
A Details of Experiments

A.1 Detailed Explanation of Target Problems.

This paper solves three NP-hard routing problems, traveling salesman problem (TSP), prize collecting
TSP (PCTSP), and capacitated vehicle routing problem (CVRP). This section provides detailed
descriptions of PCTSP and CVRP (for TSP, see section 3).

Prize Collecting Travelling Salesman Problem (PCTSP). The PCTSP is similar to TSP, while there
are differences in that we do not have to visit all the nodes and that the destination is not the first node
but the depot node, i.e., a tour is not a cycle. Let N be the number of nodes. The problem instance of
PCTSP is s = {(xi, λi, µi)}N+1

i=1 , where the xi ∈ R2 is in 2D euclidean coordinates, λi ∈ R is the
penalty of unvisited node, and µi ∈ R is the prize of visited node.

f(π|s) = L(π|s) + λ(π|s)

L(π|s) =
k∑

i=1

||xπi
− xπi−1

||2 + ||xπ1
− xn+1||2 + ||xπk

− xn+1||2

λ(π|s) =
∑
i/∈π

λi

The L(π|s) is the tour length, and λ(π|s) is the total penalty of the unvisited nodes. The k = |π|,
k ≤ N because the entire tour does not contain all of the nodes. There is a constraint of minimum
prize µ(c) as follows:

∑
i∈π

µi ≥ µ(c) (3)

Most of MDP is similar with TSP including training scheme. Unlike TSP, there is restriction that
the action on depot node πN+1 is forbidden to be selected until constraint (3) is satisfied. We define
cumulative reward for solution (action sequences) from problem instance s as R = Rf +αRS , where
Rf = −f , RS is the entropy reward in section 4.1, and α is a hyperparameter.

Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicle can no longer visit nodes,
when it exceeds the maximum demand v(c). Thus, the vehicle has to go back to the depot node,
and start another tour. The vehicle can make k number of tours, π = {π(i)}ki=1, where the first
and last element of each sub-tour (sub-permutation) π(i) is the depot node. Let N be the number
of nodes. Then the instance of CVRP expressed as s = {(xi, vi)}N+1

i=1 , where the depot node is
sn+1 = (xn+1, 0). The objective of CVRP is minimizing f :

f(π|s) =
k∑

i=1

li∑
j=1

||xπ(i)j
− xπ(i)j−1

||2

The li = |π(i)|. For every tour π(i), their is constraint on maximum demand v(c):∑
j∈π(i)

vj ≤ v(c) (4)

The MDP formulation is mostly same as TSP. There is action restriction rule based on constraint
(4), where every action except selecting depot node is restricted when it may exceeds the maximum
demand (i.e. when it make violation of (4) when selecting node other than depot node).

Similarly to PCTSP, our reward is R = Rf + αRS , where Rf = −f . Policy structure and training
scheme are the same as TSP.

14

A.2 Detailed Implementation of Seeder in Inference Phase

This section provides implementation details of the seeder for the experiments. Our seeder pS is
parameterized by the AM [12], which is the transformer [24] based encoder-decoder model. For the
details of the architecture of the AM, see Kool et al. [12].

SoftMax Temperature. The output of the AM architecture is the compatibility of the query of all
nodes u(c) (see (7) in Kool et al. [12]). Then the probability of selecting nodes can be expressed with
the SoftMax function as follows:

pθS (πt = i|π1:t−1, s) = SoftMax(u(c), i, T)

SoftMax(u(c), i, T) =
e

u(c)i
T∑

j e
u(c)j

T

The SoftMax temperature T is an important hyperparameter of the sampling of the seeder. Note
that if T ≈ 0 then pθS (πt = i|π1:t−1, s) will select greedy samples: i.e. πt = argmax(pθS (πt =
i|π1:t−1, s)). If T ≈ ∞, it will be the same as random search. In the training phase, we set T = 1.
The details of setting T in the inference phase (i.e. in experiments) is described in Appendix A.5.

A.3 Detailed Implementation of Reviser

This section describes the detailed implementation of the reviser for each target problem.

Travelling Salesman Problem (TSP). Let the reviser(L) is trained on TSP with L nodes. During the
training phase, starting node and end node is restricted to be selected; thus L− 2 nodes are in action
space.

During the inference phase, the length of segment (the number of nodes in the action space) l = L−2
(the -2 is because starting and end node are restricted), number of segment K = N/L (N : number of
nodes of seed from seeder). The starting point of each segment is represented as {k, k+L, k+2L, .., },
where the every segment is disjoint each other.

The reviser repeats revising process by re-assigning 1 ≤ k ≤ L. In the experiments, we simply
assigned ki = (ki−1 + 1) iteratively, 1 ≤ i ≤ I . See Algorithm 1 for details.

Let I be number of iteration of revision process. For LCP* in Table 1, we used reviser(10). For
LCP* in Table 1, and TSPLIB experiment in Appendix G and large-scale TSP (N = 500), we used
reviser(20) (I = 25) and reviser(10) (I = 20) see Algorithm 2 for details.

For CVRP and PCTSP, there is depot node, we do not need additional process process to make reviser
unlike TSP’s depot node itself being the starting node. Therefore we can use seeder (without entropy
reward) as reviser. We note that reviser implementation of other problems of VRP variants, TSP
variants are straightforward with a slight change in seeder. Also, most of problems can be also revised
by TSP reviser as well.

Prize Collecting Travelling Salesman Problem (PCTSP). For the small-scale problems (N =
20, 50, 100), after the seeder generates seeds (intermediate solutions), the reviser does not select
unvisited nodes or drop visited nodes. That is, the selection of visited nodes is fixed and the reviser
only tunes the order of the visited nodes. Thus, we use reviser(10) for small scale experiments. The
decomposition rule is same as TSP.

For the large-scale problems (N = 500), we set K = 5, L = 100. We used the seeder trained in
PCTSP (N = 100) as reviser on large-scale tasks.

Capacitated Vehicle Routing Problem (CVRP). For small-scale problems (N = 20, 50, 100) we
used reviser(10) with K = 10. For large-scale problems (N = 500) we used seeder trained on
CVRP (N = 100) as reviser. We set K = 2 and N = 250.

Solution of CVRP has sub-tours π(i); the starting point of each segment is the same as starting point
of the sub-tour. For parallelization (make segment length same), we make padding nodes (depot
nodes) when the number of nodes in the sub-tour smaller than the assigned segment length L, end of
sub-tours.

15

A.4 Algorithmic Details of LCP.

This section provides a pseudo-code-based explanation of section 4 and Appendix A.3 for clear
understanding. The Algorithm 1 is for single reviser, Algorithm 2 is for double reviser (reviser1,
reviser2). These algorithms mainly target TSP; application to PCTSP and CVRP is mostly similar
(some difference in decomposition method) as described in Appendix A.3.

Algorithm 1 LCP (M : sample width, K: # of segment, l: length of segment,I: # of iteration)

1: k = 1, L = l + 2
2: {π(1), ...,π(M)} ∼ pS

3: for i = 1 : I do
4: B = {{π(1)

k:k+L, ..., π
(1)
k:k+KL}, ..., {π

(M)
k:k+L, ...π

(M)
k:k+KL}} : Decompose to make B.

5: R = argmax(pR(B)) : Make revised segment R by pR.
6: {π(1), ...,π(M)} = Composite(R) : Composition to full trajectory solutions.
7: k = k + 1 : Re-assign segment.
8: end for
9: π(∗) = Best({π(1), ...,π(M)}): Selecting best solution among candidates.

Algorithm 2 LCP* (M : sample width, K1,K2,l1,l2,I1,I2)

1: k = 1, L1 = l1 + 2 : Initialization for Reviser 1 (R1)
2: {π(1), ...,π(M)} ∼ pS

3: for i = 1 : I1 do
4: B = {{π(1)

k:k+L1
, ..., π

(1)
k:k+K1L1

}, ..., {π(M)
k:k+L1

, ...π
(M)
k:k+K1L1

}} : Decompose to make B.
5: R = argmax(pR1(B)) : Make revised segment R by pR1.
6: {π(1), ...,π(M)} = Composite(R) : Composition to full trajectory solutions.
7: k = k + 1 : Re-assign segment.
8: end for
9:

10: k = 1, L2 = l2 + 2 : Initialization for Reviser 2 (R2)
11: for i = 1 : I2 do
12: B = {{π(1)

k:k+L2
, ..., π

(1)
k:k+K2L2

}, ..., {π(M)
k:k+L2

, ...π
(M)
k:k+K2L2

}} : Decompose to make B.
13: R = argmax(pR2(B)) : Make revised segment R by pR2.
14: {π(1), ...,π(M)} = Composite(R) : Composition to full trajectory solutions.
15: k = k + 1 : Re-assign segment.
16: end for
17: π(∗) = Best({π(1), ...,π(M)}): Selecting best solution among candidates.

A.5 Details of Experimental Setting

Dataset. We follow the method introduced in Kool et al. [12], random generation of the datasets of
TSP, PCTSP, and CVRP based on the provided code3.

Runtime comparison. A single GPU (NVIDIA RTX 2080 Ti) and a single CPU (Intel i7-9700K)
are used for all the experiments; with few exceptions. The speed of heuristic solvers in Table 1 is
from Kool et al. [12] where it was performed using two CPUs (2 × Xeon E5-2630).

All the run time described in section 5 is the average time per instance. For the run time measurement
in Table 1, we directly reproduce the AM and DRL-2opt with our machine. The implementation
of DRL-2opt is based on code4 provided by the Costa et al. [31]. The results of the NLNS is from
code5, and others are from Kool et al. [12].

For measuring speed, it is essential to set proper evaluation batch size B, which is the number of
instances solving in parallel. However, it is difficult to make an absolutely fair setting of parallelization.

3https://github.com/wouterkool/attention-learn-to-route
4https://github.com/paulorocosta/learning-2opt-drl
5https://github.com/ahottung/NLNS

16

https://github.com/wouterkool/attention-learn-to-route
https://github.com/paulorocosta/learning-2opt-drl
https://github.com/ahottung/NLNS

For example, heuristic methods are mainly performed in CPU, but DRL frameworks are performed in
GPU. The parallelization ability of GPU is usually higher than CPU. Hence, DRL frameworks will
show fast speed in high B.

Moreover, a fair comparison between DRL frameworks is also difficult. The DRL-2opt has merit
with parallelization, but it has slow serial speed because they need iterative inferences (about 2000
iterations). In contrast, our LCP scheme has a fast serial speed because our seeder needs only one
inference and reviser needs few iteration. Our revision process is parallelizable for a single instance
because the reviser solves the decomposed seeds simultaneously.

For the experiments, we give a restriction of B ≤ 100. Because, from a practical point of view,
10000 instances of the same scale rarely occur at once, we should restrict the evaluation batch
size reasonably. Furthermore, many real-world problems require the sequential solving of routing
problems: i.e., it is proper to measure speed in low B.

For the run time measurements in large scale experiment (N = 500), we set B = 1 for all of the
baselines. The experiments are performed in the same CPU (Intel i7-9700K) and GPU (Nvidia
RTX2080Ti), except for the DRL-2opt and NLNS. For DRL-2opt and NLNS, we set B = 10 (10%
of total number of instances). Also, note that we reproduce the Concorde, Gurobi, OR Tools, ILS and
LKH3 in large scale experiment (N = 500), based on code provided by Kool et al. [12].

Temperature scaling. In the experiments in small scale N = 20, 50, 100, we set the SoftMax
temperature T of the AM as 1, which is the default setting reported in Kool et al. [12]. For large
scale experiment N = 500, we tuned T for AM as 0.1. See Table 4 for the setting of T for the LCP
scheme.

Table 3: Number of instances in each experiment.
Table 1 Figure 4 Table 2 Table 5 Figure 5 Table 6 Figure 6

Number of Instances 10000 100 1000 1000 100 1000 10000

Table 4: SoftMax temperature of LCP scheme in Table 1, Table 2, and Figure 4.
n = 20 n = 50 n = 100 n = 500

TSP 2 2 2 0.1
PCTSP 3 2 1.5 0.2
CVRP 3 2 1 0.3

17

B Ablation Study of Scaled Entropy Regularization

This section provides a detailed ablation study of α, a hyperparameter of scaled entropy reward
RS . We target TSP (N = 100) with randomly generated 100 instances. We use reviser(10) with
I = 10 in the experiment. The SoftMax temperature T of the seeder is fixed as 2. As shown in
Table 5, when α = 0.2, 0.3, the performance of LCP with uniform scaled entropy regularization
exceeds that of linear scaling. However, when α = 0.4, 0.5, LCP with linearly scaled entropy
regularization outperforms uniform scaling, where they achieve best performances among all cases
α = 0.2, 0.3, 0.4, 0.5.

Table 5: Cost (lower is better) of LCP scheme with different training hyperparameter α and types
of the scaled entropy regularization. The best performances are indicated in bold among the same
α. The ∗ indicates best performances. The Seeding indicates cost after the seeding process. The
Revision indicates cost after the revision process, which is finalized value.

Uniform Scaling Linear Scaling

α Seeding Revision Seeding Revision

0.2 7.90 7.85 7.91 7.87
0.3 7.91 7.86 7.91 7.86
0.4 7.92 7.88 7.89 7.83*
0.5 7.91 7.86 7.89 7.84

18

C Ablation to SoftMax Temperature

(a) TSP50 (b) TSP100 (c) TSP500

Figure 5: The temperature-cost graph of the AM and our scheme on TSP (N = 50, 100, 500).

As shown in Figure 5, the experimental results demonstrate that our method is robust to variations
on temperature scaling, whereas the AM [12] is vulnerable to high temperature. We remark that the
optimal SoftMax temperature of our approach is higher than the AM. For example, in TSP (N = 50),
the AM performs the best at T = 2.0, while our method gives the best performance at 2.0 < T < 3.5.
It demonstrates that while high temperature provides diverse solutions, the quality of the solution is
insufficient because the fitness landscape of the AM is steeper than our scheme. In TSP (N = 500),
both methods have a steep fitness landscape; thus, very low temperature T = 0.1 gives a reasonable
solution. While our approach gives merit to temperature robustness on large scales with significant
performance gain, a policy that has a wider fitness landscape is still needed.

19

D Applying the LCP to Other DRL Frameworks

Section 5 mentions that our LCP scheme can easily be applied to other on-policy DRL frameworks.
This section presents empirical validation of LCP’s flexibility by using the LCP scheme to pointer
network [21, 10] in TSP (N = 20). In the experiments, the seeder is parameterized by the pointer
network, while the setting of the reviser is similar to previous experiments; we use reviser(10) with
five iterations (I = 5). The pointer network’s implementation is based on code provided by Kool
et al. [12], the training hyperparameter is the same as them except we set the batch size as 1024,
and α = 0.5. The SoftMax temperature T of the seeders is fixed as 1. The dataset of 1000 instances
is randomly generated using the same method as previous experiments. As shown in Table 6, the
sampling method (Pointer Network {1280}) with our LCP achieves the best performance among all
settings, where it gives a significant performance increment compared to the vanilla pointer network.

Remarkably, the sampling method of the seeder itself reduces performance. The cost of the pointer
network’s sampling method is 7.33, while the greedy method gives 3.95. However, with LCP, the
cost of the sampling method drastically reduced, finally exceeding the greedy method even if LCP
supports the greedy method. It demonstrates that the main idea of LCP of revising diverse seeds is
promising to pointer network. Even if the sampled 1280 seeds are not reasonable solutions, seeds with
diversity are revised in parallel. Eventually, the best solution among the revised seeds has outstanding
performance.

Table 6: Ablation study of LCP components on TSP (N = 20). The optimal gap is measured by
comparing it with state-of-the-art solvers. As in Table 2, the Entropy Regularization indicates training
the seeder with RS , while the default is the uniform scaling. The Linear Scaling means entropy
regularization method with linear weight scheduling. The best performances are marked in bold. The
Pointer Network (greedy) indicates Pointer Network with greedy selection, and the Pointer Network
{1280} means the sampling method where the sample width is 1280.

Component of the LCP Pointer Network (greedy) Pointer Network {1280}

Entropy Regularization Weight Scheduling Reviser cost gap cost gap

3.95 2.63% 7.33 90.75%

! 3.95 2.71% 7.30 89.77%
! ! 3.95 2.62% 7.32 90.29%

! 3.89 1.27% 3.85 0.21%

! ! 3.89 1.18% 3.85 0.24%
! ! ! 3.89 1.24% 3.85 0.20%

20

E Comparison with Reviser and Improvement Heuristics

(a) TSP100 (b) TSP500

Figure 6: The time-cost graph on TSP (N = 100, 500).

This experiment was conducted to test the reviser’s performance. Seeder+reviser outperforms
Seeder+DRL-2opt in both time and performance. This experimental result demonstrates that the
reviser performs well in a fast and accurate improvement heuristic role. Since reviser can be designed
easily by modifying the seeder appropriately, when a new type of seeder (constructive heuristic) is
proposed, we can create a high-performance improvement heuristic (i.e., reviser) accordingly.

21

F Experiments of Training Convergence in Different PyTorch Seeds

(a) TSP100 (b) PCTSP100 (c) CVRP100

Figure 7: Training graph of the seeder on TSP,PCTSP and CVRP (N = 100).

(a) Partial length L = 10 (b) Partial length L = 20

Figure 8: Training graph of the reviser.

This experiment verifies that the proposed seeder and reviser converge in various PyTorch seeds.
DRL algorithms are sometimes unstable in convergence to the random seed; therefore, it is crucial to
carry out experiments with random seeds. Through this experiment, we can see that both seeder and
reviser converge steadily in 4 random seeds.

22

G Details of Real World Experiments on TSP

This experiment evaluates the solver’s performance on 35 instances extracted from TSPLIB. This
experiment considers the solver’s performance in real-world problems and tests how well the model
trained on a fixed scale (N = 100) fits in instances with various scales.

In this experiment, we experimented with reviser(20) (I = 25), reviser(10) (I = 20), and sample
width M = 2560.

We set the sample width of AM as M = 40000 and the number of iterations of DRL-2opt as
I = 2000.

We outperformed the baseline solver in 22 cases out of 35, and the average optimal gap outperformed
Drl-2opt by 2.5%. It also showed an overwhelmingly faster speed compared to the DRL-2opt and
AM.

Table 7: Performance comparison in real-world instances in TSPLIB. The (time) indicates time
spending. We select the best performance among SoftMax temp T ∈ {0.1, 0.5, 1, 2} in both AM and
ours. Therefore, we multiply 4 × to spent time.

Instance Opt. AM [12] DRL-2opt [19] AM + LCP (ours)

Cost Gap Time Cost Gap Time Cost Gap Time

eil51 426 435 2.11% 13s 427 0.23% 460s 429 0.73% 13s
berlin52 7,542 8663 14.86% 14s 7974 5.73% 460s 7550 0.10% 13s
st70 675 690 2.18% 23s 680 0.74% 540s 680 0.74% 13s
eil76 538 555 3.18% 27s 552 2.60% 540s 547 1.64% 18s
pr76 108,159 110,956 2.59% 27s 111,085 2.60% 540s 108,633 0.44% 18s
rat99 1,211 1,309 8.09% 44s 1,388 14.62% 680s 1,292 6.67% 24s
rd100 7,910 8,137 2.87% 46s 7,944 0.43% 680s 7,920 0.13% 26s
KroA100 21,282 23,227 9.14% 46s 23,751 11.60% 680s 21,910 2.95% 26s
KroB100 22,141 23,227 8.23% 46s 23,790 7.45% 680s 22,476 1.51% 26s
KroC100 20,749 21,868 5.40% 46s 22,672 9.27% 680s 21,337 2.84% 26s
KroD100 21,294 22,984 7.94% 46s 23,334 9.58% 680s 21,714 1.97% 26s
KroE100 22,068 22,686 2.80% 46s 23,253 5.37% 680s 22,488 1.90% 26s
eil101 629 654 4.03% 46s 635 0.95% 680s 645 2.59% 26s
lin105 14,379 16,516 14.87% 49s 16,156 12.36% 680s 14,934 3.86% 26s
pr124 59,030 63,931 8.30% 68s 59,516 0.82% 700s 61,294 3.84% 37s
bier127 118,282 125,256 5.90% 72s 121,122 2.40% 720s 128,832 8.92% 37s
ch130 6,110 6,279 2.76% 77s 6,175 1.06% 790s 6,145 0.57% 38s
pr136 96,772 101,927 5.33% 84s 98,453 1.74% 820s 98,285 1.56% 38s
pr144 58,537 63,778 8.95% 93s 61,207 4.56% 720s 60,571 3.47% 43s
kroA150 26,524 28,658 8.05% 102s 30,078 13.40% 900s 27,501 3.68% 44s
kroB150 26,130 27,565 5.49% 102s 28,169 7.80% 900s 26,962 3.18% 44s
pr152 73,682 79,442 7.82% 101s 75,301 2.20% 720s 75,539 2.52% 44s
u159 42,080 50.656 20.38% 111s 42,716 1.51% 840s 46,640 10.84% 45s
rat195 2,323 2,518 8.14% 168s 2,955 27.21% 1080s 2,574 10.81% 57s
kroA200 29,368 33,313 13.43% 173s 32,522 10.74% 1,120s 31,172 6.14% 86s
ts225 126,643 138,000 8.97% 223s 127,731 0.86% 1,110s 134,827 6.46% 113s
tsp225 3,919 4,837 23.42% 224s 4,354 11.10% 1,160s 4,487 14.50% 113s
pr226 80,369 90,390 12.47% 228s 91,560 13.92% 940s 85,262 6.09% 113s
gil262 2,378 2,588 8.81% 306s 2,490 4.71% 1380s 2,508 5.49% 134s
lin318 42,029 47,288 12.51% 397s 46,065 9.60% 1,470s 46,540 10.72% 158s
rd400 15,281 17,053 11.59% 458s 16,159 8.10% 1,870 16,519 8.10% 209s
pr439 107,217 160,594 49.78% 744s 143,590 33.92% 1760s 130,996 22.18% 228s
pcb442 50,778 58,891 15.98% 897s 57,114 12.48% 1,760s 57,051 12.35% 228s

avg. gap 0.00% 9.90% 7.63% 5.14%

23

	Introduction
	Related Works
	DRL-based Constructive Heuristics
	DRL-based Improvement Heuristics
	Hybrid Approaches with Conventional Solvers

	Formulation of Routing Problems
	Learning Collaborative Policies
	Seeding Process
	Revision Process

	Experiments
	Target Problems and Baselines
	Performance Evaluation
	Ablation Study

	Discussion
	Details of Experiments
	Detailed Explanation of Target Problems.
	Detailed Implementation of Seeder in Inference Phase
	Detailed Implementation of Reviser
	Algorithmic Details of LCP.
	Details of Experimental Setting

	Ablation Study of Scaled Entropy Regularization
	Ablation to SoftMax Temperature
	Applying the LCP to Other DRL Frameworks
	Comparison with Reviser and Improvement Heuristics
	Experiments of Training Convergence in Different PyTorch Seeds
	Details of Real World Experiments on TSP

