
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

∆-DIT: ACCELERATING DIFFUSION TRANSFORMERS
WITHOUT TRAINING VIA DENOISING PROPERTY ALIGN-
MENT

Anonymous authors
Paper under double-blind review

(a) PIXART-𝜶

(b) DiT-XL for ImageNet

×1.6

×1.6

FID
39.0

FID
35.9

FID
15.9

FID
13.3

Figure 1: Accelerating PIXART-α and DiT-XL by 1.6× speedup with 20 DPMSolver++ steps.

ABSTRACT

Diffusion models are now commonly used for producing high-quality and diverse
images, but the iterative denoising process is time-intensive, limiting their usage in
real-time applications. As a result, various acceleration techniques have been devel-
oped, though these primarily target UNet-based architectures and are not directly
applicable to Transformer-based diffusion models (DiT). To address the specific
challenges of the DiT architecture, we first analyze the relationship between the
depth of DiT blocks and the quality of image generation. While skipping blocks
can lead to large degradations in generation quality, we propose the ∆-Cache
method, which captures and stores the incremental changes of different blocks,
thereby mitigating the performance gap and maintaining closer alignment with the
original results. Our analysis indicates that the shallow DiT blocks primarily define
the global structure of images such as compositions and outlines, while the deep
blocks mainly refine details, and the role of middle blocks lies between the two.
Based on this, we introduce a denoising property alignment method that selectively
bypasses computations of different blocks at various timesteps while preserving
performance. Comprehensive experiments on PIXART-α and DiT-XL demonstrate
that ∆-DiT achieves a 1.6× speedup in 20-step generation and enhances perfor-
mance in most cases. In the 4-step consistent model generation scenario, and with
a more demanding 1.12× acceleration, our approach significantly outperforms
existing methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

In recent years, the field of generative models has experienced rapid advancements. Among these,
diffusion models (Ho et al., 2020; Rombach et al., 2022; Song et al., 2021b) have emerged as pivotal,
attracting widespread attention for their ability to generate high-quality and diverse images (Dhariwal
& Nichol, 2021). This has also spurred the development of many meaningful applications, such
as image editing (Kawar et al., 2023; Zhang et al., 2023a), 3D generation (Tang et al., 2023b;a;
Mo et al., 2023), and video generation (Wu et al., 2023a; Khachatryan et al., 2023; Blattmann
et al., 2023; Luo et al., 2023b). Although diffusion models have strong generation capabilities, their
iterative denoising nature results in poor real-time performance. Subsequently, numerous inference
acceleration frameworks have been proposed, which include general model compression methods
for denosing network (Fang et al., 2023; Zhang et al., 2024a; Shang et al., 2023; So et al., 2023;
Kim et al., 2023; Salimans & Ho, 2022; Luo et al., 2023a; Zhao et al., 2023; Sauer et al., 2023), fast
sampling solver (Song et al., 2021a; Lu et al., 2022a;b; Zhang & Chen, 2023; Karras et al., 2022), and
cache-based acceleration methods (Ma et al., 2023; Li et al., 2023b). However, almost all of these
acceleration techniques are designed for the UNet-based (Ronneberger et al., 2015) architecture.

Recently, Diffusion Transformers (DiT) (Peebles & Xie, 2023) have emerged as dominant foun-
dational models, exemplified by PIXART-α (Chen et al., 2023), SD3.0 (Esser et al., 2024), and
Sora (Brooks et al., 2024). Despite this success, the acceleration of DiT inference is under-explored.
Existing methods, such as early stopping (Moon et al., 2023), require retraining and are unsuitable
for small-step generation. DiT’s isotropic architecture, with no long skip connections found in
UNet, makes it difficult to apply UNet-based acceleration techniques. For instance, cache-based
methods (Ma et al., 2023; Li et al., 2023b) may result in information loss, as DiT lacks the long
shortcuts that facilitate feature reuse in UNet. Moreover, skipping computations for branches can
introduce significant degradations. To address this, we propose ∆-Cache, a caching method tailored
for transformer architectures that caches ∆ change between different blocks instead of the original
feature maps, preventing large degradation and making caching more effective for DiT.

(a) No △-Cache (b) △-Cache shallow blocks

(c) △-Cache middle blocks (d) △-Cache deep blocks

Prompt: a couple of fire trucks that are by a motorcycle

Figure 2: Images generated by ∆-Cache
for various blocks within the DiT.

In our caching framework, we first investigate the degra-
dations introduced by caching at different blocks within
the transformer. We observe that the shallow transformer
blocks in DiT primarily define the global structure of
images such as compositions, and outlines, while the
deep blocks focus on refining image details, as illus-
trated in Figure 2. While previous studies (Wang &
Vastola, 2023; Liu et al., 2023; Hertz et al., 2023) have
pointed out a property of diffusion models: creating
contours in the earlier timesteps (early denoising stage)
and generating details in the later timesteps (later stage).
Building on this property and our findings, this paper
proposes a denoising property alignment inference accel-
eration method, ∆-DiT. Specifically, the method applies
∆-Cache to the deeper blocks during the early denois-
ing stage to soften the details and preserve the contours,
while applying ∆-Cache to the shallow blocks during
later sampling to maintain the details, thus aligning with
the property of the diffusion models (Wang & Vastola,
2023; Liu et al., 2023; Hertz et al., 2023). We evaluated
our approach across multiple datasets, including MS-
COCO2017 (Lin et al., 2014) and PartiPrompts (Yu et al., 2022), using various DiT architectures
such as PIXART-α (Chen et al., 2023), DiT-XL (Peebles & Xie, 2023), and PIXART-α-LCM (Chen
et al., 2023; Luo et al., 2023a). Extensive quantitative results confirm the effectiveness of our method.
In the 20-step generation, we achieved a 1.6x speedup, with FID improving from 39.002 to 35.882.
In the more challenging 4-step generation scenarios, our method also significantly outperformed
existing baselines in terms of FID score from 44.198 to 40.118. The contributions of our paper are
three-fold:

• We adapt the caching method to transformers using ∆-Cache, which stores the incremental
changes in feature maps. Furthermore, we identify a correlation between different DiT

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

blocks and the final generation results: shallow blocks focus on generating image outlines,
while deep blocks emphasize image details.

• To align with the denoising property of generating outlines first and details later, we propose
a training-free acceleration framework, termed ∆-DiT. Specifically, we accelerates inference
by caching deep blocks during the early stages of denoising and shallower blocks in the later
stages.

• We show empirically that ∆-DiT achieves a 1.6× speedup in 20-step generation while
improving image quality. On more challenging image generation scenarios (eg. 4-step),
∆-DiT also outperforms existing approaches in generation quality by a significant margin.

2 RELATED WORK

Efficient Diffusion Model. To improve the real-time performance of diffusion models, various
lightweight and acceleration techniques have emerged. Currently, methods for accelerating diffusion
models for image generation can be broadly categorized into three perspectives: a lightweight
denoising model, and reduced denoising timestep, and the intersection of the model and timestep
dimension. Similar to traditional model compression, many efforts focus on pruning (Fang et al.,
2023; Zhang et al., 2024a), quantization (Shang et al., 2023; So et al., 2023; He et al., 2023; Li et al.,
2023c), and distillation (Kim et al., 2023; Salimans & Ho, 2022; Luo et al., 2023a; Zhao et al., 2023;
Sauer et al., 2023) to obtain a smaller yet comparable denoising network. Besides, reduced denoising
timestep is a unique dimension for diffusion models. Most methods currently focus on exploring
efficient ODE solvers (Song et al., 2021a; Lu et al., 2022a;b; Zhang & Chen, 2023; Karras et al., 2022),
aiming to obtain high-quality images with fewer sampling steps. LCM (Song et al., 2023; Luo et al.,
2023a) proposes consistency loss and knowledge distillation to achieve the goal of fewer steps. Lastly,
there’s a focus on jointly optimizing denoising modes and timesteps. For instance, OMS-DPM (Liu
et al., 2023) and Autodiffusion (Li et al., 2023a) simultaneously optimize skips and allocate noise
estimation networks of specific sizes for each timestep. However, most of the aforementioned work
is implemented and validated on the UNet architecture. One previous work (Moon et al., 2023)
proposes an early stopping strategy for DiT, which cannot be easily transferred to fewer timestep
settings. Therefore, there is currently a lack of novel acceleration methods specifically designed for
the DiT architecture.

Cache Mechanism. The cache mechanism is a key concept in computer systems, designed to
temporarily store data for reuse, improving processing efficiency. In Large Language Models, the
KV cache (Zhang et al., 2023b; Ge et al., 2023) is widely used, caching key and value matrices
from attention blocks to accelerate inference. Cache-based techniques have also been applied to
diffusion models, with DeepCache (Ma et al., 2023) accelerating UNet by caching feature maps
from up-sampling blocks, and Faster Diffusion (Li et al., 2023b) optimizing computation by caching
outputs from UNet encoders. On a finer granularity, studies such as (Zhang et al., 2024b; Wimbauer
et al., 2024; So et al., 2024) focus on caching feature maps within specific blocks to save computations.
These methods target feature maps at various locations and in differing quantities as caching objectives,
and most of them are targeted at the UNet architecture. However, this paper introduces a feature map
offsets caching method, specifically tailored to the isotropic architecture of DiT.

3 PRELIMINARY

The concept of diffusion originates from a branch of non-equilibrium thermodynamics (De Groot
& Mazur, 2013) in physics. In recent years, researchers have applied this concept to image genera-
tion (Ho et al., 2020; Rombach et al., 2022; Song et al., 2021b; Dhariwal & Nichol, 2021; Song &
Ermon, 2019), transforming the process into two stages: noise diffusion and denoising.

Noising Process. This is also the training phase of the diffusion model. Given an original image x0

and a random time step t ∈ [1, T] (where T is the total steps), the image after t steps of diffusion is√
ᾱtx0 +

√
1− ᾱtϵ, where ᾱt is constant related to t. The noise estimation network is then used to

estimate the noise in the diffused result, making the estimated noise ϵθ as close as possible to the
actual noise ϵ added during diffusion. The learning objective is defined as follows (Ho et al., 2020):

L(θ) = Et,x0∼q(x),ϵ∼N (0,1)

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝜟-Cache

Prompt: A little poodle puppy laying near a newspaper with a look of guilt.

𝒕 = 𝑻 𝒕 = 𝟎𝒕 = 𝒃

High-frequency components

of the differences in adjacent

step images. Formulated as:

𝑰𝑫𝑭𝑻 𝑫𝑭𝑻 𝒙𝒕"𝟏 − 𝒙𝒕 𝑯

Outline Generation Stage Detail Generation Stage

Target the Deep DiT Blocks (Outline-Friendly) Target the Shallow DiT Blocks (Detail-Friendly)

Figure 3: Overview of the ∆-DiT: The denoising property emphasizes generating outlines early
in denoising and details later. Our previously proposed ∆-Cache method caches deep blocks for
outline-friendly generation and shallow blocks for detail-friendly results. In the ∆-DiT, the properties
of Denoising and ∆-Cache are aligned in stages, that is, ∆-Cache is applied to the deep blocks in the
DiT during the early outline generation stage of the diffusion model, and on shallow blocks during
the detail generation stage. The stage is bounded by a hyperparameter b.

where q(x) is the dataset distribution, and N is the Gaussian distribution. In most current works, the
noise estimation networks are mostly based on UNet architecture. However, in isotropic architectures
like DiT, ϵθ(xt) can be further transformed into f t

Nb
(f t

Nb−1(· · · (f t
1(xt))) = f t

Nb
◦ f t

Nb−1 ◦ · · · ◦
f t
1(xt) = F t

1:Nb
(xt), where f t

n represents the mapping of the n-th DiT block at timestep t, and
F t
1:Nb

represents the mapping of the first to the Nb-th DiT blocks. Nb denotes the number of blocks.

Denoising Process. During this process, Gaussian noise is iteratively denoised into a generated
image, and our goal is to accelerate this denoising process without requiring additional training.
Initially, a random Gaussian noise xT is given. It is then fed into the denoising network ϵθ to obtain
the estimated noise ϵθ(xT). With sampling solvers, the noisy image is denoised to produce the
denoised sample xT−1 for each timestep. After iterating this process T times, the final generated
image is obtained. Using the DDPM (Ho et al., 2020) solver as an example, the iterative denoising
process can be defined as follows:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, (2)

where αt, βt and σt is constant related to t, and z ∼ N (0, I). For other solvers (Song et al., 2021a;
Lu et al., 2022a;b; Zhang & Chen, 2023; Karras et al., 2022), the sampling formula differs slightly
from Eq. 2, but they are all functions of xt and ϵθ. In many scenarios, the noise estimation network
ϵθ(xt, t, c) has another input c. It is conditional control information, which can be either a class
embedding or a text embedding.

4 METHODOLOGY

In this section, we present our denoising property alignment method for training-free acceleration
of DiT. First, we introduce ∆-Cache, a novel caching method specifically designed for DiT. Then,
leveraging this framework, we explore the specific effects of different parts of blocks on generation.
Finally, by integrating the previous findings with the properties of the denoising process, we propose
∆-DiT to accelerate DiT generation. The overall framework is shown in Figure 3.

4.1 EFFECT OF DIT BLOCKS ON GENERATION

In accelerating DiT, methods like skipping blocks (Raposo et al., 2024) offer a straightforward way
to reduce computational overhead. However, skipping blocks during inference without additional
training introduces significant degradations from the original results as shown in Figure 4a. Each DiT

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(c) Cosine similarity heatmap of ∆

Block1

Block2

Block3

Block28

𝒙!

𝝐𝜽(𝒙!, 𝑡, 𝒄)

Block1

Block2

Block3

Block28

𝒙!#$

𝝐𝜽(𝒙!#$, 𝑡 − 1, 𝒄)

(b) ∆-Cache method

✂

𝜟 = ② - ①

①

②
… … … …

①

②

② ≈ ① + 𝜟

Timestep: t Timestep: t-1

Skip block 5 Skip block 12

Skip block 19 Skip block 27

(a) Skip different DiT block

Figure 4: (a) Visualization of images generated by skipping different blocks. (b) Illustration of
∆-Cache. The difference between the feature maps at both ends of the block is used as ∆. Then,
∆ is employed in the next step to compensate for the skipped computation of the block. (c) Cosine
similarity heatmap of ∆. Similarity of ∆ of blocks with different steps and different depths.

block plays a critical role in estimating noise at each timestep, and directly omitting critical blocks
can cause the final image to deteriorate into noise. Thus, it is necessary to compensate for the large
discrepancies introduced by skipping blocks to maintain image quality.

∆-Cache. Inspired by recent cache-based methods (Ma et al., 2023; Li et al., 2023b), caching and
reusing previous feature maps offers a potential solution. However, this approach cannot be directly
applied to transformer architectures due to the absence of long skip-connection. Therefore, we
propose ∆-Cache to cache incremental changes between blocks (e.g., in Figure 4b, the differences
between the features at points ① and ② is cached), which based on ∆ exhibits a high degree of
similarity. As shown in Figure 4c, the cosine similarity of ∆ between blocks at the same position
across adjacent timesteps remains above 0.9. This high similarity allows the ∆-Cache method to
incur minimal information loss. During denoising, some timesteps skip the computation of blocks
and apply the cached ∆ as compensation to minimize the degradation in the inference. Based on the
mathematical framework described in Section 3, ∆-Cache process can be defined as follows:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz =

1
√
αt

(
xt −

βt√
1− ᾱt

F t
1:Nb

(xt)

)
+ σtz

=
1

√
αt

(
xt −

βt√
1− ᾱt

F t
I+Nc:Nb

(F t
1:I+Nc

(xt))

)
+ σtz

=
1

√
αt

(
xt −

βt√
1− ᾱt

F t
I+Nc:Nb

(F t
1:I(xt) + F t

1:I+Nc
(xt)− F t

1:I(xt))

)
+ σtz

≈ 1
√
αt

(
xt −

βt√
1− ᾱt

F t
I+Nc:Nb

(F t
1:I(xt) + F t+1

1:I+Nc
(xt+1)− F t+1

1:I (xt+1))

)
+ σtz

(3)

Here, the underlined part is ∆, I indicates the starting block position of the ∆-Cache, Nb denotes the
number of blocks and Nc refers to the number of cached blocks.

Qualitative Analysis. Within the caching framework, we aim to explore the impact of different
blocks on the final generated image. Given that the effect of ∆-Cache on individual blocks is minimal
(as shown in Figure 4c), we analyze the impact at a coarser granularity to make the results more
discernible, rather than performing a block-by-block analysis. For a 28-block transformer like DiT-XL
and PIXART-α, we divide the network into three main sections: (1) Shallow Blocks (1-21): the first
21 blocks, (2) Middle Blocks (4-24): the middle 21 blocks, and (3) Deep Blocks (8-28): the last
21 blocks. This segmentation allows us to better assess the influence of different regions within the
model. As shown in Figure 2, we can conclude that:

1) For Shallow Blocks. Applying ∆-Cache to the shallow blocks results in inaccurate outline
generation. As shown in Figure 2a (green arrows), the blue car’s outline on the right is clear.
However, in Figure 2b, the outline is absent, despite the image is better generated in detail.

2) For Deep Blocks. In contrast, applying ∆-Cache to the deep blocks preserves the global outline
but reduces detail accuracy. As shown in Figure 2d, the blue car’s outline is retained, but some
noise appears in the finer details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3) For Middle Blocks. ∆-Cache applied to the middle part provides a compromise.

From this qualitative analysis, we can conclude that the shallow blocks of DiT are more related to
outline generation, the deep blocks are more connected to detail generation, and the middle blocks
represent a balance between the two.

Figure 5: Fourier relative log magnitude of images generated
by applying ∆-Cache to various blocks of the DiT.

Quantitative Analysis. Despite the
qualitative analysis indicating a cor-
relation between DiT blocks and the
generated output, we further validate
this observation through statistical
analysis. To quantify the ability to
generate details and outlines, we em-
ploy the Fourier transform as an ef-
fective method (Broughton & Bryan,
2018). In Fourier analysis, high-
frequency components correspond to
rapid intensity changes, typically as-
sociated with details like textures or
edges, while low-frequency compo-
nents represent the global structure
or outline. A higher proportion of
high-frequency components suggests
better detail generation, while strong
outline generation reflects more low-
frequency components. Specifically,
we can calculate the relative log magnitude from the Fourier transform as follows:

F(x) = F(u, v) =

H∑
x=1

W∑
y=1

x(x, y) · e−2πi(u
H x+ v

W y) (4)

Relative Log Magnitude(u, v) = log(

√
Re(F(u, v))2 + Im(F(u, v))2

max
u,v

√
Re(F(u, v))2 + Im(F(u, v))2

) (5)

Where F represents the Fourier transform, x(x, y) denotes the pixel values of the image, and H and
W stand for the image’s height and width, respectively. The coordinates (u, v) correspond to the
frequency domain. Re(·) and Im(·) represent the real parts and imaginary parts of a complex number,
respectively.

Using Fourier analysis, we can further compare how different parts of the blocks influence the
generated image. To draw statistical conclusions, we perform this analysis on a subset of the
MS-COCO2017 dataset Zhao et al. (2024). We compute the relative log magnitude of the Fourier
transform for images generated under three different settings, converting it into a radial relative
magnitude-frequency space, and calculated the expectation across the dataset. The results are
presented in Figure 5 , leading to the following conclusions:

1) For Shallow Blocks. When ∆-Cache is applied to the shallow blocks, where the shallow blocks
are lossy, the generated images show a high proportion of high-frequency components, indicating
strong detail generation, that is, friendly to detail generation.

2) For Deep Blocks. Applying ∆-Cache to deep blocks exhibits a high proportion of low-frequency
components, indicating strong outline generation, that is, friendly to outline generation.

3) For Middle Blocks. Middle blocks with ∆-Cache applied exhibit a balance between these two
extremes.

These findings align with the qualitative analysis presented earlier.

4.2 ACCELERATING DIT VIA DENOISING PROPERTY ALIGNMENT

Denoising property. Previous research (Wang & Vastola, 2023; Liu et al., 2023; Hertz et al., 2023)
has demonstrated that the denoising process in diffusion models follows a generation pattern. During

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the early stages, these models primarily generate image outlines, while the focus shifts to details in
the later stages. To further illustrate this, the bottom part of Figure 3 shows the difference between
images generated at adjacent timesteps. After applying a Fourier transform to this difference and
extracting the high-frequency components—representing areas with significant changes. We can
observe that in the early denoising stages (first two images in Figure 3), these regions primarily
capture the outline of the dog, while in later stages (last two images), the focus shifts to finer details
like the dog’s fur.

Denoising property alignment framework. Therefore, in terms of outline and detail generation,
we can align the ∆-Cache with the denoising property. As shown in Figure 3, image denoising
at various timesteps (from t = T to t = 0) is presented. Since denoising properties emphasize
outline generation in the early stages, and the deeper blocks in the ∆-Cache method are more suited
for generating outlines, ∆-Cache is applied to the deep blocks during the outline generation stage.
Conversely, as diffusion models focus more on detail generation in the later stages, and the shallow
blocks of the ∆-Cache method are more appropriate for detail generation, ∆-Cache is applied to the
shallow blocks during the detail generation stage.

To this end, we propose a training-free framework termed ∆-DiT, which can generate images with
better quality. In our framework, we introduce two hyperparameters. One is denoted as b, representing
the boundary between the outline generation stage and the detail generation stage. When t ≤ b,
∆-Cache is applied to the deep blocks; when t > b, ∆-Cache is applied to the shallow blocks. The
number of blocks requiring ∆-Cache is determined based on the actual computational requirements.
Assuming the computation cost of one block is Mb and the expected total computation cost is Mg , as
previously mentioned, the cache interval is N , and the number of DiT blocks is Nb. First, we roughly
determine the value of N as:

N = ⌈T ×Nb ×Mb

Mg
⌉, (6)

In some current low-step scenarios, the value of N is set to 2. After determining N , the actual number
of blocks to cache at the timestep is:

Nc = [(
Mg − (T mod N)×Nb ×Mb

⌊T/N⌋ ×Mb︸ ︷︷ ︸
the computation in each N step

− Nb ×Mb︸ ︷︷ ︸
the first full DiT

)/ (Mb × (N − 1))︸ ︷︷ ︸
the remaining cached steps

]
. (7)

Once these hyperparameters are determined, the inference process becomes fixed and remains
unchanged regardless of the input, enabling acceleration without the need for further training.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Models, Evaluation Data and Solvers. We conduct experiments on three diffusion transformer-
based architectures: DiT-XL (Peebles & Xie, 2023), PIXART-α(Chen et al., 2023), and PIXART-
α-LCM(Chen et al., 2023; Luo et al., 2023a). For DiT-XL, we generat 50k images using 1000
ImageNet classes (Russakovsky et al., 2015) for evaluation. For the PIXART-α models, we evaluate
image quality using 1.632k prompts from PartiPrompt (Yu et al., 2022) and 5k prompts from the
MS-COCO2017 validation dataset (Lin et al., 2014). In our main experiment, we use the 20-step
DPMSolver++ (Lu et al., 2022b), the default setting for PIXART-α. For consistency model generation,
we apply the 4-step LCMSolver (Song et al., 2023). To demonstrate the effectiveness of our method,
we compare with several fast-generation techniques, including the feature map caching method from
Faster Diffusion (Li et al., 2023b), TGATE (Zhang et al., 2024b).

Evaluation Metrics. We use a range of metrics to evaluate both generation efficiency and image
quality. For generation efficiency, we measure the theoretical computational complexity using
MACs and the practical time to generate an image using latency. Lower MACs and latency indicate
higher efficiency, while the speedup reflects the acceleration rate. To assess generation quality,
we employ widely used metrics such as FID (Heusel et al., 2017), IS (Salimans et al., 2016), and
CLIP-Score (Hessel et al., 2021).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The MS-COCO2017 and PartiPrompts generation results for PIXART-α are evaluated. Gate
is the hyperparameter defined in TGATE (Zhang et al., 2024b). T represents the number of timesteps,
and I indicates the starting block index for caching. Latency, measured in milliseconds, is tested on
an Nvidia A100 GPU.

Method MACs ↓ Speedup ↑ Latency ↓ MS-COCO2017 PartiPrompts
FID ↓ IS ↑ CLIP ↑ CLIP ↑

PIXART-α (T = 20) (Chen et al., 2023) 85.651T 1.00× 2290.668 39.002 31.385 30.417 30.097
PIXART-α (T = 13) (Chen et al., 2023) 55.673T 1.54× 1565.175 39.989 30.822 30.399 29.993

Faster Diffusion (I = 14) (Li et al., 2023b) 64.238T 1.33× 1777.144 41.560 31.233 30.300 29.958
Faster Diffusion (I = 21) (Li et al., 2023b) 53.532T 1.60× 1517.698 42.763 30.316 30.227 29.922

TGATE (Gate=10) (Zhang et al., 2024b) 61.075T 1.40× 1718.308 37.413 31.079 29.782 29.347
TGATE (Gate=8) (Zhang et al., 2024b) 56.170T 1.52× 1603.250 37.539 30.124 29.021 28.654

∆-Cache (Shallow Blocks) 53.532T 1.60× 1522.346 41.702 30.276 30.288 29.964
∆-Cache (Middle Blocks) 53.532T 1.60× 1522.528 35.907 33.063 30.183 30.078
∆-Cache (Deep Blocks) 53.532T 1.60× 1522.669 34.819 32.736 29.898 30.099

Ours (b = 12) 53.532T 1.60× 1534.551 35.882 32.222 30.404 30.123

Table 3: The MS-COCO 2017 and PartiPrompts results for the PIXART-α-LCM model are evaluated,
using the default number of generation steps, T = 4.

Method MACs ↓ Speedup ↑ Latency ↓ MS-COCO2017 PartiPrompts
FID ↓ IS ↑ CLIP ↑ CLIP ↑

PIXART-α-LCM (Chen et al., 2023) 8.565T 1.00× 415.255 40.433 30.447 29.989 29.669

Faster Diffusion (I = 4) (Li et al., 2023b) 7.953T 1.08× 401.137 468.772 1.146 -1.738 1.067
Faster Diffusion (I = 6) (Li et al., 2023b) 7.647T 1.12× 391.081 468.471 1.146 -1.746 1.057

TGATE (Gate=2) (Zhang et al., 2024b) 7.936T 1.08× 400.256 42.038 29.683 29.908 29.549
TGATE (Gate=1) (Zhang et al., 2024b) 7.623T 1.12× 398.124 44.198 27.865 29.074 28.684

Ours (b = 2, Nc = 4) 7.953T 1.08× 400.132 39.967 29.667 29.751 29.449
Ours (b = 2, Nc = 6) 7.647T 1.12× 393.469 40.118 29.177 29.332 29.226

5.2 COMPARISON WITH ACCELERATION METHODS

We comprehensively compare with efficient generation methods for PIXART-α on both the generation
efficiency and image quality in Table 1. The proposed method exceeds the baseline PIXART-
α(T = 20) on all metrics except for a small gap in the MS-COCO2017 CLIP-Score, with a 1.60×
speedup. With similar inference cost, we surpass PIXART-α(T = 13) on all metrics by a large margin
(e.g., FID: 39.989 → 35.882). Moreover, our proposed method also outperforms Faster Diffusion
and TGATE in all metrics on both datasets with similar or even higher generation efficiency. Finally,
to further illustrate the superior generative performance of our method, refer to the visualizations
generated by different methods in Figure 8.

Table 2: Results on the DiT-XL (cfg=4.0). Because the TGATE can
only handle cross-attention, it cannot be used for DiT-XL.

Method ImageNet-50k
MACs ↓ Latency ↓ FID ↓ IS ↑

DiT-XL (T = 20) (Peebles & Xie, 2023) 4.579T 578.201 15.893 440.797
DiT-XL (T = 13) (Peebles & Xie, 2023) 2.976T 382.607 15.982 436.730

Faster Diffusion (I = 14) (Li et al., 2023b) 3.434T 458.409 15.084 417.903
Faster Diffusion (I = 21) (Li et al., 2023b) 2.862T 383.812 15.145 416.609

∆-Cache (Shallow Blocks) 2.862T 367.148 15.112 420.198
∆-Cache (Middle Blocks) 2.862T 368.984 14.270 442.921
∆-Cache (Deep Blocks) 2.862T 367.042 13.391 439.700

Ours (b = 12) 2.862T 370.290 13.289 442.028

In Table 2, we further vali-
date our proposed method
on the DiT-XL architec-
ture Peebles & Xie (2023).
The method achieves a
1.6× speedup over the base-
line DiT-XL (T = 20)
while improving the FID
from 15.893 to 13.289.
Additionally, it surpasses
Faster Diffusion (I = 21)
in terms of IS, improving
from 416.609 to 442.028 by
a significant margin, while
maintaining comparable in-
ference speed. Although ∆-Cache does not lead in all metrics, its strong performance in both tables
demonstrates its overall effectiveness, offering a favorable balance between quality and efficiency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Performance under different advanced solvers which are measured on MS-COCO2017.

Solver PIXART-α + ∆-DiT
FID ↓ IS ↑ CLIP ↑ FID ↓ IS ↑ CLIP ↑

EulerD (Karras et al., 2022) 39.688 31.413 30.359 35.735 32.290 30.239
DEIS (Zhang & Chen, 2023) 37.675 32.362 30.420 35.302 32.721 30.377
DPMSolver++ (Lu et al., 2022a) 39.002 31.385 30.417 35.882 32.222 30.404

5.3 COMPARISON UNDER LCM SETTINGS

Latent Consistency Model (LCM) (Song et al., 2023; Luo et al., 2023a) introduces a method to
accelerate the denoising process using consistency loss, reducing timesteps from over 30 to just 4,
making it highly difficult to accelerate further. We test our approach in this challenging scenario to
assess its generalizability, as shown in Table 3. Methods like Faster Diffusion (Li et al., 2023b), which
lack supervision from previous step images, perform poorly in small-step settings, with significantly
high FID scores (FID=468.471). While existing approaches like TGATE (Zhang et al., 2024b)
achieve reasonable results, they suffer notable performance degradation (FID: 40.433 → 44.198) at
an acceleration ratio of approximately 1.12. In contrast, our method maintains superior performance
even with better FID scores.

Table 5: Results of opposite de-
noising property alignment on
PIXART-α and DiT-XL.

Method FID ↓ IS ↑ CLIP ↑
PIXART-α-Ours 35.882 32.222 30.404

Opposite 41.374 30.980 30.259

DiT-XL-Ours 13.289 442.028 /
Opposite 15.255 426.949 /

b=0 b=4 b=8 b=12 b=16 b=20
bound

26

28

30

32

34

36

38

40

42

44

46

F
ID

 a
nd

 IS

29.6

29.8

30

30.2

30.4

30.6

C
LI

P
 S

co
re

FID #
IS "
CLIP "

Figure 6: The choice of bound
value b.

Nc=0 Nc=7 Nc=14 Nc=21 Nc=28

The Number of Cached Blocks

28

30

32

34

36

38

40

42

FI
D

 a
nd

 IS

28.5

28.8

29.1

29.4

29.7

30

30.3

30.6

C
LI

P
Sc

or
e

FID #
IS "
CLIP "

Figure 7: The choice of total
cached blocks Nc.

5.4 ABLATION STUDY

Compatibility with fast sampling solvers. Our experiments use the default solver, DPMSolver++(Lu
et al., 2022b), but we also demonstrate compatibility with more advanced solvers. As shown in
Table 4, the performance improvements are consistent across different solvers. Notably, for all
three solvers—EulerD (Karras et al., 2022), DEIS (Zhang & Chen, 2023), and DPMSolver++ (Lu
et al., 2022b)—we observe significant gains, particularly in FID scores. EulerD shows a substantial
improvement (FID: 39.688 → 35.735), as does DEIS (FID: 37.675 → 35.882).

Effect of opposite denoising property alignment. The ∆-DiT framework uses ∆-Cache for deep
blocks during early sampling and for shallow blocks during later stages. In this experiment, we
reverse the cache order, applying ∆-Cache to shallow blocks in the early stages and deep blocks in the
later stages. As shown in Table 5, for PIXART-α, although the CLIP score shows a minor difference,
FID and IS significantly deteriorate (FID: 35.882 → 41.374; IS also drops). While CLIP score reflects
semantic alignment with text, FID and IS better capture the image’s finer details, highlighting the
effectiveness of the original caching strategy in enhancing image quality.

Illustration of the increasing bound b. Figure 6 illustrates the effect of the bound value on generation
outcomes. As b increases from 0 to 20, FID and IS improve and reach their optimal values around
b = 16, while the CLIP score peaks at b = 8. Given that a decreasing CLIP score can significantly
impact image-text alignment, we empirically determine that setting b = 12 offers the best trade-off
between FID, IS, and CLIP score, balancing both image quality and semantic alignment.

Illustration of the increasing number of cached blocks Nc. Figure 7 depicts the effect of the
number of cached blocks (Nc) on generation performance. As Nc increases from 0 to 28, FID
reaches its best value around Nc = 14, while IS and CLIP score peak around Nc = 21. To balance
performance and acceleration, we select Nc = 21, which results in over 37% MACs reduction, as
shown in Table 1.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

PIXART-α (85.65TMACs)

Faster Diffusion(53.53TMACs)

TGATE (56.17TMACs)

Ours (53.53TMACs)

Figure 8: Comparison of images generated by various methods. High-resolution images are
generated based on different strategies using prompts randomly selected from six distinct scenes in
the MS-COCO2017 dataset.

6 CONCLUSION AND LIMITATION

This paper considers the unique structure of DiT and proposes a training-free cache mechanism,
∆-Cache, specifically designed for DiT. Furthermore, we qualitatively and quantitatively explore
the relationship between shallow blocks in DiT and outline generation, as well as deep blocks and
detail generation. Based on these findings and the denoising properties of diffusion, we propose the
denoising property alignment acceleration method, ∆-DiT, which applies ∆-Cache to different part
blocks of DiT at various denoising stages. Extensive experiments confirm the effectiveness of our
approach. We believe that more refined search or learning strategies will yield even greater benefits.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. https://openai.com/research/
video-generation-models-as-world-simulators, 2024.

S Allen Broughton and Kurt Bryan. Discrete Fourier analysis and wavelets: applications to signal
and image processing. John Wiley & Sons, 2018.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Sybren Ruurds De Groot and Peter Mazur. Non-equilibrium thermodynamics. Courier Corporation,
2013.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. Advances in
neural information processing systems, 2023.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and Bohan Zhuang. PTQD: accurate post-
training quantization for diffusion models. Advances in neural information processing systems,
2023.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
to-prompt image editing with cross-attention control. In International Conference on Learning
Representations, 2023.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-
free evaluation metric for image captioning. In EMNLP (1), pp. 7514–7528. Association for
Computational Linguistics, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9307–9315, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017, 2023.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15954–15964, 2023.

Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and Shinkook Choi. On architectural
compression of text-to-image diffusion models. arXiv preprint arXiv:2305.15798, 2023.

Lijiang Li, Huixia Li, Xiawu Zheng, Jie Wu, Xuefeng Xiao, Rui Wang, Min Zheng, Xin Pan, Fei
Chao, and Rongrong Ji. Autodiffusion: Training-free optimization of time steps and architectures
for automated diffusion model acceleration. In ICCV, pp. 7082–7091. IEEE, 2023a.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models.
arXiv preprint arXiv:2312.09608, 2023b.

Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-DM: an efficient low-bit
quantized diffusion model. Advances in neural information processing systems, 2023c.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Enshu Liu, Xuefei Ning, Zinan Lin, Huazhong Yang, and Yu Wang. OMS-DPM: optimizing the
model schedule for diffusion probabilistic models. In ICML, volume 202 of Proceedings of
Machine Learning Research, pp. 21915–21936, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023a.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality
video generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10209–10218, 2023b.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free.
arXiv preprint arXiv:2312.00858, 2023.

Shentong Mo, Enze Xie, Ruihang Chu, Lanqing Hong, Matthias Nießner, and Zhenguo Li. Dit-3d:
Exploring plain diffusion transformers for 3d shape generation. Advances in neural information
processing systems, 2023.

Taehong Moon, Moonseok Choi, EungGu Yun, Jongmin Yoon, Gayoung Lee, and Juho Lee. Early
exiting for accelerated inference in diffusion models. In ICML 2023 Workshop on Structured
Probabilistic & Inference Generative Modeling, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172–4182. IEEE, 2023.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In MICCAI (3), volume 9351 of Lecture Notes in Computer Science, pp.
234–241. Springer, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,
2016.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1972–1981, 2023.

Junhyuk So, Jungwon Lee, Daehyun Ahn, Hyungjun Kim, and Eunhyeok Park. Temporal dynamic
quantization for diffusion models. Advances in neural information processing systems, 2023.

Junhyuk So, Jungwon Lee, and Eunhyeok Park. Frdiff : Feature reuse for universal training-free
acceleration of diffusion models, 2024. URL https://arxiv.org/abs/2312.03517.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, pp. 11895–11907, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653, 2023a.

Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen. Make-
it-3d: High-fidelity 3d creation from a single image with diffusion prior. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 22819–22829, 2023b.

Binxu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory
of outline first, details later. arXiv preprint arXiv:2303.02490, 2023.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating diffusion models
through block caching. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6211–6220, 2024.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7623–7633, 2023a.

13

https://arxiv.org/abs/2312.03517

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li.
Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image
synthesis. arXiv preprint arXiv:2306.09341, 2023b.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation. Advances
in Neural Information Processing Systems, 36, 2024.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. Trans. Mach. Learn. Res., 2022.

Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and Haonan Lu. Laptop-diff: Layer pruning
and normalized distillation for compressing diffusion models. arXiv preprint arXiv:2404.11098,
2024a.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023a.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In International Conference on Learning Representations, 2023.

Wentian Zhang, Haozhe Liu, Jinheng Xie, Francesco Faccio, Mike Zheng Shou, and Jürgen Schmid-
huber. Cross-attention makes inference cumbersome in text-to-image diffusion models. arXiv
preprint arXiv:2404.02747, 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi Chen. H2O:
heavy-hitter oracle for efficient generative inference of large language models. Advances in neural
information processing systems, 2023b.

Lin Zhao, Tianchen Zhao, Zinan Lin, Xuefei Ning, Guohao Dai, Huazhong Yang, and Yu Wang.
Flasheval: Towards fast and accurate evaluation of text-to-image diffusion generative models.
arXiv preprint arXiv:2403.16379, 2024.

Yang Zhao, Yanwu Xu, Zhisheng Xiao, and Tingbo Hou. Mobilediffusion: Subsecond text-to-image
generation on mobile devices. arXiv preprint arXiv:2311.16567, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL METRIC EVALUATION

In the main text, we evaluate the performance of various methods using FID, CLIP, and IS metrics.
Here, we have added more benchmarks for a more comprehensive evaluation. Specifically, we
included CMMD (an upgraded version of the FID metric) (Jayasumana et al., 2024), as well as
IR (ImageReward (Xu et al., 2024)) and HPSv2 (Wu et al., 2023b), two widely accepted human
preference metrics. Refer to Table 6 for the specific experimental results. Our method obtains
comprehensive optimal results on all those generation metrics.

Table 6: The MS-COCO2017 generation results for PIXART-α are evaluated. Gate is the hyper-
parameter defined in TGATE (Zhang et al., 2024b). T represents the number of timesteps, and I
indicates the starting block index for caching. Latency, measured in milliseconds, is tested on an
Nvidia A100 GPU. Underscore and bold indicate the top 3 results.

Method MACs ↓ Speedup ↑ MS-COCO2017
FID ↓ IS ↑ CLIP ↑ CMMD ↓ IR ↓ HPSv2 ↑

PIXART-α (T = 20) (Chen et al., 2023) 85.651T 1.00× 39.002 31.385 30.417 1.104 3.961 29.466
PIXART-α (T = 13) (Chen et al., 2023) 55.673T 1.54× 39.989 30.822 30.399 1.113 4.265 29.338
Faster Diffusion (I = 21) (Li et al., 2023b) 53.532T 1.60× 42.763 30.316 30.227 1.119 5.048 29.009
TGATE (Gate=8) (Zhang et al., 2024b) 56.170T 1.52× 37.539 30.124 29.021 1.086 6.081 28.552

∆-Cache (Shallow Blocks) 53.532T 1.60× 41.702 30.276 30.288 1.162 4.908 29.028
∆-Cache (Middle Blocks) 53.532T 1.60× 35.907 33.063 30.183 1.091 4.160 29.229
∆-Cache (Deep Blocks) 53.532T 1.60× 34.819 32.736 29.898 1.075 3.848 29.109

Ours (b = 12) 53.532T 1.60× 35.882 32.222 30.404 1.077 3.729 29.390

B RESULTS ON STABLE DIFFUSION 3.0

In the main text, we mainly conducted experiments on the traditional classical DiT architecture (Pee-
bles & Xie, 2023). Recently, some new DiT architectures have emerged, such as the MMDiT of
SD3 (Esser et al., 2024). Therefore, we also evaluated the performance on these new DiT architec-
tures, and the results are shown in Table 7. Even with the unique dual-branch architecture of SD3’s
DiT, our method remains applicable and achieves overall optimal performance in generation metrics,
surpassing all baseline methods with comparable MACs.

Table 7: Results on the Stable Diffusion 3.0.

Method MS-COCO2017
MACs ↓ Speedup ↑ FID ↓ IS ↑ CLIP ↑

SD3 (T = 28) (Esser et al., 2024) 168.256T 1.00× 32.288 35.326 32.314
SD3 (T = 18) (Esser et al., 2024) 108.164T 1.55× 31.875 33.890 32.156
Faster Diffusion (I = 21) (Li et al., 2023b) 105.160T 1.60× 30.823 33.349 32.172

∆-Cache (Shallow Blocks) 105.160T 1.60× 30.410 33.583 32.124
∆-Cache (Middle Blocks) 105.160T 1.60× 30.595 33.902 32.065
∆-Cache (Deep Blocks) 105.160T 1.60× 30.617 33.725 32.156

Ours 105.160T 1.60× 30.270 33.939 32.200

C GENERATION PERFORMANCE UNDER DIFFERENT SPEEDUP

In the Table 1, we present the experimental results for a fixed speedup (1.6×). To demonstrate the
performance of various methods under different speedups, we plotted the Pareto curve of CLIP-Score
(more widely recognized in T2I tasks) versus computational cost, as shown in Figure 9. The red
line represents the performance of our proposed method, which is positioned at the top-left of the
performance curves of other methods, indicating overall Pareto-optimal results. And more results
on LCM are shown in Table 8. Under the same speedup ratio (1.12×), our method achieves better
generation results compared to existing methods. At a higher speedup ratio (1.4×), the proposed
method still maintains an advantage in generation metrics, outperforming TGATE at a 1.12× speedup.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

It is worth noting that Faster Diffusion fails to generate properly at a 1.12× speedup, and TGATE’s
maximum speedup is only 1.17×. Our speedup ratio is groundbreaking, especially for challenging
tasks like LCM.

Table 8: The MS-COCO 2017 results for the PIXART-α-LCM model are evaluated, using the default
number of generation steps, T = 4.

Method MACs ↓ Speedup ↑ Latency ↓ MS-COCO2017
FID ↓ IS ↑ CLIP ↑

PIXART-α-LCM (Chen et al., 2023) 8.565T 1.00× 415.255 40.433 30.447 29.989

Faster Diffusion (I = 4) (Li et al., 2023b) 7.953T 1.08× 401.137 468.772 1.146 -1.738
Faster Diffusion (I = 6) (Li et al., 2023b) 7.647T 1.12× 391.081 468.471 1.146 -1.746

TGATE (Gate=2) (Zhang et al., 2024b) 7.936T 1.08× 400.256 42.038 29.683 29.908
TGATE (Gate=1) (Zhang et al., 2024b) 7.623T 1.12× 398.124 44.198 27.865 29.074

Ours (b = 2, Nc = 4) 7.953T 1.08× 400.132 39.967 29.667 29.751
Ours (b = 2, Nc = 6) 7.647T 1.12× 393.469 40.118 29.177 29.332
Ours (b = 2, Nc = 11) 6.883T 1.24× 350.539 42.653 29.810 29.689
Ours (b = 2, Nc = 16) 6.118T 1.40× 306.334 44.043 29.303 29.268

40 45 50 55 60 65 70
TMACs

29.75

29.95

30.15

30.35

CL
IP

-S
co

re

Pareto Curve Comparison: CLIP-Score vs TMACs

Pixart-
Faster Diffusion
TGATE

-Cache (shallow)
-Cache (middle)
-Cache (deep)

Ours

Figure 9: Pareto curves of various methods’ performance: Evaluation results of the Pixart-α (Chen
et al., 2023) on MS-COCO2017.

D ANALYSIS OF ∆-CACHE AND ∆-DIT

∆-Cache is the foundational module of ∆-DiT, and ∆-DiT utilizes alignment techniques built on
top of ∆-Cache. In this section, we visually demonstrate the advantages of ∆-DIT over ∆-Cache,
which lacks alignment techniques. Figure 10 visualizes the generation results of different strategies.
Similar to Section 4.1, strategies (b) and (c) have poor contour generation ability (an extra horse is
generated), while (d) suffers significant detail loss (with many noise points in the image). On the
other hand, strategy (e), which applies our alignment technique, maintains good overall contours and
preserves details without introducing much noise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(b) △- Cache the Shallow (c) △- Cache the Middle

(e) △- DiT (d) △- Cache the Deep

(a) No Cache

Figure 10: Comparison of the images generated by our proposed methods. The red line indicates
areas with anomalies in the image. Compared to (a), both (b) and (c) show worse contour generation,
with (b) and (c) introducing an extra horse in the contours. (d) exhibits poorer detail generation;
while the contour is similar to (a), the image contains more noise. In contrast, (e) leverages alignment
techniques, resulting in improved performance in both contour and detail generation.

E ORTHOGONALITY WITH OTHER ACCELERATION METHODS

In this section, we demonstrate the orthogonality between ∆-DiT and latent consistency models.
In fact, our method can also be orthogonal to classical quantization methods. For the Pixart-α, we
performed INT8 quantization, and the resulting orthogonal outcomes are shown in Table 9. With
the integration of quantization techniques, our speedup can reach 2×, while still maintaining good
generation metrics.

Table 9: Orthogonal experimental results of our method and model quantization.

Method MS-COCO2017
Latency ↓ Speedup ↑ FID ↓ IS ↑ CLIP ↑

Pixart-α (Chen et al., 2023) 2290.668 1.00× 39.002 31.385 30.417
Pixart-α + Quantization 1609.016 1.42× 39.044 31.482 30.418

Ours 1534.551 1.60× 35.882 32.222 30.403
Ours + Quantization 1114.004 2.06× 35.855 32.305 30.394

F EXPLORATION OF HYPERPARAMETER OPTIMIZATION METHODS

In ∆-DiT, there are two hyperparameters: the boundary b for detail generation and contour generation,
and the number of cache blocks Nc. There are optimization techniques that can be applied to
these hyperparameters. For example, by using FlashEval’s fast evaluation algorithm to search for
optimal values of b and Nc. First, obtain 50 prompts that align well with CLIP metrics using the
algorithm. Next, evaluate the CLIP score for different combinations of b and Nc using these prompts.
Finally, identify the top 10 hyperparameter combinations, which provide the best text-image matching.
Thanks to the speed of FlashEval’s evaluation, this process takes about 6 GPU hours to run on a
single A100 for the Pixart-α. The quantitative results are shown in Table 10. It can be observed that

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the CLIP score of the hyperparameters obtained through the search algorithm is better than that of
the ones set by experience, further validating the effectiveness of the hyperparameter optimization
algorithm.

Table 10: Results of searching for Nc and b after applying CLIP Score metric evaluation based on
FlashEval (Zhao et al., 2024) method.

Method MS-COCO2017
(Nc, b) TMACs ↓ CLIP ↑ FID ↓ IS ↑

Pixart-α (Chen et al., 2023) 0, None 85.651 30.417 39.002 31.385
Ours 21, 12 53.532 30.403 35.882 32.222
Ours + CLIP Search (Zhao et al., 2024) 12, 10 67.297 30.472 37.547 31.409
Ours + CLIP Search (Zhao et al., 2024) 20, 8 55.061 30.445 38.670 31.330

G POTENTIAL WITHIN THE UNET ARCHITECTURE

Although ∆-DiT is a method specifically designed for the DiT architecture, the ∆-Cache concept
we proposed is still applicable to the U-Net architecture. Specifically, the ∆-Cache method can be
applied to any position with the same resolution in U-Net, as shown in Figure 11. While the widely
adopted DeepCache (Ma et al., 2023) uses feature maps as the cache target, our ∆-Cache targets
the difference in feature maps as the cache. Experiments on the SD1.5 Rombach et al. (2022) show
that our method also achieves competitive results. For detailed quantitative data, refer to Table 11.
Our method outperforms the DeepCache method across all three generation metrics under the same
MACs.

Table 11: Applicability of our proposed ∆-Cache on the U-Net architecture.

Method MS-COCO2017
MACs ↓ Speedup ↑ FID ↓ IS ↑ CLIP ↑

Stable Diffusion v1.5 (Rombach et al., 2022) 13.553T 1.00× 25.133 33.406 29.953

DeepCache (Ma et al., 2023) 7.923T 1.71× 23.313 32.620 30.146
Ours (∆-Cache) 7.923T 1.71× 23.117 33.014 30.148

H MORE FINE-GRAINED BLOCK ANALYSIS

D1 U1

D2

D3

U2

U3

M

𝒙! 𝝐𝜽(𝒙!, 𝑡, 𝒄)

① ②

DeepCache
Target:

feature map ②

Δ-Cache
Target:

feature map ②-①

Figure 11: Comparison of ∆-Cache and DeepCache in U-
Net.

In the main manuscript, we explored
the effect of blocks in three sections:
shallow blocks (1-21), middle blocks
(4-24), and deep blocks (8-28). Here,
we present qualitative and quantita-
tive results in a more fine-grained
manner. Specifically, we applied ∆-
Cache to blocks 1-7, 7-14, 14-21,
and 21-28, and the resulting quali-
tative and quantitative outcomes are
shown in Figure 12. Qualitatively, we
observed that applying ∆-Cache to
blocks closer to the shallow signifi-
cantly impacts the contours compared
to not using caching. For example,
as shown in Figure 12b, a blue car is
directly lost. In contrast, applying ∆-
Cache to later blocks has a more pro-
nounced effect on the details. Quanti-
tatively, when ∆-Cache is applied to

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) No △-Cache (b) △-Cache 1-7 Blocks

(c) △-Cache 7-14 Blocks (d) △-Cache 14-21 Blocks

Figure 12: Qualitative and quantitative evaluation results of more fine-grained blocks division.

blocks 1-7, the loss of high-frequency information is minimal, while the loss of blocks 21-27 is large,
which also means that the loss of detail is large. This conclusion aligns with the findings presented in
the main manuscript.

I EXPERIMENTS IN MORE STEP SCENARIOS

Our goal is to generate images with an extremely small number of steps, so we set the generation
process to 20 steps. Although the FID is slightly higher compared to results with more steps, it
aligns with those reported in some literature under the same conditions. References (Zhang et al.,
2024b) and (So et al., 2024) provide baseline results for 20-step PIXART-α and DiT-XL, respectively,
with FID similar to ours. Finally, given that DiT-XL experiments are typically configured with 250
steps (cfg=1.5) (Peebles & Xie, 2023), we also conducted validation under this setting, as shown in
Table 12. The experimental results are consistent with the findings in the paper, demonstrating that
our method nearly outperforms the existing baseline approaches in terms of performance. Note that
in our experiments, we used the pytorch-fid package to evaluate FID.

Table 12: Results on the DiT-XL (cfg=1.5). * indicates the results we replicated under the official
code.

Method ImageNet-50k
MACs ↓ Latency ↓ FID ↓ IS ↑

DiT-XL (T = 250) (Peebles & Xie, 2023) 57.24T - 2.27 278.24
*DiT-XL (T = 250) (Peebles & Xie, 2023) 57.24T 7064.60 2.29 277.67
*DiT-XL (T = 157) (Peebles & Xie, 2023) 35.94T 4445.56 2.37 267.26

Faster Diffusion (I = 14) (Li et al., 2023b) 42.93T 5338.08 2.63 261.40
Faster Diffusion (I = 21) (Li et al., 2023b) 35.77T 4671.74 2.58 262.20

∆-Cache (Shallow Blocks) 35.77T 4652.80 2.52 264.28
∆-Cache (Middle Blocks) 35.77T 4641.43 2.37 270.84
∆-Cache (Deep Blocks) 35.77T 4680.23 2.35 269.87

Ours 35.77T 4642.53 2.31 271.03

19

	Introduction
	Related Work
	Preliminary
	Methodology
	Effect of DiT Blocks on Generation
	Accelerating DiT via Denoising Property Alignment

	Experiment
	Experimental Settings
	Comparison with Acceleration Methods
	Comparison Under LCM Settings
	Ablation Study

	Conclusion and Limitation
	Additional Metric Evaluation
	Results on Stable Diffusion 3.0
	Generation Performance Under Different Speedup
	Analysis of -Cache and -DiT
	Orthogonality With Other Acceleration Methods
	Exploration of Hyperparameter Optimization Methods
	Potential Within the UNet Architecture
	More Fine-Grained Block Analysis
	Experiments in More Step Scenarios

