Q′), then given Y ′ ∼ Q′ and its sample (y′i),∫
Ω

|y − ŷ|dQ(ŷ) =

∫
Ω

|y − ŷ| dQdQ′(ŷ) dQ
′(ŷ) = E[|y − Y ′|w(Y ′)] ≈ 1

n

n∑
i=1

|y − y′i|w(y′i), (11)

where w(y′) = dQ
dQ′(y

′). Doing the same for the second term:

E
∣∣∣Ŷ1 − Ŷ2

∣∣∣ = ∫
Ω

∫
Ω

|ŷ1 − ŷ2|dQ(ŷ1) dQ(ŷ2) (12)

=

∫
Ω

∫
Ω

|ŷ1 − ŷ2| dQdQ′(ŷ1) dQ
′(ŷ1)

dQ
dQ′(ŷ2) dQ

′(ŷ2) (13)

= E[|Y ′
1 − Y ′

2 |w(Y ′
1)w(Y

′
2)] ≈

1

n2

n∑
i=1

n∑
j=1

|y′i − y′j |w(y′i)w(y′j), (14)

with Y ′
1 , Y

′
2 ∼ Q′ iid. Finally,

CRPS(Q, y) ≈ CRPSw(F
w
ECDF, y) =

1

n

n∑
i=1

wi|y−ŷi| −
1

2n2

n∑
i=1

n∑
j=1

wiwj |ŷi−ŷj |, (15)

where wi further denotes w(ŷi), and Fw
ECDF denotes the empirical cumulative distribution function of

the weighted sample (ŷi, wi). An unbiased version can be computed as in Section 4.1 by replacing
the 1

2n2 coefficient by 1
2n(n−1) .

B.2 FAST BIASED VERSION

First we are going to prove a formula for the biased version for the sake of simplicity, and de-
scribe how to get an unbiased version in Appendix B.3. The following formula can be calculated
in O(n log n) time by first ordering the sample to get ŷ(1), . . . , ŷ(n) and corresponding weights
w(1), . . . , w(n).

Proposition B.1. Let W =
∑n

i=1 w(i) and si =
∑i

j=1 w(j). Then

CRPSw(F
w
ECDF, y) =

2

n2

n∑
i=1

w(i)(ŷ(i) − y)

(
n1
{
y < ŷ(i)

}
− si +

W − n+ w(i)

2

)
(16)
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Proof. Using counting method. First observe that

1

n

n∑
i=1

w(i)|y − ŷ(i)| −
1

2n2

n∑
i=1

n∑
j=1

w(i)w(j)|ŷ(i) − ŷ(j)| (17)

= − 1

n2

 n∑
i=1

n∑
j=1

1{i < j}w(i)w(j)|ŷ(i) − ŷ(j)| − n

n∑
i=1

w(i)|y − ŷ(i)|

 (18)

Next, we are going to count the |ŷ(i) − y| distances on Figure 5, where we visually display the
summands and their weights from Equation (18) (omitting the preceding (− 1

n2 ) coefficient)

Figure 5: Counting method example with n = 7. We are counting the sum of coefficients for each
|ŷ(i) − y| term. On the figure, solid lines are to be counted with a coefficient of (−n) and dotted
lines with a coefficient of 1. Further, individual change-of-measure coefficients are indicated next to
each line in the form w(i) or w(i)w(j). The global coefficient (− 1

n2 ) is omitted for simplicity.

Starting from the left with the example of i = 1, for (y − ŷ(1)), we have the coefficients

−nw(1) + w(1)

n∑
j=2

w(j). (19)

However, this way we over-count each (y− ŷ(j)) term for {j > i, ŷ(j) < y} by a factor of w(1)w(j),
which we are going to correct for when counting the coefficients for (y − ŷ(j)).

Accordingly, for the i-th term (y − ŷ(i)) in general, assuming ŷ(i) < y, we have the coefficients

−nw(i) + w(i)

n∑
j=i+1

w(j) − w(i)

i−1∑
j=1

w(j) (20)

= w(i)

−n−
i−1∑
j=1

w(j) +

W −
i∑

j=1

w(j)

 (21)

= w(i)

(
W − n− 2si + w(i)

)
. (22)
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We can proceed to count the coefficients of (ŷ(i) − y) with y < ŷ(i) by mirroring the above logic.
Denoting ki = W −

∑i−1
j=1 w(j) = W − si + w(i), we have the coefficients (cf. Equation (22))

wi

(
W − n− 2ki + w(i)

)
= w(i)

(
W − n− 2(W − si + w(i))) + w(i)

)
(23)

= −w(i)(W + n− 2si + w(i)). (24)

Finally, we have

CRPSw(F
w
ECDF, y) (25)

= − 1

n2

 ∑
ŷ(i)<y

w(i)

(
W−n−2si+w(i)

)
(y−ŷ(i))−

∑
y<ŷ(i)

w(i)

(
W+n−2si+w(i)

)
(ŷ(i) − y)

 (26)

=
2

n2

n∑
i=1

w(i)(ŷ(i)−y)

(
n1
{
y < ŷ(i)

}
− si +

W − n+ w(i)

2

)
. (27)

B.3 FAST UNBIASED VERSION

Proposition B.2. An unbiased version of Equation (16) can also be calculated in O(n log n).

Proof.

CRPSw(F
w
ECDF, y) =

2

n2

n∑
i=1

w(i)(ŷ(i) − y)

(
n1
{
y < ŷ(i)

}
− si +

W − n+ w(i)

2

)
(28)

=
1

n2

 ∑
y<ŷ(i)

w(i)

(
ŷ(i) − y

)(
n−2si+W+w(i)

)
+
∑

ŷ(i)<y

w(i)

(
y − ŷ(i)

)(
n+2si−W−w(i)

) (29)

Notice that

1

n

n∑
i=1

w(i)|y − ŷ(i)| =
1

n2

 ∑
y<ŷ(i)

w(i)

(
ŷ(i) − y

)
n+

∑
ŷ(i)<y

w(i)

(
y − ŷ(i)

)
n

 , (30)

and that Equation (30) appears in Equation (29). Therefore, we can modify Equation (29) to express
the unbiased coefficient for the second term of Equation (7) without affecting the first term by taking

1

n(n− 1)

( ∑
y<ŷ(i)

w(i)

(
ŷ(i) − y

) (
(n− 1)− 2si +W + w(i)

)
+ (31)

+
∑

ŷ(i)<y

w(i)

(
y − ŷ(i)

) (
(n− 1) + 2si −W − w(i)

))
(32)

=
2

n(n− 1)

( ∑
y<ŷ(i)

w(i)

(
ŷ(i) − y

)(
n− 1− si +

W − n+ w(i) + 1

2

)
+ (33)

+
∑

ŷ(i)<y

w(i)

(
ŷ(i) − y

)(
−si +

W − n+ w(i) + 1

2

))
(34)

Transforming back to short form and denoting the unbiased version with CRPS′w, we get

CRPS′w(F
w
ECDF, y) =

2

n(n−1)

n∑
i=1

w(i)

(
ŷ(i)−y

)(
(n−1)1

{
y<ŷ(i)

}
−si+

W−n+w(i)+1

2

)
. (35)
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B.4 FAST UNBIASED UNWEIGHTED VERSION

Proposition B.3.

CRPS′(FECDF, y) =
2

n(n− 1)

n∑
i=1

(
ỹ(i) − y

)(
(n− 1)1

{
y < ỹ(i)

}
− i+ 1

)
, (36)

Proof. Taking w(i) ≡ 1, we get W = n and si = i. Substituting into Equation (35), the proposition
immediately follows.

C IMPLEMENTATION DETAILS AND RESULTS

C.1 KERNEL DENSITY ESTIMATION

As described, we use the adaptive-bandwidth kernel density estimator of Wang & Wang (2007) for
likelihood-estimation in our experiments. We implement a GPU-based version of the algorithm,
based on the C++ based cpu-implementation of the awKDE3 Python library.

The method works by first creating a naive pilot likelihood estimate in each sampled point based on
the full sample using a traditional constant bandwidth KDE, and then setting the local bandwith to
be inversely proportional to the pilot-estimate. Calculating the pilot estimates requires calculating
the pairwise distance matrix for all sampled points, making the algorithm quadratic in the number
of points. Since calculating pairwise distances on a GPU is fast, the quadratic runtime proved to
be feasible in our experiments. We run the algorithm with the default parameters for the original
implementation of awKDE, i.e., using Silverman’s estimate for the global bandwidth parameter (Sil-
verman, 2018).

As Wang & Wang (2007) note, the quality of the pilot estimate is ultimately not critical for the
quality of the final estimate. Accordingly, we have seen some success with using a fixed number
of samples to produce the pilot-estimate, making the runtime linear instead of quadratic. However,
proper investigation of such methods is out of scope for this work.

C.2 MDN IMPLEMENTATION

MDN models seem to be relatively under-utilized in uncertainty-related literature, with some surveys
barely mentioning the method (Abdar et al., 2021; Goan & Fookes, 2020), and others omitting any
mention at all (Gawlikowski et al., 2023; Jospin et al., 2022; Magris & Iosifidis, 2023; Kabir et al.,
2018; Hüllermeier & Waegeman, 2021; Tyralis & Papacharalampous, 2024). Further, it appears that
MDN has very rarely been evaluated as baseline in prior work. We are aware of a single instance
where it is used as a baseline method (El-Laham et al., 2023) for the UCI benchmark, however with
the authors reporting substantially lower scores than our experiments.

MDN is sometimes also referred to simply as Gaussian mixture model (GMM) (Hubschneider et al.,
2019; Abdar et al., 2021), however in general these two terms do not mean the same thing, as GMM
includes a larger class of methods with various modeling and optimization strategies. It is also
important to note that not every Gaussian mixture model is made equal: in order to approximate
even simple asymmetric densities, a high number of Gaussians might be required. Using methods
relying on, e.g., ensembling (Jospin et al., 2022), prohibits the use of a high number of mixture
components due to computational constraints.

The reason for its neglect is perhaps the fact that MDN appears to be notoriously challenging to im-
plement, often suffering from numerical instability, failure to converge, and mode collapse (Makansi
et al., 2019; Brando, 2017; Rupprecht et al., 2017; Cui et al., 2019; Curro & Raquet, 2018; Messaoud
et al., 2018; Graves, 2013; Hjorth & Nabney, 1999). Nevertheless, we do implement and evaluate
a robust variant of MDN, capable of optimizing the mixture of 100 Gaussian components in our
experiments.

3https://github.com/mennthor/awkde
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Our implementation takes a number of steps to avoid numerical instabilities and convergence issues
that tend to plague implementations of MDN, this way achieving much stronger scores on the UCI
benchmark then previously reported. We apply the following techniques:

• We standardize both the input variables X and the target Y to have 0 mean and a variance
of 1.

• We apply a linear learning rate warm-up schedule, where the learning-rate is set to 0.1 of
its value at the beginning and increases over 10 epochs.

• We apply gradient clipping at 10 before taking a step along the loss gradient.

• We calculate the log-likelihood in the log-domain as

li = −1

2

(
y − µi

σi

)2

− ln
(
σi

√
2π
)

(37)

wi = πi − LSE(π1, . . . , πn) (38)
log-likelihood = LSE (l1 + w1, . . . , ln + wn) (39)

where LSE denotes the numerically stable implementation of LogSumExp of the PyTorch
framework4, i.e.,

LSE(x1, . . . , xn) = log

n∑
i=1

exi . (40)

• During training, we clamp the log-likelihood loss to over −20, as even a single evaluation
where the likelihood at y is effectively zero can result in the experiment producing ∞ and
nan values.

• We clamp the inputs of the softplus to over −15 and the input logits of the softmax be-
tween −15 and 15, as both tend to converge to very low and hight values:

– as the method turns off certain components, their logits πi tend towards −∞;
– if the method needs to represent an unimodal distribution, its logit πi tends toward ∞;
– on discrete datasets and in the case of unused components, the logit πi as well as the

input of the softplus si tends toward −∞.

See Appendix C.4 for multivariate details.

C.3 LEARNING THE MONA LISA

For training, we sample 5000 samples for each row from the distribution defined by the luminance
of an 500 × 500 image of the Mona Lisa, such that the input of the network is the row index,
and the expected output is the column index. We train R → R networks with layers of size
[128, 512, 512, 1024], GELU activation, SGD optimizer with lr = 10−4 and a momentum value
of 0.8 for 2000 epochs. See Figure 6 for distributions at 40, 100, 200, 500, 1000 and 2000 epochs.
The WCRPS-based method uses 50 heads for both multi-head variants, and 5 layers for the layered-
multi-head variant.

C.4 MULTIVARIATE EXPERIMENTAL SETUP

For the paraboloid task z2 = x2 + y2 we generate training data by drawing 2M samples from
X,Y ∼ U(−2, 2), filter them to x2 + y2 <= 4, and calculate the corresponding z2 values. We train
R → R2 networks with layers of size [64, 128, 128], GELU activation and LayerNorm, and use an
SGD optimizer with 1k epochs and lr = 10−4.

We implement a multivariate version of MDN with full covariance matrix modeling based on the
Cholesky-decomposition based parameterization of the multivariate normal distribution (Muschin-
ski et al., 2024), while also employing techniques from Appendix C.2 where applicable.

For the MNIST task, we train a network with layers of size [16, 1024, 2048, 4096] with ReLU acti-
vation on the train set of MNIST for 1k epochs with lr = 10−5 and a momentum value of 0.9

4https://pytorch.org/docs/stable/generated/torch.logsumexp.html
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(a) Original (b) MDN (c) Simple (d) Weighted (e) MH (f) LMH

Figure 6: Learning the Mona Lisa as output distribution after 40, 100, 200, 500, 1000 and 2000
epochs from top to bottom respectively.
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C.5 HYPERPARAMETERS ON THE UCI BENCHMARK

We do not optimize hyperparameters individually for each dataset, however do use adaptive batch
sizes, and larger L2 regularization for the 4 smallest datasets. Early stopping is used with 20% of
the training set as validation.

In our experiments we use the AdamW optimizer with a learning-rate of 0.001 and a linear learning
rate warm-up schedule starting with the coefficient 0.1 and ending with 1 after 10 epochs. We use
early stopping with a patience value of 50 on validation sets consisting of 20% of the training set
for each split. We set L2 regularization over the weights to 10−6 on all datasets except the four
smallest ones (boston, concrete, energy, yacht), where we use 10−4. Batch size is chosen to be
max(

√
m − 5, 1) with m being the training set size, for a balance of computational efficiency and

predictive accuracy.

We run Ensembles and ensembling-based variants of WCRPS using 5 networks, as in the original
paper of Lakshminarayanan et al. (2017). We use 20 heads for all multi-head variants of WCRPS
on the UCI benchmark, and 10 layers for all layered-multi-head variants. For evaluating the CRPS
formula variants, we take 100 samples during training and 1000 samples for evaluation during early
stopping. See Appendix C.12 for a comparison of different choices for the samples drawn during
training.

C.6 BASELINES

Most prior work run experiments by using 100 instead of 50 neurons for each hidden layer for the
largest (protein) dataset. For simplicity, we use 50 neurons only, as the models seem to perform well
regardless.

For our reimplementation of Ensembles, we also employ techniques from Appendix C.2 where ap-
plicable. Our results are generally in line with or slightly better than those reported in the original
paper at the same network sizes, except for the naval dataset, where our implementation performs
significantly better (-5.64 originally, -6.52 in our testing for the single-layer model). Our improve-
ment may be due to one or more enhancements discussed in Appendix C.2, possibly influenced by
the unusual data range, as also indicated by the RMSE values in Table 2.

Note, that the standard network size in most prior work is a single layer of 50 neurons. However,
the best prior scores in Sun et al. (2017) (PBP-MV) use a network size of two hidden layers with 50
neurons each, which leads us to re-evaluate Ensembles at the same size. Further, we also evaluate
MDN and CRPS-based models at the same network size for fairness.

For the CRPS-based models we use GELU (Hendrycks & Gimpel, 2016) activation together with
layer normalization (Ba et al., 2016), as it appears to help the network. For correctness and trans-
parency, we also re-evaluate Ensembles, MDN, and MDNbnn with the same setup, and include
stronger versions in the main text of the paper in Table 4. See Tables 4 and 5 for pairwise com-
parisons in NLL and RMSE. According to the results, we include the ReLU versions for Ensembles
(5/9 for NLL and 4/7 for RMSE), the ReLU versions for MDNbnn (4/8 for NLL with 3 overall
strongest results and 6/8 for RMSE), and the GELU version for MDN (6/9 for NLL and 5/8 for
RMSE).

The source-code for the method Dropout is publicly available, however proper evaluation requires
grid-search optimization of two separate hyperparameters over every single train-test split of 9
datasets separately, which proved to be prohibitively expensive for the two-layer variant. There-
fore, we report the original scores for the single-layer variant in case of Dropout.

Due to methodological differences, we cannot compare against Amini et al. (2020). Amini et al.
(2020) propose modeling aleatoric uncertainty using the Normal distribution, and epistemic un-
certainty as a parametric meta-distribution over the parameters of the aleatoric normal distribution
(Normal-Inverse Gamma). They report good performance on the UCI benchmark. However, we
could not include their results: reproducing their experiments and investigating the code provided5

reveals that

5https://github.com/aamini/evidential-deep-learning/tree/main/
neurips2020
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Table 4: Pairwise comparison of ReLU and GELU based baseline variants, evaluated in NLL. Pair-
wise best scores are highlighted with underline. Scores that perform at least on par when compared
to the results in Table 1 are highlighted in bold.

dataset Ensembles Ensemblesgelu MDN MDNgelu MDNbnn MDNgelu
bnn WCRPSe

boston 2.44±0.05 2.41±0.05 2.45±0.06 2.52±0.04 2.36±0.03 2.32±0.04 2.32±0.05

concrete 2.97±0.04 3.14±0.07 3.16±0.03 3.13±0.04 2.99±0.03 2.99±0.03 2.95±0.05

energy 0.62±0.08 0.75±0.15 1.09±0.06 0.77±0.04 0.65±0.02 0.58±0.03 0.31±0.03

kin8nm -1.34±0.00 -1.37±0.01 -1.15±0.01 -1.22±0.01 -1.30±0.01 -1.37±0.01 -1.38±0.01

naval -6.49±0.02 -6.12±0.02 -6.55±0.03 -6.24±0.04 -6.72±0.01 -6.38±0.02 -6.51±0.03

power 2.69±0.01 2.74±0.02 2.67±0.00 2.65±0.01 2.62±0.01 2.64±0.01 2.57±0.01

protein 2.66±0.02 2.64±0.05 2.02±0.01 2.00±0.01 1.96±0.01 1.97±0.01 2.05±0.01

wine 0.91±0.01 0.96±0.02 -3.75±0.06 -3.48±0.03 -5.11±0.09 -3.91±0.04 0.80±0.03

yacht -0.02±0.04 -0.32±0.06 0.79±0.09 0.26±0.09 0.63±0.04 0.55±0.03 -0.16±0.05

Table 5: Pairwise comparison of ReLU and GELU based baseline variants, evaluated in RMSE.
Pairwise best scores are highlighted with underline.

dataset Ensembles Ensemblesgelu MDN MDNgelu MDNbnn MDNgelu
bnn WCRPSe

boston 3.37±0.17 3.27±0.24 3.54±0.27 3.73±0.25 2.93±0.20 3.10±0.22 2.91±0.18

concrete 5.19±0.19 5.47±0.16 6.34±0.11 5.99±0.12 5.25±0.11 5.36±0.14 4.94±0.17

energy 0.86±0.12 0.52±0.02 1.89±0.13 1.17±0.09 0.51±0.01 0.61±0.03 0.41±0.01

kin8nm 0.07±0.00 0.07±0.00 0.08±0.00 0.07±0.00 0.07±0.00 0.06±0.00 0.06±0.00

naval 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

power 3.73±0.03 3.83±0.04 3.96±0.04 3.93±0.04 3.86±0.04 3.95±0.04 3.62±0.04

protein 4.20±0.03 4.09±0.03 4.07±0.03 3.96±0.02 4.09±0.02 4.11±0.02 3.47±0.02

wine 0.63±0.00 0.64±0.01 0.65±0.01 0.66±0.01 0.66±0.01 0.64±0.01 0.63±0.01

yacht 0.92±0.08 1.24±0.15 1.68±0.18 1.97±0.25 0.77±0.07 0.83±0.08 0.78±0.09
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Table 6: NLL results on the UCI Datasets benchmark (lower is better). Scores that perform at least
on par when compared to the results in Table 1 are highlighted in bold.

dataset CRPS WCRPS WCRPSmh WCRPSlmh WCRPSe WCRPSmh
e WCRPSlmh

e

boston 2.38±0.06 2.40±0.05 2.40±0.04 2.40±0.06 2.32±0.05 2.32±0.05 2.30±0.04

concrete 3.11±0.04 3.09±0.04 2.97±0.04 2.89±0.03 2.95±0.05 2.73±0.04 2.74±0.03

energy 0.46±0.04 0.47±0.04 0.64±0.02 0.79±0.03 0.31±0.03 0.67±0.01 0.78±0.01

kin8nm -1.34±0.01 -1.32±0.01 -1.30±0.00 -1.29±0.01 -1.38±0.01 -1.36±0.01 -1.33±0.01

naval -6.61±0.03 -6.65±0.05 -5.93±0.04 -5.83±0.03 -6.51±0.03 -5.95±0.03 -5.80±0.01

power 2.66±0.01 2.66±0.01 2.62±0.01 2.62±0.01 2.57±0.01 2.56±0.00 2.60±0.00

protein 2.29±0.00 2.22±0.01 2.22±0.01 2.31±0.01 2.05±0.01 2.18±0.01 2.29±0.01

wine 0.89±0.04 0.90±0.03 -0.36±0.03 0.15±0.02 0.80±0.03 -0.19±0.02 0.11±0.02

yacht 0.07±0.08 0.07±0.06 0.62±0.04 0.93±0.04 -0.16±0.05 0.80±0.03 0.92±0.03

Table 7: RMSE results on the UCI Datasets benchmark (lower is better). Scores that perform at least
on par when compared to the results in Table 2 are highlighted in bold.

dataset CRPS WCRPS WCRPSmh WCRPSlmh WCRPSe WCRPSmh
e WCRPSlmh

e

boston 3.01±0.21 3.07±0.23 3.08±0.20 3.12±0.25 2.91±0.18 2.98±0.20 2.93±0.20

concrete 5.48±0.16 5.51±0.14 5.11±0.15 5.23±0.15 4.94±0.17 4.87±0.15 4.85±0.13

energy 0.44±0.02 0.45±0.02 0.52±0.02 0.48±0.02 0.41±0.01 0.45±0.02 0.43±0.01

kin8nm 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.06±0.00 0.06±0.00 0.07±0.00

naval 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

power 3.79±0.05 3.79±0.04 3.74±0.04 3.71±0.04 3.62±0.04 3.65±0.04 3.64±0.04

protein 3.77±0.01 3.76±0.02 3.86±0.02 3.80±0.03 3.47±0.02 3.69±0.01 3.60±0.04

wine 0.64±0.01 0.64±0.01 0.64±0.01 0.65±0.01 0.63±0.01 0.63±0.01 0.64±0.01

yacht 0.95±0.11 0.96±0.13 0.89±0.09 1.05±0.12 0.78±0.09 0.99±0.10 0.94±0.11

1. They do not use the same train-test splits as other approaches mentioned in Section 5.3,
rather random ones;

2. Their code appears to validate on the test set, and reports the minimum of the achieved NLL
results over all epochs.

The setup seems consistent across all measured methods in the paper, therefore their results are inter-
nally consistent (although an argument could be made that it favors methods with good predictions
and large variance across training epochs). However, unfortunately their results are not comparable
with the rest of the literature as presented.

Implementing a proper train-validation-test setup for their model appears to result in subpar per-
formance in our experiments, however this could be the case for a number of reasons, such as
suboptimal hyperparameter choices on our part.

C.7 CRPS MODEL VARIANTS ON THE UCI BENCHMARK

We present NLL scores in Table 6 and RMSE scores in Table 7 for various CRPS-based model
variants. A subscript of e indicates ensemble models, superscript of mh and lmh indicates multi-
head and layered-multi-head variants, respectively.

C.8 RUNNING TIMES & SCALING

See Table 8 for running times in seconds on the UCI Benchmark. All of our implementations were
run on an AMD EPYC 7F72 workstation with 2x24 CPU cores (48 cores, 96 threads in total) and 384
MiB of L3 cache. We used a single NVIDIA A100-SXM4-40GB GPU per experiment, with CUDA
version 12.2 and driver version 535.183.01, ensuring consistent conditions across experiments.

To illustrate scaling, we compare the running time of training 10 epochs with MDN and CRPS on
the largest protein dataset for increasingly large model sizes, however leaving the expressive power
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Table 8: Running times on the full UCI Benchmark in seconds.

MDN WCRPS Ensembles WCRPSens MDNbnn

5594 12074 19070 39624 95902

105 106 107 108

number of parameters (log)

101

6 × 100

2 × 101

3 × 101
4 × 101

ru
nt

im
e 

(s
) (

lo
g)

Training 10 epochs (log-log)
mdn
crps

0.0 0.2 0.4 0.6 0.8 1.0 1.2
number of parameters 1e8

10

20

30

40

ru
nt

im
e 

(s
)

Training 10 epochs
mdn
crps

Figure 7: Scaling of a CRPS badsed models compared to a deterministic model.

w.r.t. the output distribution constant (100 components for MDN and two layers of size [100, 50] for
the CRPS based model). See Figure 7 for results.

At smaller model sizes, the specifics of the GPU hardware make comparisons somewhat random,
as devices can execute a large amount of computation in one step. However, as expected, at larger
sizes, the nondeterministic part of the network incurs a constant amount of additional cost, leaving
the running time approximately linear in the number of model parameters.

C.9 CALIBRATION

Please refer to Figure 8 for calibration plots on all train and test datasets.

C.10 DATASET STATISTICS

Please refer to Table 9 for dataset statistics.

C.11 PERFORMANCE AGAINST SIMPLE METHODS

While the primary concern in term of performance is comparison against advanced alternatives,
such as the baselines of Section 5.3, there is value in observing the improvement when compar-
ing against more traditional model types. In this section we present measurements comparing our

Table 9: Value frequencies in the UCI benchmark datasets

dataset samples (m) unique y unique / m most frequent y most frequent / m

boston 506 229 45.26% 16 3.16%
concrete 1030 845 82.04% 6 0.58%
energy 768 586 76.30% 6 0.78%
kin8nm 8192 8191 99.99% 2 0.02%
naval 11934 51 0.43% 234 1.96%
power 9568 4836 50.54% 9 0.09%
protein 45730 15903 34.78% 272 0.59%
wine 1599 6 0.38% 681 42.59%
yacht 308 258 83.77% 3 0.97%
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Figure 8: Calibration for the WCRPSe model on all datasets separately for train and test sets
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Table 10: NLL results on the UCI Datasets benchmark (lower is better). Scores that perform at least
on par when compared to the results in Table 1 are highlighted in bold.

dataset SHR MDN BNN MDNbnn WCRPSe

boston 2.74±0.11 2.45±0.06 2.36±0.04 2.36±0.03 2.32±0.05

concrete 3.30±0.09 3.16±0.03 2.98±0.03 2.99±0.03 2.95±0.05

energy 1.53±0.21 1.09±0.06 1.00±0.21 0.65±0.02 0.31±0.03

kin8nm -1.20±0.01 -1.15±0.01 -1.28±0.01 -1.30±0.01 -1.38±0.01

naval -6.59±0.03 -6.55±0.03 -6.84±0.03 -6.72±0.01 -6.51±0.03

power 2.78±0.02 2.67±0.00 2.77±0.01 2.62±0.01 2.57±0.01

protein 2.89±0.06 2.02±0.01 2.73±0.02 1.96±0.01 2.05±0.01

wine 0.98±0.03 -3.75±0.06 0.89±0.02 -5.11±0.09 0.80±0.03

yacht 0.67±0.08 0.79±0.09 0.26±0.07 0.63±0.04 -0.16±0.05

Table 11: RMSE results on the UCI Datasets benchmark (lower is better). Scores that perform at
least on par when compared to the results in Table 2 are highlighted in bold.

dataset SHR MDN BNN MDNbnn WCRPSe

boston 3.63±0.25 3.54±0.27 3.01±0.24 2.93±0.20 2.91±0.18

concrete 6.20±0.16 6.34±0.11 5.30±0.12 5.25±0.11 4.94±0.17

energy 1.51±0.20 1.89±0.13 0.54±0.03 0.51±0.01 0.41±0.01

kin8nm 0.08±0.00 0.08±0.00 0.07±0.00 0.07±0.00 0.06±0.00

naval 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

power 3.94±0.04 3.96±0.04 3.96±0.04 3.86±0.04 3.62±0.04

protein 4.54±0.04 4.07±0.03 4.39±0.04 4.09±0.02 3.47±0.02

wine 0.64±0.01 0.65±0.01 0.63±0.01 0.66±0.01 0.63±0.01

yacht 1.39±0.17 1.68±0.18 0.88±0.08 0.77±0.07 0.78±0.09

method against a simple probabilistic neural-network based heteroscedastic regression model, and a
classic BNN trained with variational inference.

A simple heteroscedastic regression model predicts the mean along with the variance of the model,
and computes the loss function accordingly (SHR for Simple Heteroscedastic Regression). Note
that assuming normal distribution for the noise, this model coincides with MDN when setting the
number of components to 1.

Classic Bayesian neural networks also predict the parameters of the aleatoric distribution, however
also assume probability distributions over the weights of the network. The resulting network can be
optimized using variational inference Blundell et al. (2015) (BNN). Again assuming normal distri-
bution for the noise, this model coincides with a BNN-based version of MDN with 1 components.

We present results for SHR, MDN, BNN, MDNbnn, and WCRPSe in Tables 10 and 11. As we can
observe, in most cases simple methods either benefit from relaxing the Gaussian assumption, or
perform similarly to the corresponding variant of MDN. On some datasets, however, the Gaussian
restriction does seem to benefit the method, most apparent on the yacht and naval datasets.

C.12 PERFORMANCE COMPARISON FOR THE NUMBER OF SAMPLES

As the CRPS-based methods represent their distribution through producing samples, the number of
samples drawn for calculating the loss is an important hyperparameter during training. In Table 12,
we present performance as well as running times for various choices for the number of samples
drawn during training.

A smaller number of samples drawn results in faster per-batch calculation time, but in turn the
training process takes longer to converge. While the running time overall seems to vary randomly to
a relatively large degree, still we can observe that smaller values result in faster running times.
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Table 12: NLL results on the UCI Datasets benchmark (lower is better) for different values of
samples drawn during training.

dataset 2 3 5 10 20 50 100 200

boston 2.33±0.04 2.30±0.04 2.40±0.04 2.39±0.05 2.35±0.05 2.33±0.06 2.40±0.05 2.40±0.05

concrete 3.02±0.03 3.04±0.04 3.06±0.05 3.04±0.04 3.08±0.03 3.09±0.04 3.09±0.04 3.11±0.05

energy 0.59±0.03 0.49±0.02 0.49±0.03 0.47±0.03 0.50±0.05 0.44±0.03 0.47±0.04 0.46±0.05

kin8nm -1.24±0.02 -1.34±0.01 -1.34±0.01 -1.34±0.01 -1.34±0.01 -1.33±0.01 -1.32±0.01 -1.33±0.01

naval -6.07±0.03 -6.23±0.03 -6.39±0.03 -6.41±0.03 -6.52±0.04 -6.57±0.03 -6.65±0.05 -6.58±0.03

power 2.81±0.01 2.80±0.01 2.78±0.00 2.73±0.01 2.66±0.01 2.66±0.01 2.66±0.01 2.65±0.01

protein 2.66±0.01 2.60±0.01 2.51±0.01 2.27±0.04 2.21±0.01 2.22±0.00 2.22±0.01 2.23±0.01

wine 0.93±0.02 0.91±0.03 0.92±0.02 0.91±0.03 0.92±0.03 0.92±0.02 0.90±0.03 0.87±0.03

yacht 0.23±0.05 0.13±0.05 0.05±0.06 -0.05±0.06 0.00±0.05 -0.08±0.07 0.07±0.06 0.08±0.08

time (h) 2.34 2.51 2.41 2.90 3.61 3.55 3.35 3.43

On the other hand, while some smaller datasets seem to favor small sample values (notably boston
and concrete), larger sample sizes seem much more robust overall, especially on the larger datasets
in the benchmark (naval, power, protein).

C.13 PERFORMANCE COMPARISON AGAINST DISCO NETS

As described before, the closest prior approach is DISCO Nets (Bouchacourt et al., 2016), where the
authors introduce a multivariate distributional regression method for hand-pose estimation. Remark-
ably, they also use injected random noise for nondeterminism (as in Section 4.1), and derive a loss
function which, with the correct parametrization, is very similar to a multivariate version of the ba-
sic non-weighted version of our method, essentially reproducing the Energy Score (see Section 4.5),
which the authors also highlight.

As the DISCO Nets method is not primarily formulated for univariate regression, for fairness we
first compare on the original task of (Bouchacourt et al., 2016). DISCO Nets is originally measured
on the NYU Hand Pose Estimation dataset (Tompson et al., 2014) as preprocessed by Oberweger
et al. (2015). The processed dataset contains 72,757 training and 8254 testing frames, with the sets
consisting of RGBD images of hands, taken from 3 viewpoints. However, only the front view and
the depth channel is used for the experiment. For each data point, the label consist of the 3d position
of 14 finger joints.

To compare, we use the original code of DISCO Nets6 to run the original preprocessing pipeline
to acquire the train and test sets. We also use the same network size as Bouchacourt et al. (2016),
consisting of 3 convolutional layers with 8 filters each, max pooling layers, and 3 linear layers of
size 1024 with ReLU activation.

Performance is measured as in Bouchacourt et al. (2016), in terms of Energy Score (denoted as
ProbLoss, smaller is better), Mean Joint Euclidean Error (MeJEE, smaller is better), Max Joint
Euclidean Error (MaJEE, smaller is better) and Fraction of Frames within distance (FF, larger is
better), including standard error of the mean (SEM) for the first three. For exact definitions, please
refer to the original paper and its supplement. We take scores for DISCO Nets and baselines from
the original paper, and present scores for WCRPS and WCRSPe in Table 13. As we can observe,
the improved models outperform DISCO Nets, with the WCRPSe model performing really strongly
in particular. While deterministic measures (MeJEE, MaJEE, FF) also show higher scores, the
performance difference is most apparent in ProbLoss, hinting at much better predictive distributions.

Second, we implement the method on the UCI Benchmark and evaluate its performance under the
same conditions as in Section 5.3.1. For hyperparameters not explicitly investigated in Bouchacourt
et al. (2016), we adopt the same values as the original authors (e.g., β = 1). Since DISCO Nets also
generates samples rather than directly modeling the density, we apply the KDE approach described
in Appendix C.1 to compute the NLL.

6https://github.com/oval-group/DISCONets
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Table 13: Performance comparison against Bouchacourt et al. (2016) and its baselines using the
multivariate WCRPS and WCRPSw models on the NYU Hand Pose dataset, ±SEM.

Model ProbLoss (mm) MeJEE (mm) MaJEE (mm) FF (80mm)

BASEβ=1,σ=1 103.8±0.6 25.2±0.2 52.7±0.2 86.040
BASEβ=1,σ=5 99.3±0.6 25.5±0.2 52.9±0.3 85.773
BASEβ=1,σ=10 96.3±0.6 25.7±0.1 53.2±0.3 85.664

DISCOβ=1,γ=0 92.9±0.5 21.6±0.1 46.0±0.3 92.971
DISCOβ=1,γ=0.25 89.9±0.5 21.2±0.1 46.4±0.3 93.262
DISCOβ=1,γ=0.5 83.8±0.5 20.9±0.1 45.1±0.2 94.438

WCRPS 72.1±0.5 19.5±0.1 39.0±0.2 96.510
WCRPSe 63.7±0.5 18.8±0.1 37.6±0.2 96.958

Table 14: NLL results on the UCI Datasets benchmark (lower is better). Scores that perform at least
on par when compared to the results in Table 1 are highlighted in bold.

dataset dropout CRPS WCRPSe DISCOβ=1
γ=0 DISCOβ=1

γ=0.25 DISCOβ=1
γ=0.5 BNN-LV

boston 2.40±0.04 2.38±0.06 2.32±0.05 3.44±0.14 2.86±0.09 2.34±0.04 2.68±0.02

concrete 2.94±0.02 3.11±0.04 2.95±0.05 4.16±0.06 3.51±0.04 3.02±0.03 3.31±0.01

energy 1.21±0.01 0.46±0.04 0.31±0.03 2.61±0.11 0.82±0.12 0.65±0.03 2.32±0.02

kin8nm -1.14±0.01 -1.34±0.01 -1.38±0.01 0.81±0.03 -0.83±0.01 -1.33±0.01 -1.24±0.01

naval -4.45±0.00 -6.61±0.03 -6.51±0.03 -6.59±0.03 -6.47±0.03 -6.04±0.03 -5.14±0.01

power 2.81±0.01 2.66±0.01 2.57±0.01 3.54±0.03 3.13±0.01 2.71±0.01 2.83±0.01

protein 2.87±0.00 2.29±0.00 2.05±0.01 5.30±0.14 inf±nan 2.34±0.01 2.59±0.01

wine 0.93±0.01 0.89±0.04 0.80±0.03 2.62±0.09 1.75±0.06 0.94±0.03 1.00±0.01

yacht 1.25±0.02 0.07±0.08 -0.16±0.05 0.29±0.07 0.10±0.07 0.37±0.07 2.09±0.03

In Bouchacourt et al. (2016), the authors propose using the MEU (Maximum Expected Utility) point,
conceptually similar to the geometric median, and suggest employing MEU-based RMSE for early
stopping by comparing it to the ground truth. However, in our experiments, we resort to using NLL
for early stopping, as MEU-based RMSE proved ineffective; it often failed to decrease beyond a
certain threshold or even increased from its starting point. In a univariate regression problem, the
output distribution’s geometric median is equivalent to the median, thus MEU is essentially defined
as the median of the sample. Given that the median generally does not coincide with the mean which
is known to be optimal for RMSE, this outcome is not unexpected.

We test three hyperparameter configurations for DISCO Nets, as presented in Tables 14 and 15.
As expected, the theoretically optimal variant (γ = 0.5) performs well, while other configurations
yield suboptimal results. However, even the correctly parameterized version is outperformed by our
best method. This outcome is again unsurprising, since with the correct hyperparameter settings,
adaptations for regression benchmarking, and other enhancements we apply for training, the method
essentially replicates the unweighted CRPS approach trained using a small sample size for loss
calculation.

C.14 PERFORMANCE COMPARISON AGAINST BNN-LV

The method introduced in Depeweg et al. (2018) (BNN-LV) is theoretically capable of representing
complex distributions, such multi-modal ones. However, the original paper primarily evaluates the
method on reinforcement learning tasks and lacks detailed quantitative analysis. Therefore, we
choose not to benchmark against it using its original datasets. Fortunately, a recent uncertainty
quantification framework (Lehmann et al., 2024) implements BNN-LV for regression. Given that
the first author of Depeweg et al. (2018) is also a co-author of Lehmann et al. (2024) and was

6When a ground truth point falls too far outside the predicted distribution, the likelihood function becomes
essentially 0 numerically, causing the NLL metric to take on the value of ∞.
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Table 15: RMSE results on the UCI Datasets benchmark (lower is better). Scores that perform at
least on par when compared to the results in Table 2 are highlighted in bold.

dataset dropout CRPS WCRPSe DISCOβ=1
γ=0 DISCOβ=1

γ=0.25 DISCOβ=1
γ=0.5 BNN-LV

boston 3.61±0.23 3.01±0.21 2.91±0.18 4.15±0.27 3.49±0.21 2.99±0.20 3.67±0.23

concrete 5.45±0.19 5.48±0.16 4.94±0.17 6.95±0.12 6.34±0.17 5.36±0.17 6.54±0.11

energy 0.97±0.06 0.44±0.02 0.41±0.01 2.87±0.14 0.71±0.15 0.56±0.02 3.00±0.08

kin8nm 0.09±0.00 0.07±0.00 0.06±0.00 0.08±0.00 0.07±0.00 0.07±0.00 0.07±0.00

naval 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

power 4.18±0.04 3.79±0.05 3.62±0.04 5.23±0.12 4.55±0.04 3.95±0.04 4.17±0.03

protein 4.39±0.02 3.77±0.01 3.47±0.02 5.75±0.01 4.70±0.08 3.96±0.03 4.79±0.02

wine 0.66±0.01 0.64±0.01 0.63±0.01 0.70±0.01 0.65±0.01 0.65±0.01 0.64±0.01

yacht 1.23±0.37 0.95±0.11 0.78±0.09 1.07±0.11 0.88±0.10 1.05±0.10 3.38±0.20

substantially involved in the BNN-LV implementation7, we consider the framework of Lehmann
et al. (2024) to be an authoritative reference implementation for BNN-LV.

For NLL calculations, we use the KDE approach outlined in Appendix C.1, and early stopping is
performed based on measuring the training loss on the validation set. As the method converges
very slowly, we needed to increase the maximum number of allowed epochs. However, since it
also requires relatively long per-epoch training times, the approach ended up taking approximately
55X as long as our fastest measured method MDN (or over 86 hours) on the full benchmark, mak-
ing it impractical to optimize over multiple hyperparameter combinations. Instead, we employ the
hyperparameters suggested in the framework’s manual. The results are summarized in Tables 14
and 15.

On many datasets, BNN-LV produces respectable scores, often comparable to classic baselines such
as dropout in NLL, however often underperforms in RMSE. In general it does not produce com-
petitive scores when compared to the best measured non-Gaussian methods such as WCRPSe or
MDNbnn.

7https://github.com/lightning-uq-box/lightning-uq-box/pull/21
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