
SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep
Reinforcement Learning

Shuai Zhang 1 Heshan Devaka Fernando 2 Miao Liu 3 Keerthiram Murugesan 3 Songtao Lu 3 Pin-Yu Chen 3

Tianyi Chen 2 Meng Wang 2

Abstract

This paper studies the transfer reinforcement
learning (RL) problem where multiple RL prob-
lems have different reward functions but share
the same underlying transition dynamics. In this
setting, the Q-function of each RL problem (task)
can be decomposed into a successor feature (SF)
and a reward mapping: the former characterizes
the transition dynamics, and the latter character-
izes the task-specific reward function. This Q-
function decomposition, coupled with a policy
improvement operator known as generalized pol-
icy improvement (GPI), reduces the sample com-
plexity of finding the optimal Q-function, and
thus the SF & GPI framework exhibits promising
empirical performance compared to traditional
RL methods like Q-learning. However, its theo-
retical foundations remain largely unestablished,
especially when learning the successor features
using deep neural networks (SF-DQN). This pa-
per studies the provable knowledge transfer us-
ing SFs-DQN in transfer RL problems. We es-
tablish the first convergence analysis with prov-
able generalization guarantees for SF-DQN with
GPI. The theory reveals that SF-DQN with GPI
outperforms conventional RL approaches, such
as deep Q-network, in terms of both faster con-
vergence rate and better generalization. Numer-
ical experiments on real and synthetic RL tasks
support the superior performance of SF-DQN &
GPI, aligning with our theoretical findings.

1Department of Data Science, New Jersey Institute of Tech-
nology, Newark, NJ 2Department of Electrical, Computer, and
Systems Engineering, Rensselaer Polytechnic Institute, Troy,
NY 3IBM Thomas J. Watson Research Center, IBM Re-
search, Yorktown Heights, NY. Correspondence to: Meng Wang
<wangm7@rpi.edu>, Shuai Zhang <sz457@njit.edu>, Miao Liu
<miao.liu1@ibm.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

1. Introduction
In reinforcement learning (RL), the goal is to train an agent
to perform a task within an environment in a desirable man-
ner by allowing the agent to interact with the environment.
Here, the agent is guided towards the desirable behavior
by the rewards, and the optimal policy is derived from a
learned value function (Q-function) in selecting the best ac-
tions to maximize the immediate and future rewards. This
framework can effectively capture a wide array of real-
world applications, such as gaming (Mnih et al., 2013; Sil-
ver et al., 2017), robotics (Kalashnikov et al., 2018), au-
tonomous vehicles (Shalev-Shwartz et al., 2016; Schwart-
ing et al., 2018), healthcare (Coronato et al., 2020), and nat-
ural language processing (Tenney et al., 2018). However,
RL agents often need numerous interactions with the envi-
ronment to manage complex tasks, especially when RL is
equipped with deep neural networks (DNNs). For example,
AlphaGo (Silver et al., 2017) required 29 million matches
and 5000 TPUs at a cost exceeding $35 million, which
is time-consuming and memory-intensive. Nevertheless,
many complex real-world problems can naturally decom-
pose into multiple interrelated sub-problems, all sharing
the same environmental dynamics (Sutton et al., 1999; Ba-
con et al., 2017; Kulkarni et al., 2016a). In such scenar-
ios, it becomes highly advantageous for an agent to harness
knowledge acquired from previous tasks to enhance its per-
formance in tackling new but related challenges. This prac-
tice of leveraging knowledge from one task to improve per-
formance in others is known as transfer learning (Lazaric,
2012; Taylor & Stone, 2009; Barreto et al., 2017).

This paper focuses on an RL setting with learning multi-
ple tasks, where each task is associated with a different re-
ward function but shares the same environment. This set-
ting naturally arises in many real-world applications such
as robotics (Yu et al., 2020). We consider exploring the
knowledge transfer among multiple tasks via the successor
feature (SF) framework (Barreto et al., 2017) which disen-
tangles the environment dynamic from the reward function
at an incremental computational cost. The SF framework is
derived from successor representation (SR) (Dayan, 1993)
by introducing the value function approximation. Specifi-

1



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

cally, SR (Dayan, 1993) decouples the value function into
a future state occupancy measure and a reward mapping.
Here, the future state occupancy characterizes the transi-
tion dynamics of the environment, and the reward mapping
characterizes the reward function of the task. SF is a natu-
ral application of SR in solving value function approxima-
tion. Furthermore, (Barreto et al., 2017) propose a gener-
alization of the classic policy improvement, termed gener-
alized policy improvement (GPI), enabling smooth knowl-
edge transfer across learned policies. In contrast to tradi-
tional policy improvement, which typically considers only
a single policy, Generalized Policy Improvement (GPI) op-
erates by maintaining a set of policies, each associated with
a distinct skill the agent has acquired. This approach en-
ables the agent to switch among these policies based on
the current state or task requirements, providing a flexi-
ble and adaptive framework for decision-making. Empir-
ical findings presented in (Barreto et al., 2017) highlight
the superior transfer performance of SF & GPI in deep
RL when compared to conventional methods like Deep
Q-Networks (DQNs). Subsequent works further justified
the improved performance of SF in subgoal identification
(Kulkarni et al., 2016b) and real-world robot navigation
(Zhang et al., 2017).

Focus of this paper. While performance guarantees of
SF-based learning are provided in the simple tabular set-
ting (Barreto et al., 2017; 2018), less is known for such
approaches in the widely used function approximation set-
ting, especially for non-linear models including DNNs. In
this context, this paper aims to close this gap by provid-
ing theoretical guarantees for SF learning in the context of
DNNs. Our objective is to explore the convergence and
generalization analysis of SF when paired with DNN ap-
proximation. We also seek to delineate the conditions un-
der which SF learning can offer more effective knowledge
transfer among tasks when contrasted with classical deep
reinforcement learning (DRL) approaches.

Contributions. This paper presents the first convergence
analysis with generalization guarantees for successor fea-
ture learning with deep neural network approximation (SF-
DQN). This paper focuses on estimating the optimal Q-
value function through the successor feature decomposi-
tion, where the successor feature decomposition compo-
nent is approximated through a deep neural network. The
paper offers a comprehensive analysis of the convergence
of deep Q-networks with successor feature decomposition
and provides insights into the improved performance of the
learned Q-value function derived from successor feature
decomposition. The key contributions are as follows:

(C1) The convergence analysis of the proposed SF-DQN
to the optimal Q-function with generalization guaran-
tees. By decomposing the reward into a linear combination

of the transition feature and reward mapping, we demon-
strate that the optimal Q-function can be learned by alter-
nately updating the reward mapping and the successor fea-
ture using the collected data in online RL, where the cor-
responding successor feature is parameterized by a deep
neural network. The learned Q-function converges to the
optimal Q-function with generalization guarantees at a rate
of 1/T , where T is the number of iterations in updating
transition features and reward mappings.

(C2) The theoretical characterization of enhanced per-
formance by leveraging knowledge from previous tasks
through GPI. This paper characterizes the convergence
rate with generalization guarantees in transfer RL utilizing
GPI. The convergence rate accelerates following the degree
of correlation between the source and target tasks.

(C3) The theoretical characterization of the superior
transfer learning performance with SF-DQN over non-
representation learning approach DQNs. This paper
quantifies the transfer learning ability of SF-DQN and
DQN algorithms by evaluating their generalization error
when transferring knowledge from one task to another. Our
results indicate that SF-DQN achieves improved general-
ization compared to DQN, demonstrating the superiority
of SF-DQN in transfer RL.

1.1. Related Works

Successor features in RL. In pioneering works, (Dayan,
1993) introduced the concept of SR, demonstrating that the
value function can be decomposed into a reward mapping
and a state representation that measures the future state oc-
cupancy from a given state, with learning feasibility proof
in tabular settings. Subsequently, (Barreto et al., 2017) ex-
tended SR from three perspectives: (1) the feature domain
of SR is extended from states to state-action pairs, known
as SF; (2) DNNs are deployed as function approximators to
represent the SF and reward mappings; (3) GPI algorithm
is introduced to accelerate policy transfer for multi-tasks.
Furthermore, (Kulkarni et al., 2016b; Zhang et al., 2017)
apply SF learning with DNN-based schemes to subgoal
identification (Kulkarni et al., 2016b) and robot navigation
(Zhang et al., 2017). However, only (Barreto et al., 2017;
2018) provided transfer guarantees for Q-learning with SF
and GPI for the tabular case under the assumption that the
Q-function from the source task is well-estimated. How-
ever, to the best of our knowledge, none of works have
provided any theoretical guarantees of SF in the function
approximation with neural networks. In addition, instead
of assuming that the Q-function of the source task is well
estimated, our paper offers both convergence analysis and
sample complexity for successor feature learning in both
the source task training stage and transfer learning stages.
We refer readers to a comprehensive comparison of rein-

2



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

forcement learning transfer using Successor Features, as
detailed in (Zhu et al., 2023).

RL with neural networks. Recent advancements of the-
oretical analysis in RL with neural network approximation
mainly include the Bellman Eluder dimension (Jiang et al.,
2017; Russo & Van Roy, 2013), Neural Tangent Kernel
(NTK) (Yang et al., 2020; Cai et al., 2019; Xu & Gu, 2020;
Du et al., 2020), and Besov regularity (Suzuki, 2019; Ji
et al., 2022; Nguyen-Tang et al., 2022). However, each
of these frameworks has its limitations. The Eluder di-
mension exhibits exponential growth even for shallow neu-
ral networks (Dong et al., 2021), making it challenging to
characterize sample complexity in real-world applications
of DRL. The NTK framework linearizes DNNs to bypass
the non-convexity derived from the non-linear activation
function in neural networks. Nevertheless, it requires us-
ing computationally inefficient, extremely wide neural net-
works (Yang et al., 2020). Moreover, the NTK approach
falls short in explaining the advantages of utilizing non-
linear neural networks over linear function approximation
(Liu et al., 2022; Fan et al., 2020). The Besov space frame-
work (Ji et al., 2022; Nguyen-Tang et al., 2022; Liu et al.,
2022; Fan et al., 2020) requires sparsity on neural networks
and makes the impractical assumption that the algorithm
can effectively identify the global optimum, which is un-
feasible for non-convex optimization involving NNs.

Theory of generalization in deep learning. The theory
of generalization in deep learning has been extensively de-
veloped in supervised learning, where labeled data is avail-
able throughout training. Generalization in learned mod-
els necessitates low training error and small generalization
gap. However, in DNNs, training errors and generaliza-
tion gaps are analyzed separately due to their non-convex
nature. To ensure bounded generalization, it is common
to focus on one-hidden-layer neural networks (Safran &
Shamir, 2018) in convergence analysis. Existing theoreti-
cal analysis tools in supervised learning with generalization
guarantees draw heavily from various frameworks, includ-
ing the Neural Tangent Kernel (NTK) framework (Jacot
et al., 2018; Du et al., 2018; Lee et al., 2018), model recov-
ery techniques (Zhong et al., 2017; Ge et al., 2018; Bakshi
et al., 2019; Soltanolkotabi et al., 2018; Zhang et al., 2020),
and the analysis of structured data (Li & Liang, 2018; Shi
et al., 2022; Brutzkus & Globerson, 2021; Allen-Zhu &
Li, 2022; Karp et al., 2021; Wen & Li, 2021; Zhang et al.,
2023b; Li et al., 2023; Chowdhury et al., 2023).

2. Preliminaries
In this paper, we address the learning problem involving
multiple tasks {Ti}ni=1 and aim to find the optimal policy
π⋆i for each task Ti. We begin by presenting the preliminar-
ies for a single task and then elaborate on our algorithm for

learning with multiple tasks in the following section.

Markov decision process and Q-learning. The
Markov decision process (MDP) is defined as a tuple
(S,A,P, r, γ), where S is the state space and A is the set
of possible actions. The transition operator P : S × A →
∆(S) gives the probability of transitioning from the cur-
rent state s and action a to the next state s′. The function
r : S × A × S → [−Rmax, Rmax] measures the reward
for a given state-action pair. The discount factor γ ∈ [0, 1)
determines the significance of future rewards.

For the i-th task, the goal of the agent is to find the opti-
mal policy π⋆i with at = π⋆i (st) at each time step t. The
aim is to maximize the expected discounted sum of reward
as

∑∞
t=0 γ

t · ri(st, at, st+1), where ri denotes the reward
function for the i-th task. For any state-action pair (s, a),
we define the action-value function Qπi given a policy π as

Qπi (s, a) =Eπ,P
[∑∞

t=0 γ
tri(st, at, st+1) | s0 = s, a0 = a

]
.

The optimal Q-function, denoted as Qπ
⋆

i or Q⋆i , satisfies

Q⋆i (s, a) :=max
π

Qπi (s, a)

=Es′|s,a ri(s, a, s
′) + γmax

a′
Qπ

⋆

i (s′, a′),
(1)

where (1) is also known as the Bellman equation. Through
the optimal action-value function Q⋆i , the agent can de-
rive the optimal policy (Watkins & Dayan, 1992; Sutton
& Barto, 2018) following

π⋆i (s) = argmax
a

Q⋆i (s, a). (2)

Deep Q-networks (DQNs). The DQN utilizes a DNN pa-
rameterized with weights ω, i.e., Qi(s, a;ω) : Rd → R for
the i-th task, to approximate the optimal Q-value function
Q⋆i in (1). Specifically, given input feature x := x(s, a),
the output of the L-hidden-layer DNN is defined as

Qi(s, a;ω) := ω⊤
L+1/K · σ

(
ω⊤
L · · ·σ(ω⊤

1 x)
)
, (3)

where σ(·) is the ReLU activation function, i.e., σ(z) =
max{0, z}.

Successor feature. For i-the task, suppose the expected
one-step reward associated with the transition (s, a, s′) can
be computed as

ri(s, a, s
′) = ϕ(s, a, s′)⊤w⋆

i , with ϕ,w⋆
i ∈ Rd, (4)

where ϕ remains the same for all the tasks. With the reward
function in (4), the Q-value function in (2) is reformulated

Qπi (s, a)

= Eπ,P
[∑∞

t=0 γ
tϕ(st, at, st+1) | s0, a0

]⊤
w⋆
i

:= ψπi (s, a)
⊤w⋆

i .

(5)

3



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Then, the optimal Q function satisfies

Q⋆i (s, a)

=Eπ⋆i ,P
[∑∞

i=0 γ
iϕ(si, ai, si+1) | s0, a0

]⊤
w⋆
i

:= ψ⋆i (s, a)
⊤w⋆

i .

(6)

3. Problem Formulation and Algorithm
Problem formulation. Without loss of generality, the data
is assumed to be collected from the tasks in the order of
T1 to Tn during the learning process. The goal is to uti-
lize collected data for the current task, e.g., Tj , and the
learned knowledge from previous tasks {Ti}j−1

i=1 to derive
the optimal policy π⋆j for the current Tj . These tasks share
the same environment dynamic but the reward function
changes across the task as shown in (4). For each task Ti,
we denote its reward as

ri = ϕ ·w⋆
i , with ∥ϕ∥2 ≤ ϕmax, (7)

where ϕ is the transition feature across all the tasks andw⋆
i

is the reward mapping.

From (6), the learning of optimal Q-function for the i-th
task is decomposed as two sub-tasks: learning SF ψ⋆i (s, a)
and learning reward w⋆

i .

Reward mapping. To find the optimal w⋆
i , we utilize the

information from ϕ(s, a, s′) and ri(s, a, s′). The value of
w⋆
i can be obtained by solving the optimization problem

minwi : ∥ri − ϕ ·wi∥2. (8)

Successor features. We use ψπi to denote the successor
feature for the i-th task, and ψπi satisfies

ψπi (s, a) = Es′|s,a ϕ(s, a, s
′) + γ · ψπi

(
s′, π(s′)

)
. (9)

The expression given by (9) aligns perfectly with the Bell-
man equation in (1), whereϕ acts as the reward. Therefore,
following DQNs, we utilize a function ψ(s, a) parameter-
ized using the DNN as

ψi(Θi; s, a) = H
(
Θi;x(s, a)

)
, (10)

where x : S × A −→ Rd is the feature mapping of the
state-action pair. Without loss of generality, we assume
|x(s, a)| ≤ 1. Then, finding ψ⋆ is to minimize the mean
squared Bellman error (MSBE)

min
Θi

:f(Θi) := E(s,a)∼π⋆
[
Es′|s,a ψi(Θi; s, a)

− ϕ(s, a, s′)− γ · ψi
(
Θi; s

′, π⋆(s′)
)]2

.

(11)

It is worth mentioning that although (11) and (8) appear to
be independent of each other, the update of wi does affect

the update of ψi through the shift in data distribution. The
collected data is estimated based on the policy depending
on the current estimated values of ψi and wi, which shifts
the distribution of the collected data away from π⋆i . This,
in turn, leads to a bias depending on the value of wi in the
calculation of the gradient of Θi in minimizing (11).

Generalized policy improvement (GPI). Suppose we
have acquired knowledge about the optimal successor fea-
tures for the previous n tasks, and we use ψ̂i to denote the
estimated successor feature function for the i-th task with
i ∈ [n]. Now, let’s consider a new task Tn+1 with the re-
ward function defined as rn+1 = ϕw⋆

n+1. Instead of train-
ing from scratch, we can leverage the knowledge acquired
from previous tasks to improve our approach. We achieve
this by deriving the policy as follows

π(a|s) = argmax
a

max
1≤i≤n+1

ψ̂i(s, a)
⊤w⋆

n+1. (12)

This strategy tends to yield better performance than relying
solely on ψ̂n+1(s, a)

⊤w⋆
n+1, especially when ψ̂n+1 has

not yet converged to the optimal successor feature ψ⋆n+1

during the early learning stage, while some task is closely
related to the new tasks, i.e., some w⋆

i is close to w⋆
n+1.

This policy improvement operator is derived from Bell-
man’s policy improvement theorem (Bertsekas & Tsitsik-
lis, 1996) and (1). When the reward is fixed across differ-
ent policies, e.g., {πi}ni=1, and given that the optimal Q-
function represents the maximum across the entire policy
space, the maximum of multiple Q-functions correspond-
ing to different policies, max1≤i≤nQ

πn , is expected to be
closer to Q⋆ than any individual Q-function, Qπi . In this
paper, the parameter ϕ in learning the successor feature is
analogous to the reward in learning the Q-function. As ϕ
remains the same for different tasks, this analogy has in-
spired the utilization of GPI in our setting, even where the
rewards change.

3.1. Successor feature Deep Q-Network

The goal is to find wi and Θi by solving the optimization
problems in (8) and (11) for each task sequentially, and the
optimization problems are solved by mini-batch stochastic
gradient descent (mini-batch SGD). Algorithm 1 contains
two loops, and the outer loop number n is the number of
tasks and inner loop number T is the maximum number
of iterations in solving (8) and (11) for each task. At the
beginning, we initialize the parameters as Θ(0) and w(0)

i

for task i with 1 ≤ i ≤ n. In t-th inner loop for the i-
th task, let st be the current state, and θc be the learned
weights for task c. The agent selects and executes actions
according to

a = πβ(maxc∈[i] ψ(Θc; st, a)
⊤w

(t)
i ), (13)

4



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

where πβ(Q(st, a)) is the policy operator based on the
function Q(st, a), e.g., greedy, ε-greedy, and softmax.
For example, if πβ(·) stands for greedy policy, then a =

argmaxamaxc∈[i] ψ(Θc; st, a)
⊤w

(t)
i . The collected data

are stored in a replay buffer with size N . Then, we sample
a mini-batch of samples from the replay buffer and denote
the samples as Dt.

Algorithm 1 Successor Feature Deep Q-Network (SF-
DQN)

Input: Number of iterations T , and experience replay
buffer size N , step size {ηt, κt}Tt=1.
Initialize {Θ(0)

i }ni=1 and {w(0)
i }ni=1.

for Task i = 1, 2, · · · , n do
for t = 0, 1, 2, · · · , T − 1 do

Collect data and store in the experience replay
buffer Dt following a behavior policy πt in (13).
Perform gradient descent steps on Θ

(t)
i and w(t)

following (14).
end for
Return Qi = ψi(Θ

(T )
i )⊤w

(T )
i for i = 1, 2, · · · , n.

end for

Next, denote the gradient as gw(sm,am, s
′
m;w(t)) =(

ϕ(sm, am, s
′
m)⊤w(t) − r(sm, am, s

′
m)

)
·

ϕ(sm, am, s
′
m) and gΘ(sm,am, s

′
m; Θ(t)) =(

ψ(Θ
(t)
i ; sm, am)−ϕ(sm, am, s′m)−γ ·ψ(Θ(t)

i ; s′m, a
′)
)
·

∇Θiψ(Θ
(t)
i ; sm, am), we update the current weights using

a mini-batch gradient descent algorithm following

w(t+1) = w(t) − κt ·
∑
m∈Dt

gw(sm,am, s
′
m;w(t))

Θ
(t+1)
i = Θ

(t)
i − ηt ·

∑
m∈Dt

gΘ(sm,am, s
′
m; Θ(t)),

(14)

where ηt and κt are the step sizes, and a′ =

argmaxamaxc∈[i] ψ(Θc; s
′
m, a)

⊤w
(t)
i . The gradient for

Θ
(t)
i , as gΘ(sm,am, s′m; Θ(t)) in (14), can be viewed as

the gradient of∑
m∈Dt

[
ψi(Θi;sm, am)− ϕ(sm, am, s′m)−

Es′
m|sm,am max

a′m
ψi(Θ

(t)
i ; s′m, a

′
m)

]2
,

(15)

which is the approximation to (11) via replacing maxa′ ψ
⋆
i

with maxa′ ψi(Θ
(t)
i ).

4. Theoretical Results
4.1. Summary of Major Theoretical Findings

To the best of our knowledge, our results (formally pre-
sented in Section 4.3) provide the first theoretical charac-
terization for SF-DQN with GPI, including a comparison

with the conventional Q-learning under commonly used as-
sumptions. Before formally presenting them, we summa-
rize the highlights as follows.

Table 1: Important Notations

K Number of neurons in the hidden layer.

L Number of the hidden layers.

d Dimension of the feature mapping of (s, a).

T Number of iterations.

Θ⋆i , w⋆
i The global optimal to (11) and (8) for i-th task.

N Replay buffer size.

ρ1 The smallest eigenvalue of
E∇ψi(Θ⋆i )∇ψi(Θ⋆i )⊤.

ρ2 The smallest eigenvalue of Eϕ(s, a)ϕ(s, a)⊤.

q⋆ A variable indicates the relevance between cur-
rent and previous tasks.

C⋆ A constant related to the distribution shift be-
tween the behavior and optimal policies.

(T1) Learned Q-function converges to the optimal Q-
function at a rate of 1/T with generalization guaran-
tees. We demonstrate that the learned parameters Θ

(T )
i

and w(T )
i converge towards their respective ground truths,

Θ⋆i and w⋆
i , indicating that SF-DQN converges to optimal

Q-function at a rate of 1/T as depicted in (22) (Theorem
1). Moreover, the generalization error of the learned Q-
function scales on the order of ∥w(0)−w⋆∥2

1−γ−Ω(N−1/2)−Ω(C⋆)
· 1
T .

By employing a large replay buffer N , minimizing the data
distribution shift factor C⋆, and improving the estimation
of task-specific reward weights w(0), we can achieve a
lower generalization error.

(T2) GPI enhances the generalization of the learned
model with respect to the task relevance factor q⋆. We
demonstrate that, when GPI is employed, the learned pa-
rameters exhibit improved estimation error with a reduction
rate at 1−c

1−c·q⋆ for some constant c < 1 (Theorem 2), where
q⋆ is defined in (23). From (23), it is clear that q⋆ decreases
as the distances between task-specific reward weights, de-
noted as ∥w⋆

j − w⋆
i ∥2, become smaller. This indicates a

close relationship between the previous tasks and the cur-
rent task, resulting in a smaller q⋆ and, consequently, a
larger improvement through the usage of GPI.

(T3) SF-DQN achieves a superior performance over
conventional DQN by a factor of γ for the estimation
error of the optimal Q-function. When we directly trans-
fer the learned knowledge of the Q-function to a new task
without any additional training, our results demonstrate
that SF-DQN always outperforms its conventional counter-
part, DQN, by a factor of γ (Theorems 3 and 4). As γ ap-

5



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

proaches one, we raise the emphasis on long-term rewards,
making the accumulated error derived from the incorrect
Q-function more significant. Consequently, this leads to
reduced transferability between the source tasks and the
target task. Conversely, when γ is small, indicating sub-
stantial potential for transfer learning between the source
and target tasks, we observe a more significant improve-
ment when using SF-DQN.

4.2. Assumptions

In this section, we propose the assumptions in deriving our
major theoretical results. These assumptions are commonly
used in existing RL and neural network learning theories.

Assumption 1. There exists a deep neural network with
weights Θ⋆i such that it minimizes (11) for the i-th task, i.e,
f(Θ⋆i ) = 0.

Assumption 1 assumes a substantial expressive power of
the deep neural network, allowing it to effectively represent
ψ⋆ in the presence of an unknown ground truth Θ⋆.

Assumption 2. At any fixed outer iteration t, the behavior
policy πt and its corresponding transition kernel Pt satisfy

sups∈S dTV
(
P(sτ ∈ ·) | s0 = s),Pt

)
≤ λντ , (16)

for some constant λ > 0 and ν ∈ (0, 1), where dTV de-
notes the total-variation distance.

Assumption 2 assumes the Markov chain {sn, an, sn+1}
induced by the behavior policy is uniformly ergodic with
the corresponding invariant measure Pt. This assumption
is standard in Q-learning (Xu & Gu, 2020; Zou et al., 2019;
Bhandari et al., 2018), where the data are non-i.i.d.

Assumption 3. Let Q⋆ and Qt be the optimal and esti-
mated Q-function, respectively. We assume the greedy pol-
icy πt, i.e., πt(a|s) = argmaxa′ Qt(s, a

′), satisfies∣∣πt(a|s)− π⋆(a|s)
∣∣∣

≤ C · sup(s,a) ∥Qt(s, a)−Q⋆(s, a)∥F ,
(17)

where C is a positive constant. Equivalently, when Qt =
ψ(Θ

(t)
i )⊤w

(t)
i , we have∣∣πt(a|s)− π⋆(a|s)

∣∣∣
≤ C ·

(
∥Θ(t)

i −Θ⋆i ∥2 + ∥w(t)
i −w⋆

i ∥2
)
.

(18)

Assumption 3 indicates the policy difference between the
behavior policy and the optimal policy. Moreover, (18) can
be considered as a more relaxed variant of condition (2)
in (Zou et al., 2019) as (18) only requires the holding for
the distance of an arbitrary function from the ground truth,
rather than the distance between two arbitrary functions.

4.3. Main Theoretical Findings

4.3.1. CONVERGENCE ANALYSIS OF SF-DQN

Theorem 1 demonstrates that the learned Q function con-
verges to the optimal Q function when using SF-DQN for
Task 1. Notably, GPI is not employed for the initial task, as
we lack prior knowledge about the environment. Specifi-
cally, given conditions (i) the initial weights for ψ are close
to the ground truth as shown in (19), (ii) the replay buffer
is large enough as in (20), and (iii) the distribution shift be-
tween the behavior policy and optimal policy is bounded
(as shown in Remark), the learned parameters from Algo-
rithm (1) for task 1, ψ1(Θ1) andw1, converge to the ground
truth ψ⋆1 and w⋆

1 as in (21), indicating that the learned Q
function converges to the optimal Q function as in (22).

Theorem 1 (Convergence analysis of SF-DQN without
GPI). Suppose the assumptions in Section 4.2 hold and the
initial neuron weights of the SF of task 1 satisfy

∥Θ(0)
1 −Θ⋆1∥F
∥Θ⋆1∥F

≤ (1− cN ) · ρ1
K2

, (19)

for some positive cN . When we select the step size as ηt =
1
t+1 , and the size of the replay buffer is

N = Ω(c−2
N ρ−1

1 ·K2 · L2d log q). (20)

Then, with the high probability of at least 1 − q−d, the
weights θ(T ) from Algorithm 1 satisfy

∥Θ(T )
1 −Θ⋆1∥2 ≤ C1 + C⋆ · ∥w(0)

1 −w⋆
1∥2

(1− γ − cN )(1− γ)ρ1 − C⋆
· log

2 T

T
,

∥w(T )
1 −w⋆

1∥2 ≤
(
1− ρ2

ϕmax

)T
∥w(0)

1 −w⋆
1∥2,

(21)
where C1 = (2 + γ) · Rmax, and C⋆ = |A| · Rmax · (1 +
logν λ

−1 + 1
1−ν ) · C. Specifically, the learned Q-function

satisfies

max
s,a

∣∣∣Q(T )
1 −Q⋆

∣∣∣
≤ C1 + ∥w(0)

1 −w⋆
1∥2

(1− γ − cN )(1− γ)ρ1 − 1
· log

2 T

T

+
∥w(0)

1 −w⋆
1∥2Rmax

1− γ

(
1− ρ2

ϕmax

)T
.

(22)

Remark 1 (upper bound of C): To ensure the meaning-
fulness of the upper bound in (22), specifically that the de-
nominator needs to be greater than 0, C has an explicit
upper bound as C ≤ (1−γ−cN )(1−γ)ρ1

|A|·Rmax
. Considering the

definition of C in Assumption 3, it implies that the differ-
ence between the behavior policy and the optimal policy is

6



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

bounded. In other words, the fraction of bad tuples 1 in the
collected samples is constrained.

Remark 2 (Initialization): Note that (19) requires a good
initialization. Firstly, it is still a state-of-the-art practice in
analyzing Q-learning via deep neural network approxima-
tion. Secondly, according to the NTK theory (Jacot et al.,
2018), there always exist some good local minima, which
is almost as good as the global minima, near some random
initialization. Finally, such a good initialization can also be
adapted from some pre-trained models.

4.3.2. IMPROVED PERFORMANCE WITH GPI.

Theorem 2 establishes that the estimated Q function con-
verges towards the optimal solution with the implementa-
tion of GPI as shown in (24), leveraging the prior knowl-
edge learned from previous tasks. The enhanced perfor-
mance associated with GPI finds its expression as q⋆ de-
fined in (23). Notably, when tasks i and j exhibit a higher
degree of correlation, meaning that the distance between
w⋆
i and w⋆

j for tasks i and j is smaller, we can observe a
more substantial enhancement by employing GPI in trans-
ferring knowledge from task i to task j from (24).

Theorem 2 (Convergence analysis of SF-DQN with GPI).
Let us define

q⋆ =
2γ ·Rmax

1− γ
·
min1≤i≤j−1 ∥w⋆

i −w⋆
j ∥2

∥Θ(0)
j −Θ⋆j∥2

. (23)

Then, with the probability of at least 1 − q−d, the neuron
weights Θ(T )

j for the j-th task satisfy

∥Θ(T )
j −Θ⋆j∥2

≤
C1 + C⋆∥w(0)

j −w⋆
j ∥2

(1− γ − cN )(1− γ)ρ1 −min{q⋆, 1} · C⋆
· log

2 T

T
.

(24)

Remark 3 (Improvement via GPI): Utilizing GPI en-
hances the convergence rate from in the order of 1

1−C⋆ · 1
T

to in the order of 1
1−q⋆·C⋆ · 1

T . When the distance between
the source task and target tasks is small, q⋆ can approach
zero, indicating an improved generalization error by a fac-
tor of 1 − C⋆, where C⋆ is proportional to the fraction of

1A “bad tuple” refers to the data (s, a) collected based on
behavior policy a = πt(s) that differs from the optimal policy
a = π⋆(s). Intuitively, we can clearly see that the fraction of “bad
tuples” is positively related to the distance between the behav-
ior policy and the optimal policy (the motivation of Assumption
3). In fact, similar assumptions can be found in many theoretical
frameworks when analyzing Q-learning with function approxima-
tion (Zou et al., 2019) to guarantee that there is a certain fraction
of collected data that is useful for estimating the ground-truth Q-
value.

bad tuples. The improvement achieved through GPI is de-
rived from the reduction of the distance between the behav-
ior policy and the optimal policy, subsequently decreasing
the fraction of bad tuples in the collected data. Here, C⋆

is proportional to the fraction of bad tuples without using
GPI, and q⋆ ·C⋆ is proportional to the fraction of bad tuples
when GPI is employed.

4.3.3. IMPROVED PERFORMANCE WITH THE
KNOWLEDGE TRANSFER

Using our proposed SF-DQN, we have estimated Qπ
⋆
i
i for

task i. When the reward changes to rn+1(s, a, s
′) =

ϕ⊤(s, a, s′)w⋆
n+1 for a new task Tn+1, and oncew⋆n+ 1

is estimated, we can calculate the estimated Q-value func-
tion for Tn+1 by setting

Q
πn+1

n+1 (s, a) = max
1≤j≤n

ψ(Θ
(T )
j ; s, a)w⋆

n+1. (25)

As w(t)
n+1 experiences linear convergence to its optimal

w⋆, which is significantly faster than the sub-linear con-
vergence of Θ

(t)
n+1, as shown in (21), this derivation of

Qn+1 in (25) simplifies the computation of Θ⋆n+1 into a
much more manageable supervised setting for approximat-
ing w⋆n+1 with only a modest performance loss as shown in
(26). This is demonstrated in the following Theorem 3.
Theorem 3 (Transfer learning via SF-DQN). For the (n+
1)-th task with rn+1 = ϕ⊤w⋆n+1, suppose the Q-value
function is derived based on (25), we have

max
s,a

|Qπn+1

n+1 (s, a)−Q⋆n+1(s, a)|

≤ 2γ

1− γ
ϕmax min

j∈[n]
∥w⋆

j −w⋆
n+1∥2 +

∥w⋆
n+1∥2

(1− γ) · T
.

(26)

Remark 4 (Connection with existing works of SF in tab-
ular cases): The second term of the upper bound in (26),
∥w⋆

n+1∥2

(1−γ)·T , characterizes the value of ϵ assumed in (Barreto
et al., 2017), which results from the approximation error of
the optimal Q-functions in the previous tasks 2.

Without the SF decomposition as shown in (6), one can
apply a similar strategy in (25) for DQN as

Q
π′
n+1

n+1 (s, a) = max
1≤j≤n

Q(ω
(T )
j ; s, a). (27)

In Theorem 4, (28) illustrates the performance of (27)
through DQN. Compared to Theorem 3, transfer learning
via DQN is worse than that via SF-DQN by a factor of 1+γ

2
when comparing the estimation error of the optimal func-
tion Q⋆n+1 in (26) and (28), indicating the advantages of
using SFs in transfer reinforcement learning.

2Our upper bound in (26) differs from the one in (Barreto
et al., 2017) in the first term. This distinction arises from our im-
provement in Lemma 9 compared to Lemma 1 in (Barreto et al.,
2017). See Appendix G for the proof of Lemma 9.

7



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Theorem 4 (Transfer learning via DQN). For the (n+ 1)-
th task with rn+1 = ϕ ·w⋆n+1, suppose the Q-value function
is derived based on (27), we have

max
(s,a)

: |Qπ
′
n+1

n+1 (s, a)−Q⋆n+1(s, a)|

≤ 2

1− γ
ϕmax · min

j∈[n]
∥w⋆

j −w⋆
n+1∥2 +

∥w⋆
n+1∥2

(1− γ) · T
.

(28)

Remark 5 (Improvement by a factor of 1+γ
2 ): Trans-

fer learning performance in SF-DQN is influenced by the
knowledge gap between previous and current tasks, primar-
ily attributed to differences in rewards and data distribu-
tion. In SF-DQN, the impact of reward differences is rel-
atively small since ϕ that plays the role of reward remains
fixed. The parameter γ affects the influence of data dis-
tribution differences. A small γ prioritizes immediate re-
wards, thereby the impact of data distribution on the knowl-
edge gap is not significant. With a small γ, the impact of
reward difference dominates, resulting in a high gap be-
tween SF-DQN and DQN in transfer learning.

4.4. Technical Challenges, and Comparison with
Existing Works

Beyond deep learning theory: challenges in deep rein-
forcement learning. The proof of Theorem 1 is inspired by
the convergence analysis of one-hidden-layer neural net-
works within the semi-supervised learning (Zhong et al.,
2017; Zhang et al., 2022) and a recent theoretical frame-
work in analyzing DQN (Zhang et al., 2023a). This proof
tackles two primary objectives: (i) the first objective in-
volves characterizing the local convex region of the ob-
jective functions presented in (11) and (8); (ii) the second
objective focuses on quantifying the distance between the
gradient defined in (14) and the gradient of the objective
functions in (11) and (8).

However, extending this approach from the semi-
supervised learning setting to the deep reinforcement learn-
ing domain introduces additional challenges. First, we
expand our proof beyond the scope of one-hidden-layer
neural networks to encompass multi-layer neural networks.
This extension requires new technical tools for characteriz-
ing the Hessian matrix and concentration bounds, as out-
lined in Appendix F.1. Second, the approximation error
bound deviates from the supervised learning scenarios due
to several factors: the non-i.i.d. of the collected data, the
distribution shift between the behavior policy and the op-
timal policy, and the approximation error incurred when
utilizing (15) to estimate (11). Addressing these challenges
requires developing supplementary tools, as mentioned in
Lemma 7. Notably, this approximation does not exhibit
scaling behavior proportional to ∥Θi−Θ⋆i ∥2, resulting in a
sublinear convergence rate.

Beyond DQN: challenges in GPI. The major challenges
in proving Theorems 2-4 centers on deriving the improved
performance by utilizing GPI. The intuition is as follows.
Imagine we have two closely related tasks, labeled as i and
j, with their respective optimal weight vectors,w⋆

i andw⋆
j ,

being close to each other. This closeness suggests that these
tasks share similar rewards, leading to a bounded distribu-
tional shift in the data, which, in turn, implies that their op-
timal Q-functions should exhibit similarity. To rigorously
establish this intuition, we aim to characterize the distance
between these optimal Q-functions, denoted as |Q⋆i −Q⋆j |,
in terms of the Euclidean distance between their optimal
weight vectors, ||w⋆

i −w⋆
j ||2 (See details in Appendix G).

Furthermore, we can only estimate the optimal Q-function
for previous tasks during the learning process, and such
an estimation error accumulates in the temporal difference
learning, e.g., the case of the SF learning of ψ⋆. We de-
veloped novel analytical tools to quantify the error accu-
mulating in the temporal difference learning (see details in
Appendix C), which is not a challenge for previous works
in the supervised learning setting.

5. Experiments
This section summarizes empirical validation for the the-
oretical results obtained in Section 4 using a synthetic RL
environment. The experiment setup and additional exper-
imental results for real-world RL benchmarks are summa-
rized in Appendix E.

Convergence of SF-DQN with varied initialization. Fig-
ure 1 shows the performance of Algorithm 1 with different
initial w(0)

1 to the ground truth w⋆
1 . When the initializa-

tion is close to the ground truth, we observe an increased
accumulated reward, which verifies our theoretical findings
in (22) that the estimation error of the optimal Q-function
reduces as ∥w(0)

1 −w⋆∥2 decreases.

0 25 50 75 100 125 150 175 200
number of episodes

8 × 10 1

9 × 10 1

no
rm

al
ize

d 
av

er
ag

e 
re

wa
rd

w(0)
1 w *

1
20
40
60
80

Figure 1: Performance of
SF-DQN presented in Algo-
rithm 1 on Task 1.

0 25 50 75 100 125 150 175 200
number of episodes

8.6 × 10 1

8.8 × 10 1

9 × 10 1

9.2 × 10 1

9.4 × 10 1

no
rm

al
ize

d 
av

er
ag

e 
re

wa
rd

SFDQN (GPI)
DQN (GPI)

Figure 2: Transfer compar-
ison for SF-DQN and DQN
(with GPI)

Performance of SF-DQN with GPI when adapting to
tasks with varying relevance. We conducted experiments
to investigate the impact of GPI with varied task relevance.
Since the difference in reward mapping impacts data dis-
tribution shift, rewards, and consequently the optimal Q-

8



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Table 2: Normalized average reward for SF-DQN with and without GPI.

∥w∗
1 − w∗

2∥ = 0.01 = 0.1 = 1 = 10

SF-DQN (w/ GPI) 0.986± 0.007 0.965± 0.007 0.827± 0.008 0.717± 0.012

SF-DQN (w/o GPI) 0.942± 0.004 0.911± 0.013 0.813± 0.009 0.707± 0.011

function, we utilize the metric ∥w⋆
1 −w⋆

2∥2 to measure the
task irrelevance. The results summarized in Table 2 demon-
strate that when tasks are similar (i.e., small ∥w⋆

1 −w⋆
2∥),

SF-DQN with GPI consistently outperforms its counterpart
without GPI. However, when tasks are dissimilar (i.e., large
∥w⋆

1−w⋆
2∥), both exhibit the same or similar performance,

indicating that GPI is ineffective when two tasks are irrel-
evant. The observations in Table 2 validate our theoretical
findings in (24), showing a more significant improvement
in using GPI as ∥w⋆

1 −w⋆
2∥2 decreases.

Comparison of the SF-DQN agent and DQN agent.
From Figure 2, it is evident that the SF-DQN agent con-
sistently achieves a higher average reward (task 2) than the
DQN when starting training on task 2, where transfer learn-
ing occurs. These results strongly indicate the improved
performance of the SF-DQN agent over the DQN, align-
ing with our findings in (26) and (28). SF-DQN benefits
from reduced estimation error of the optimal Q-function
compared to DQN when engaging in transfer reinforcement
learning for relevant tasks.

6. Conclusions
This paper analyzes the transfer learning performance of
SF & GPI, with SF being learned using deep neural net-
works. Theoretically, we present a convergence analysis
of our proposed SF-DQN with generalization guarantees
and provide theoretical justification for its superiority over
DQN without using SF in transfer reinforcement learning.
We further verify our theoretical findings through numer-
ical experiments conducted in both synthetic and bench-
mark RL environments. Future directions include explor-
ing the possibility of learning ϕ using a DNN approxima-
tion and exploring the combination of successor features
with other deep reinforcement learning algorithms.

Acknowledgment
Part of this work was done when Shuai Zhang was
a postdoc at Rensselaer Polytechnic Institute (RPI).
This work was supported by AFOSR FA9550-20-1-0122,
ARO W911NF-21-1-0255, NSF 1932196, NSF CAREER
project 2047177, Cisco Research Award, and IBM through
the IBM-Rensselaer Future of Computing Research Col-
laboration. We thank all anonymous reviewers for their
constructive comments.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Allen-Zhu, Z. and Li, Y. Feature purification: How adver-

sarial training performs robust deep learning. In 2021
IEEE 62nd Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 977–988. IEEE, 2022.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI conference on
artificial intelligence, volume 31, 2017.

Bakshi, A., Jayaram, R., and Woodruff, D. P. Learning two
layer rectified neural networks in polynomial time. In
Conference on Learning Theory, pp. 195–268. PMLR,
2019.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In Inter-
national Conference on Machine Learning, pp. 501–510.
PMLR, 2018.

Bertsekas, D. and Tsitsiklis, J. N. Neuro-dynamic program-
ming. Athena Scientific, 1996.

Bhandari, J., Russo, D., and Singal, R. A finite time anal-
ysis of temporal difference learning with linear function
approximation. In Conference on learning theory, pp.
1691–1692. PMLR, 2018.

Bhatia, R. Matrix analysis, volume 169. Springer Science
& Business Media, 2013.

Brutzkus, A. and Globerson, A. An optimization and gen-
eralization analysis for max-pooling networks. In Uncer-
tainty in Artificial Intelligence, pp. 1650–1660. PMLR,
2021.

9



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Cai, Q., Yang, Z., Lee, J. D., and Wang, Z. Neural
temporal-difference learning converges to global optima.
Advances in Neural Information Processing Systems, 32,
2019.

Chowdhury, M. N. R., Zhang, S., Wang, M., Liu, S., and
Chen, P.-Y. Patch-level routing in mixture-of-experts is
provably sample-efficient for convolutional neural net-
works. In International Conference on Machine Learn-
ing, pp. 6074–6114. PMLR, 2023.

Coronato, A., Naeem, M., De Pietro, G., and Paragliola,
G. Reinforcement learning for intelligent healthcare ap-
plications: A survey. Artificial Intelligence in Medicine,
109:101964, 2020.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural compu-
tation, 5(4):613–624, 1993.

Dong, K., Yang, J., and Ma, T. Provable model-based non-
linear bandit and reinforcement learning: Shelve opti-
mism, embrace virtual curvature. Advances in Neural In-
formation Processing Systems, 34:26168–26182, 2021.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient de-
scent provably optimizes over-parameterized neural net-
works. In International Conference on Learning Repre-
sentations, 2018.

Du, S. S., Zhai, X., Poczos, B., and Singh, A. Gradient de-
scent provably optimizes over-parameterized neural net-
works. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.
net/forum?id=S1eK3i09YQ.

Du, S. S., Lee, J. D., Mahajan, G., and Wang, R. Agnostic
q-learning with function approximation in deterministic
systems: Near-optimal bounds on approximation error
and sample complexity. Advances in Neural Information
Processing Systems, 33:22327–22337, 2020.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. A theoretical anal-
ysis of deep q-learning. In Learning for Dynamics and
Control, pp. 486–489. PMLR, 2020.

Ge, R., Lee, J. D., and Ma, T. Learning one-hidden-
layer neural networks with landscape design. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=BkwHObbRZ.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, 2018.

Ji, X., Chen, M., Wang, M., and Zhao, T. Sample com-
plexity of nonparametric off-policy evaluation on low-
dimensional manifolds using deep networks. arXiv
preprint arXiv:2206.02887, 2022.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford,
J., and Schapire, R. E. Contextual decision processes
with low bellman rank are pac-learnable. In Interna-
tional Conference on Machine Learning, pp. 1704–1713.
PMLR, 2017.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A.,
Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Van-
houcke, V., et al. Scalable deep reinforcement learning
for vision-based robotic manipulation. In Conference on
Robot Learning, pp. 651–673. PMLR, 2018.

Karp, S., Winston, E., Li, Y., and Singh, A. Local signal
adaptivity: Provable feature learning in neural networks
beyond kernels. Advances in Neural Information Pro-
cessing Systems, 34:24883–24897, 2021.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: In-
tegrating temporal abstraction and intrinsic motivation.
Advances in neural information processing systems, 29,
2016a.

Kulkarni, T. D., Saeedi, A., Gautam, S., and Gershman,
S. J. Deep successor reinforcement learning. arXiv
preprint arXiv:1606.02396, 2016b.

Lazaric, A. Transfer in reinforcement learning: a frame-
work and a survey. In Reinforcement Learning: State-
of-the-Art, pp. 143–173. Springer, 2012.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Penning-
ton, J., and Sohl-Dickstein, J. Deep neural networks
as gaussian processes. In International Conference on
Learning Representations, 2018.

Li, H., Wang, M., Liu, S., and Chen, P.-Y. A theoretical
understanding of vision transformers: Learning, general-
ization, and sample complexity. In International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=jClGv3Qjhb.

Li, Y. and Liang, Y. Learning overparameterized neural
networks via stochastic gradient descent on structured
data. In Advances in Neural Information Processing Sys-
tems, pp. 8157–8166, 2018.

Liu, F., Viano, L., and Cevher, V. Understanding deep neu-
ral function approximation in reinforcement learning via
ϵ-greedy exploration. arXiv preprint arXiv:2209.07376,
2022.

10

https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=S1eK3i09YQ
https://openreview.net/forum?id=BkwHObbRZ
https://openreview.net/forum?id=BkwHObbRZ
https://openreview.net/forum?id=jClGv3Qjhb
https://openreview.net/forum?id=jClGv3Qjhb


SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Mitrophanov, A. Y. Sensitivity and convergence of uni-
formly ergodic markov chains. Journal of Applied Prob-
ability, 42(4):1003–1014, 2005.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nguyen-Tang, T., Gupta, S., Tran-The, H., and Venkatesh,
S. On sample complexity of offline reinforce-
ment learning with deep reLU networks in besov
spaces. Transactions on Machine Learning Research,
2022. URL https://openreview.net/forum?
id=LdEm0umNcv.

Russo, D. and Van Roy, B. Eluder dimension and the sam-
ple complexity of optimistic exploration. Advances in
Neural Information Processing Systems, 26, 2013.

Safran, I. and Shamir, O. Spurious local minima are com-
mon in two-layer relu neural networks. In International
Conference on Machine Learning, pp. 4430–4438, 2018.

Schwarting, W., Alonso-Mora, J., and Rus, D. Planning
and decision-making for autonomous vehicles. Annual
Review of Control, Robotics, and Autonomous Systems,
1:187–210, 2018.

Shalev-Shwartz, S., Shammah, S., and Shashua, A. Safe,
multi-agent, reinforcement learning for autonomous
driving. arXiv preprint arXiv:1610.03295, 2016.

Shi, Z., Wei, J., and Liang, Y. A theoretical analysis on
feature learning in neural networks: Emergence from in-
puts and advantage over fixed features. In International
Conference on Learning Representations, 2022.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

Soltanolkotabi, M., Javanmard, A., and Lee, J. D. Theo-
retical insights into the optimization landscape of over-
parameterized shallow neural networks. IEEE Transac-
tions on Information Theory, 65(2):742–769, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 112(1-
2):181–211, 1999.

Suzuki, T. Adaptivity of deep reLU network for learning
in besov and mixed smooth besov spaces: optimal rate
and curse of dimensionality. In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=H1ebTsActm.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine
Learning Research, 10(7), 2009.

Tenney, I., Xia, P., Chen, B., Wang, A., Poliak, A., Mc-
Coy, R. T., Kim, N., Van Durme, B., Bowman, S. R.,
Das, D., et al. What do you learn from context? probing
for sentence structure in contextualized word represen-
tations. In International Conference on Learning Repre-
sentations, 2018.

Tropp, J. A. User-friendly tail bounds for sums of random
matrices. Foundations of computational mathematics, 12
(4):389–434, 2012.

Vershynin, R. Introduction to the non-asymptotic analy-
sis of random matrices. arXiv preprint arXiv:1011.3027,
2010.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3):279–292, 1992.

Wen, Z. and Li, Y. Toward understanding the feature
learning process of self-supervised contrastive learning.
In International Conference on Machine Learning, pp.
11112–11122. PMLR, 2021.

Xu, P. and Gu, Q. A finite-time analysis of q-learning
with neural network function approximation. In Inter-
national Conference on Machine Learning, pp. 10555–
10565. PMLR, 2020.

Yang, Z., Jin, C., Wang, Z., Wang, M., and Jordan, M. I. On
function approximation in reinforcement learning: opti-
mism in the face of large state spaces. In Proceedings
of the 34th International Conference on Neural Informa-
tion Processing Systems, pp. 13903–13916, 2020.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalu-
ation for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020.

Zhang, J., Springenberg, J. T., Boedecker, J., and Bur-
gard, W. Deep reinforcement learning with successor
features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2371–2378. IEEE, 2017.

11

https://openreview.net/forum?id=LdEm0umNcv
https://openreview.net/forum?id=LdEm0umNcv
https://openreview.net/forum?id=H1ebTsActm
https://openreview.net/forum?id=H1ebTsActm


SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Zhang, S., Wang, M., Xiong, J., Liu, S., and Chen, P.-Y.
Improved linear convergence of training cnns with gen-
eralizability guarantees: A one-hidden-layer case. IEEE
Transactions on Neural Networks and Learning Systems,
2020.

Zhang, S., Wang, M., Liu, S., Chen, P.-Y., and Xiong,
J. How unlabeled data improve generalization in self-
training? a one-hidden-layer theoretical analysis. In
International Conference on Learning Representations,
2022.

Zhang, S., Li, H., Wang, M., Liu, M., Chen, P.-Y., Lu,
S., Liu, S., Murugesan, K., and Chaudhury, S. On the
convergence and sample complexity analysis of deep q-
networks with epsilon-greedy exploration. Advances in
Neural Information Processing Systems, 36, 2023a.

Zhang, S., Wang, M., Chen, P.-Y., Liu, S., Lu, S., and Liu,
M. Joint edge-model sparse learning is provably efficient
for graph neural networks. The Eleventh International
Conference on Learning Representations, 2023b.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon,
I. S. Recovery guarantees for one-hidden-layer neu-
ral networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 4140–
4149. JMLR. org, https://arxiv.org/abs/1706.03175,
2017.

Zhu, Z., Lin, K., Jain, A. K., and Zhou, J. Transfer learning
in deep reinforcement learning: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2023.

Zou, S., Xu, T., and Liang, Y. Finite-sample analysis for
sarsa with linear function approximation. Advances in
Neural Information Processing Systems, 32, 2019.

12



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Before moving into the technical details, we provide an overview of the structure of the appendix.

In Appendix A, we define some notations and useful lemmas to simplify the presentation and analysis. Some important
notations for understanding the proof is summarized in Table 3.

In Appendix B, we provide some preliminary lemmas and proof for Theorem 1. A proof sketch is included as (i) character-
ization of the local convex region of the objective function in (11) and (8) (Lemma 6), (ii) Characterization of the difference
between the empirical gradient in (14) and the gradient of the objective function (Lemma 7), (iii) Characterization of the
relation of two consecutive iterations Θ(t+1) and Θ(t) in (61), and (iv) Mathematical induction over (t+1) · ∥Θ(t) −Θ⋆∥2
from t = 1 to T to obtain the error bound between the learned model weights Θ(T ) and the optimal Θ⋆.

In Appendix C, we provide the proof for Theorems 3 and 4. A proof sketch is included as follows: (1) Characterization of
(25) by assuming knowledge of the optimal Q-function for previous tasks. (2) Characterization of the accumulated error
resulting from the estimation error of the learned Q-function in previous tasks. (3) Combining the bounds from (1) and (2)
leads to the error bound between (25) derived from the estimated Q-function of previous tasks and the optimal Q-function
for the new tasks.

In Appendix D, we provide the proof for Theorem 2. The proof sketch is a direct application of the existing results of the
convergence analysis as shown in Appendix B and the error bound between (25) derived from the estimated Q-function of
previous tasks and the optimal Q-function for the new tasks as shown in Appendix C.

In Appendix E, we provide additional experiments to further support the proposed SF-DQN in Algorithm 1 and our theo-
retical findings.

In Appendix F, we provide the proofs for the preliminary lemmas in proving Theorems 1 and 2.

In Appendix G, we provide the proofs for the preliminary lemmas in proving Theorems 3 and 4.

In Appendix H, we provide the proof for some additional lemmas.

A. Notations and preliminary results
Population risk function. We define a population risk function as

fπ⋆(θ) := E(s,a)∼π⋆
∥∥ψ(θ; s, a)− Es′|(s,a),a′∼π⋆(s′)

(
ϕ(s, a, s′) + γ · ψ(θ⋆; s′, a′)

)∥∥2
2
. (29)

We can see that θ⋆ is the global minimal to (29) with Assumption 1. For the convenience of presentation, we simplify fπ⋆
as f in the supplementary materials.

Then, the gradient of (29) is

∇fπ⋆(θ)
= E(s,a)∼π⋆,s′|(s,a)∼P,a′∼π⋆

(
ψ(θ; s,a)− ϕ(s,a, s′)− γ · ψ(θ⋆; s′, a′)

)
· ∇ψ(θ; s, a).

(30)

Given f is a smooth function, we have the gradient of f with respect to any θℓ at the ground truth θ⋆ equals to zero, namely,

∇ℓf(θ
⋆) := ∇θℓf(θ

⋆) = 0, ∀ℓ ∈ [L]. (31)

Vectorized Gradient of θ andw at iteration t. To avoid unnecessary high-dimensional tensor analysis, the gradient with
respect to θ, denoted as ∇θH for some function H , is represented as its corresponding vectorized version, ∇Vec(θ)H .

Let n denote the dimension of W defined in (2). We denote nl as the dimension of the vectorized neuron weights in the
ℓ-th layer, namely, nℓ = dim(vec(θℓ)).

Then, the gradient in updating θ as

g(t)(θ(t);Dt)

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ϕ(sm, am, s

′
m)− γ · ψ(θ(t); s′m, a′m)

)
· ∇θψ(θ

(t); sm, am) (32)

13



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

with g(t)(θ(t);Dt) ∈ Rn. Then, we have

θ(t+1) = θ(t) − ηt · g(t)(θ(t);Dt). (33)

Similar to (32), we define the gradient

l(t)(w(t);Dt) =
∑
m∈Dt

(
ϕ(sm, am, s

′
m)⊤w(t) − r(sm, am, s

′
m)

)
· ϕ(sm, am, s′m). (34)

In addition, without special descriptions, α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤ stands for any unit vector that in RKℓKℓ−1 with
αj ∈ RKℓ−1 (K0 = d). Therefore, we have

∥∇ℓH∥2 = max
α

∥α⊤∇ℓH∥2 = max
α

∣∣∣ K∑
j=1

α⊤
j

∂H

∂wℓ,j

∣∣∣,
∥∇2

ℓH∥2 = max
α

∥α⊤∇2
ℓ H α∥2 = max

α

( K∑
j=1

α⊤
j

∂H

∂wℓ,j

)2

.

(35)

Derivation of the gradient of deep neural networks. We use h(ℓ)(θ) to denote the input in the ℓ-th layer (or the output
in the (ℓ− 1)-th layer) of deep neural network ψ(θ), and h(1) = x(s, a), where

h(ℓ)(θ; s, a) = σ(θ⊤ℓ−1h
(ℓ−1)) = · · · = σ

(
θ⊤ℓ σ

(
θℓ−1 · · ·σ(θ⊤1 x(s, a))

))
. (36)

Then, we denote the dimension of h(ℓ) as Kℓ. Then, ψ(θ; s, a) can be written as

ψ(θ; s, a) =
1⊤

KL

KL∑
k=1

σ(θ⊤L,kh
(L)) =

1⊤

KL
σ
(
θ⊤Lσ(θ

⊤
L−1h

(L−1))
)
, (37)

where θℓ,k denotes the k-th neuron weights in the ℓ-th layer. Then, we define a group of functions Jℓ(θ) ∈ Rn −→ RK
such that

Jℓ(θ)

=

{[
1⊤σ′(θ⊤Lh

(L))θ⊤L · σ′(θ⊤L−1h
(L−1))θ⊤L−1 · · ·σ′(θ⊤ℓ+1h

(ℓ+1))θ⊤ℓ+1

]⊤
if ℓ > 1

1 if ℓ = 1
.

(38)

Then, the gradient of ψ can be represented as

∂ψ

∂θℓ,k
(θ) =

1

Kℓ
Jℓ,k(θ)σ′(θ⊤ℓ,kh(ℓ)(θ)

)
h(ℓ)(θ), (39)

where Jℓ,k stands for the k-th component of Jℓ.

Order-wise Analysis. Most constant numbers will be ignored in most steps. In particular, we use h1(z) ≳ (or ≲,≂)h2(z)
to denote there exists some positive constant C such that h1(z) ≥ (or ≤,=)C · h2(z) when z ∈ R is sufficiently large. In
this paper, we consider the case where θ⋆ℓ is well-conditioned, such that its largest singular value Σ1(ℓ) and the condition
number Σ1(ℓ)/σK(ℓ) can be viewed as constants and will be hidden in the order-wise analysis.

14



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Table 3: Notations for the proofs

d Dimension of the feature mappings of the state-action pair (s, a) ∈ S ×A.

K Number of neurons in the hidden layer.

L Number of hidden layers.

T Number of iterations.

w
(t)
i The estimated value for reward mapping of task i at t-th iteration.

Θ
(t)
i The estimated neuron weights for the successor feature of task i at t-th iteration.

θ(t) The value of Θ(t)
1 to simplify the notation in the analyses without GPI.

g(t)(θ(t);Dt) The pseudo-gradient function defined in (32) at point θ(t) with respect to the
dataset Dt.

fπ⋆ or f The population risk function defined in (29).

∇ℓH(θ̂) The gradient of a function H with respect to the components of θℓ at point θ̂.

∇2
ℓH(θ̂) The Hessian matrix of a function H with respect to the components of θℓ at point

θ̂.

Qπi The Q-function of task i for policy π.

Q⋆i The Q-function of task i for the optimal policy π⋆.

q⋆ A constant defined in (80), depending on task relevance ∥wi −wj∥2.

ηt The step size for updating neuron weights Θi for the successor feature.

κt The step size for updating the parameter for the weight mapping.

cN A constant in the order of 1/
√
N .

n The dimension of θ.

nℓ The dimension of vectorized θℓ.

Kℓ The dimension of the input for the ℓ-th layer for the deep neural network. K0 = d.

Jℓ(W ) A function in Rn −→ RK , defined in (38).

Ct The distribution shift between the optimal policy and behavior policy at iteration
t, defined in Assumption (3).

N The size of the experience replay buffer.

ϕmax The upper bound of the transition feature.

ρ1 A constant defined in (84).

ρ2 The smallest eigenvalue of Eϕ(s, a)ϕ(s, a)⊤ ∈ Rd×d.

ϕmax The upper bound of the transition feature.

A.1. Useful Lemmas for matrix concentration

Lemma 1 (Weyl’s inequality, (Bhatia, 2013)). LetB = A+E be a matrix with dimension m×m. Let λi(B) and λi(A)
be the i-th largest eigenvalues ofB andA, respectively. Then, we have

|λi(B)− λi(A)| ≤ ∥E∥2, ∀ i ∈ [m]. (40)

15



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Lemma 2 ((Tropp, 2012), Theorem 1.6). Consider a finite sequence {Zk} of independent, random matrices with dimen-
sions d1 × d2. Assume that such random matrix satisfies

E(Zk) = 0 and ∥Zk∥ ≤ R almost surely.

Define

δ2 := max
{∥∥∥∑

k

E(ZkZ∗
k)
∥∥∥,∥∥∥∑

k

E(Z∗
kZk)

∥∥∥}.
Then for all t ≥ 0, we have

Prob

{∥∥∥∥∥∑
k

Zk

∥∥∥∥∥ ≥ t

}
≤ (d1 + d2) exp

( −t2/2
δ2 +Rt/3

)
.

Lemma 3 (Lemma 5.2, (Vershynin, 2010)). Let B(0, 1) ∈ {α
∣∣∥α∥2 = 1,α ∈ Rd} denote a unit ball in Rd. Then, a

subset Sξ is called a ξ-net of B(0, 1) if every point z ∈ B(0, 1) can be approximated to within ξ by some pointα ∈ B(0, 1),
i.e., ∥z −α∥2 ≤ ξ. Then the minimal cardinality of a ξ-net Sξ satisfies

|Sξ| ≤ (1 + 2/ξ)d. (41)

Lemma 4 (Lemma 5.3, (Vershynin, 2010)). LetA be an d1×d2 matrix, and let Sξ(d) be a ξ-net of B(0, 1) in Rd for some
ξ ∈ (0, 1). Then

∥A∥2 ≤ (1− ξ)−1 max
α1∈Sξ(d1),α2∈Sξ(d2)

|αT1Aα2|. (42)

Lemma 5 (Mean Value Theorem). Let U ⊂ Rn1 be open and f : U −→ Rn2 be continuously differentiable, and x ∈ U ,
h ∈ Rn1 vectors such that the line segment x+ th, 0 ≤ t ≤ 1 remains in U . Then we have:

f(x+ h)− f(x) =
(∫ 1

0

∇f(x+ th)dt

)
· h,

where ∇f denotes the Jacobian matrix of f .

A.2. Definitions of Sub-Gaussian and Sub-exponential.

Definition 1 (Definition 5.7, (Vershynin, 2010)). A random variable X is called a sub-Gaussian random variable if it
satisfies

(E|X|p)1/p ≤ c1
√
p (43)

for all p ≥ 1 and some constant c1 > 0. In addition, we have

Ees(X−EX) ≤ ec2∥X∥2
ψ2
s2 (44)

for all s ∈ R and some constant c2 > 0, where ∥X∥ψ2 is the sub-Gaussian norm of X defined as ∥X∥ψ2 =
supp≥1 p

−1/2(E|X|p)1/p.

Moreover, a random vector X ∈ Rd belongs to the sub-Gaussian distribution if one-dimensional marginal αTX is sub-
Gaussian for any α ∈ Rd, and the sub-Gaussian norm ofX is defined as ∥X∥ψ2 = sup∥α∥2=1 ∥αTX∥ψ2 .

Definition 2 (Definition 5.13, (Vershynin, 2010)). A random variable X is called a sub-exponential random variable if it
satisfies

(E|X|p)1/p ≤ c3p (45)

for all p ≥ 1 and some constant c3 > 0. In addition, we have

Ees(X−EX) ≤ ec4∥X∥2
ψ1
s2 (46)

for s ≤ 1/∥X∥ψ1 and some constant c4 > 0, where ∥X∥ψ1 is the sub-exponential norm of X defined as ∥X∥ψ1 =
supp≥1 p

−1(E|X|p)1/p.

16



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

B. Proof of Theorem 1
Lemma 6 (Local convexity of fπ⋆ ). Given any θ ∈ Rn, let θ satisfy

∥θ − θ⋆∥2 ≲
cN · σK
ρ1 ·K

(47)

for some constant cN ∈ (0, 1). Then, for the fπ⋆ defined in (29), we have

(1− cN )ρ1
K2

⪯ ∇2
ℓfπ⋆(θ) ⪯

7

K
. (48)

Lemma 7 (Upper bound of the error gradient). Let fπ⋆ be the function defined in (29). Let gt be the function defined in
(32). Then, with probability at least 1− q−Kℓ−1 , we have

∥∥∥∇ℓfπ⋆(θ)− gℓ(θ
(t);Dt)

∥∥∥
2
≲

1

Kℓ
· ∥θ − θ⋆∥2 ·

√
Kℓ−1 log q

|Dt|
+

γ

Kℓ
· ∥θ(t) − θ⋆∥2

+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct,

(49)

where τ⋆ = min{t | λνt ≤ ηT }, and ν & λ are defined in Assumption 2.

Lemma 8 (Convergence of w(t)). With probability at least 1− q−d, w enjoys a linear convergence rate to w⋆ as

∥w(t+1) −w⋆∥2 ≤
(
1− ρ− cN

ϕmax

)
· ∥w(t) −w⋆∥2. (50)

Proof of Theorem 1. From Algorithm 1, the update of θ can be written as

θ(t+1) =θ(t) − ηt · g(t)(θ(t);Dt)
=θ(t) − ηt · ∇f(θ(t)) + ηt ·

(
∇f(θ(t))− g(t)(θ(t);Dt)

)
.

(51)

Since ∇f is a smooth function and θ∗ is a local (global) optimal to f , then we have

∇f(θ(t)) =∇f(θ(t))−∇f(θ⋆)

=

∫ 1

0

∇2f
(
θ(t) + u · (θ(t) − θ⋆)

)
du · (θ(t) − θ⋆),

(52)

where the last equality comes from Mean Value Theory in Lemma 5. For notational convenience, we use A(t) to denote
the integration as

A(t) :=

∫ 1

0

∇2f
(
θ(t) + u · (θ(t) − θ⋆)

)
du. (53)

Then, we have

∥θ(t+1) − θ⋆∥2 ≤∥I − ηtA
(t)∥2 · ∥θ(t) − θ⋆∥2 + ηt · ∥∇f(θ(t))− g(t)(θ(t);Dt)∥2

≤∥I − ηtA
(t)∥2 · ∥θ(t) − θ⋆∥2 + ηt ·

L∑
ℓ=1

∥∥∥∇ℓf(θ
(t))− g(t)(θ

(t)
ℓ ;Dt)

∥∥∥
2
.

(54)

From Lemma 6, we have

∥I − ηtA
(t)∥2 ≤ 1− ηt ·

(1− cN ) · ρ1
K2

. (55)

17



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

From Lemma 7, we have∥∥∥∇ℓfπ⋆(θ
(t))− gℓ(θ

(t);Dt)
∥∥∥
2
≲

1

Kℓ
· ∥θ(t) − θ⋆∥2 ·

√
Kℓ−1 log q

|Dt|
+

γ

Kℓ
· ∥θ(t) − θ⋆∥2

+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct.

(56)

With Assumption 3, we have
Ct ≤ C ·

(
∥θ(t) − θ⋆∥2 + ∥w(t) −w⋆∥2

)
.

When we have a sufficiently large number of samples at iteration t as

|Dt| ≳ c−2
N · ρ−1

1 ·
( L∑
ℓ=1

Kℓ

√
Kℓ−1

)2 · log q, (57)

(54) can be simplified as

∥θ(t+1) − θ⋆∥2 ≤ (1− ηt · ξ) · ∥θ(t) − θ⋆∥2 + ηt ·∆t + ηt · C⋆∥w(t) −w⋆∥2. (58)

where
C⋆ = |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · C

ξ =
(1− γ − cN )ρ1

K2
− C⋆

∆t =
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ .

(59)

Let ηt = 1
ξ·(t+1) , we have

(t+ 1) · ∥θ(t+1) − θ⋆∥2 ≤ t · ∥θ(t) − θ⋆∥2 + ξ−1 ·∆t + ξ−1 · C⋆∥w(t) −w⋆∥2. (60)

Next, we have

T−1∑
t=0

(t+ 1) · ∥θ(t+1) − θ⋆∥2 − t · ∥θ(t) − θ⋆∥2

≤
T−1∑
t=0

ξ−1 · (∆t + C⋆∥w(t) −w⋆∥2).

(61)

With the definition of ∆t in (59), we have

T−1∑
t=0

∆t ≤
τ⋆∑
t=0

∆t +

T−1∑
t=τ⋆

λ−1 ·∆t

≤
τ⋆∑
t=0

τ⋆ · Rmax

1− γ
+

T−1∑
t=τ⋆

·Rmax · (1 + γ)

1− γ
· τ⋆ · 1

T − τ⋆ + 1

≲
Rmax · log2 T

1− γ
+
Rmax · (1 + γ) · log2 T

1− γ
.

(62)

With Lemma 8 that w enjoys a geometric decay, we have

T−1∑
t=0

∥w(t) −w⋆∥2 ≲ ∥w(0) −w⋆∥2. (63)

18



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

By multiplying 1/T on both sides of (61), we have

∥θ(T ) − θ⋆∥2 ≤ (2 + γ) ·Rmax · log2 T + C⋆∥w(0) −w⋆∥2
(1− γ − cN )ρ1K−2 − C⋆

· 1
T
. (64)

C. Proofs of Theorems 3 and 4
Lemma 9. We have ∣∣Qπ⋆ii (s, a)−Q

π⋆j
i (s, a)

∣∣ ≤ 2γ

1− γ
·max

s,a
|ri(s, a)− rj(s, a)|. (65)

Proof of Theorem 3. For any task j ∈ [n], we have

Q
πn+1

n+1 (s, a)−Q
πj
n+1(s, a) = max

i∈[n]
Q
π⋆i
n+1(s, a)−Q

πj
n+1(s, a)

≥ Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a)

=
(
ψj(Θ

⋆
j )− ψj(Θ

(T )
j )

)
·w⋆

n+1.

(66)

According to Theorem 1, we have

∥ψj(Θ⋆j )− ψj(Θ
(T )
j )∥2 ≤

(2 + γ) ·Rmax · log2 T + C⋆∥w(0)
j −w⋆

j ∥2
(1− γ − cN )ρ1K−2 − C⋆

· 1
T

:=
C3

T
(67)

Then, we have

T πQ
πj
n+1(s, a) ≥ Q

πj
n+1(s, a)− γ ·

C3∥w⋆
n+1∥2
T

. (68)

Therefore, with the contraction property of the Bellman operator T π , we have

Q
πj
n+1(s, a) = lim

k→∞
(T π)kQ

πj
n+1(s, a)

≥ lim
k→∞

(T π)k−1
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2 · T π
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2 ·
(
T πQ

πj
n+1(s, a)− γ2

C3∥w⋆
n+1∥2
T

)
= lim
k→∞

(T π)k−2
(
Q
πj
n+1(s, a)− γ

C3∥w⋆
n+1∥2
T

− γ2
C3∥w⋆

n+1∥2
T

)
=Q

πj
n+1(s, a)−

∞∑
k=1

γk
C3∥w⋆

n+1∥2
T

=Q
πj
n+1(s, a)−

γ

1− γ

C3∥w⋆
n+1∥2
T

≥Qπ
⋆
j

n+1(s, a)−
C3∥w⋆

n+1∥2
T

− γ

1− γ

C3∥w⋆
n+1∥2
T

=Q
π⋆j
n+1(s, a)−

1

1− γ

C3∥w⋆
n+1∥2
T

.

(69)

For any policy π⋆j with j ∈ [n], we have

Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a) =
(
Q⋆n+1(s, a)−Q

π⋆j
n+1(s, a)

)
+

(
Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a)

)
. (70)

19



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

From Lemma 9, we have

Q⋆n+1(s, a)−Q
π⋆j
n+1(s, a) ≤

2γ

1− γ
·max

s,a
|rn+1(s, a)− rj(s, a)|, (71)

and (69) suggests that

Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a) ≤

C3∥w⋆
n+1∥2

(1− γ)T
. (72)

Therefore, (70) can be upper bounded as

Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a)

=
(
Q⋆n+1(s, a)−Q

π⋆j
n+1(s, a)

)
+
(
Q
π⋆j
n+1(s, a)−Q

πj
n+1(s, a)

)
≤ 2γ

1− γ
·max

s,a
|rn+1(s, a)− rj(s, a)|+

C3∥w⋆
n+1∥2

(1− γ)T

≤ 2γ · ϕmax

1− γ
∥wn+1 −wj∥2 +

C3∥w⋆
n+1∥2

(1− γ)T
.

(73)

Since (73) holds for any j, we have

|Q⋆n+1(s, a)−Q
πn+1

n+1 (s, a)| ≤ 2γ · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

. (74)

Proof of Theorem 4. Let π′
n+1 be generalized policy with DQN via GPI. Similar to (66), we have

Q
π′
n+1

n+1 (s, a)−Q
π′
j

n+1(s, a)

= max
i∈[n]

Q
π⋆i
n+1(s, a)−Q

π′
j

n+1(s, a)

≥ Q
π⋆j
n+1(s, a)−Q

π′
j

n+1(s, a)

= ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w

(t)
j

≈ ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w⋆

j

= ψj(Θ
⋆
j )w

⋆
n+1 − ψj(Θ

(T )
j )w⋆

n+1 + ψj(Θ
(T )
j )w⋆

n+1 − ψj(Θ
(T )
j )w⋆

j

≥− ∥Θ⋆j −Θ
(T )
j ∥ · ∥w⋆

n+1∥2 −
1

1− γ
ϕmax · ∥w⋆

n+1 −w⋆
j ∥2.

(75)

Following similar steps in the proof of Theorem 3, we have

|Q⋆n+1(s, a)−Q
π′
n+1

n+1 (s, a)| ≤2γ · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

+
1

1− γ
ϕmax · min

j∈[n]
∥w⋆

n+1 −w⋆
j ∥2

≤2γ · ϕmax

1− γ
min
j∈[n]

∥wn+1 −wj∥2 +
C3∥w⋆

n+1∥2
(1− γ)T

.

(76)

D. Proof of Theorem 2
Proof of Theorem 2. For task i, let πj be the policy derived from ψj(Θ

(T )
j )w⋆

i with 1 ≤ j ≤ i, where Θ
(T )
j is the returned

neuron weights for the successor feature of task j.

20



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Similar to (74), we have

Q⋆i (s, a)−Q
πj
i (s, a) ≤ 2γ · ϕmax

1− γ
∥wj −wi∥2 +

C3∥w⋆
i ∥2

(1− γ)T
. (77)

Let π′ be the policy derived from ψi(Θ
(t)
i )w⋆

i at iteration t for task i, we have

Q⋆i (s, a)−Qπ
′

i ≤ ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2. (78)

Therefore, at iteration t for task i, we have

Ct =|Q⋆i (s, a)−Q
π
(t)
i
i |

≤min
{2γ · ϕmax

1− γ
min
1≤j≤i

∥wj −wi∥2 +
C3∥w⋆

i ∥2
(1− γ)T

, ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2
}

≲min
{2γ · ϕmax

1− γ
min
1≤j≤i

∥wj −wi∥2, ∥Θ(t)
i −Θ⋆i ∥2 · ∥w⋆

i ∥2
}
(As T is sufficiently large)

=min{qt, 1} · ∥Θ(t)
i −Θ⋆i ∥2,

(79)

where

qt =
2γ ·Rmax

1− γ
·
min1≤i≤j−1 ∥w⋆

i −w⋆
j ∥2

∥Θ(t)
j −Θ⋆j∥2

. (80)

Following similar steps in (58) in the proof of Theorem 1, with Ct satisfying (79), we have

∥θ(T ) − θ⋆∥2 ≤ 1

T

T−1∑
t=1

(2 + γ) ·Rmax · log2 T + C⋆∥w(0) −w⋆∥2
(1− γ − cN )ρ1K−2 −min{1, qt} · C⋆

· 1
T
. (81)

E. Additional numerical experiments
In this section we empirically validate the theoretical results obtained in the previous section, using synthetic and real-world
RL benchmarks.

E.1. Synthetic data settings

Here, we define an MDP that contains two tasks with shared state transition dynamics. The MDP consists of a state space
with |S| = 10, 000, an action space with |A| = 4. For the first task, its successor feature is parameterized by a deep neural
network with the randomly generated neuron weights Θ⋆1, and w⋆

1 are randomly generated as the corresponding reward
mapping. We then generate ϕ based on (9) with ψ(Θ⋆1). Since ϕ is shared across all tasks, for Task 2, we randomly generate
the reward mapping w⋆

2 and then calculate ψ⋆2 accordingly.

E.2. Additional experiments on synthetic RL benchmarks

Comparison for transfer from multiple source tasks. In addition to the single source task case discussed in Section 5,
we also investigate the transfer performance of SFDQN (with and without GPI) and DQN (GPI) agents when trained on
multiple source tasks. For this purpose, we generate ϕ as described in the previous section, and generate additional source
tasks and a target task by pertubingw⋆

1 . Thus, we obtainw⋆
2 ,w⋆

2 ,w⋆
2 , the reward vectors for three additional source tasks.

The norm of all weight vectors is set to 1 to make sure the reward scales are similar across multiple source tasks. Then we
train each learning agent on the four source tasks and apply transfer using GPI. Note that while we also test the case for
SFDQN without GPI (thus no transfer), this agent leverages the similarity of source tasks and the target task. The results
are shown in Figure 3a. It can be seen that the SFDQN agent performs the best, which can leverage the task closeness due
to the proximity of source task weight vectors to that of the target task, and the transition dynamics information via GPI.
SFDQN agent without GPI on the other hand can only leverage the task closeness due to the proximity of source weight
vectors. DQN-GPI agent cannot leverage the task closeness information or the transition dynamic information explicitly
as the SFDN agent, and hence performs worse.

21



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Effect of ∥w⋆1 −w⋆2∥ on knowledge transfer. We investigate the effect of the distance betweenw⋆
1 tow⋆

2 , on the transfer
performance of the SFDQN. For this purpose, we assume SF-DQN agents have access to optimal reward mappings when
training on Tasks 1 and 2. After obtaining ϕ as described earlier, we initialize and train Θ2 using ϕ and w⋆

2 , with GPI.
Reward defined by ϕ · w⋆2 is used to obtain the average reward for Task 2. We repeat the process for different choices of
w⋆

2 , and the results are shown in Figure 3b. It can be seen that, when the task similarity is low (i.e. ∥w⋆1 −w⋆2∥ is large), the
performance of the SF-DQN agent with GPI is poor. On the other hand, when the task similarity is high, the performance
becomes significantly better.

0 25 50 75 100 125 150 175 200
number of episodes

5.1 × 10 1

5.2 × 10 1

5.3 × 10 1

5.4 × 10 1

5.5 × 10 1

5.6 × 10 1

no
rm

al
ize

d 
av

er
ag

e 
re

wa
rd

DQN (GPI)
SFDQN (GPI)
SFDQN (no GPI)

(a) Comparison of four different source task transfer performance
for SF-DQN (with and without GPI) and DQN with GPI.

0 25 50 75 100 125 150 175 200
number of episodes

7 × 10 1

8 × 10 1

no
rm

al
ize

d 
av

er
ag

e 
re

wa
rd

w *
1 w *

2
2.0
4.0
6.0
8.0

(b) Effect ∥w⋆
1−w⋆

2∥ on the convergence of SF-DQN agent when
training on task 2 with GPI

Figure 3: Additional experiments on synthetic environment

E.3. Real Data: Reacher environment

The reacher environment is a robotic arm manipulation task consisting of a robotic arm with two joint torque controls. The
state space is continuous, and the state features consist of angular displacement and angular velocity of the two joints. The
actual action space for the robot arm is continuous consists of the torques applied to the two joints, and is discretized for 3
values (for each joint torque). Thus, the total discretized action space consists of 9 actions (|A| = 9). The discount factor
used is γ = 0.9. Multiple tasks in this environment are defined by goal locations, and the objective of each task is to move
the tip of the robotic arm towards the goal location.

The reward of each task is defined by the distance δ, measured from the tip of the robotic arm to the corresponding goal
location. Specifically, a reward of 1 − δ is given to the agent at each time step. There are 12 predefined tasks and ϕ for
a given state (common to all 12 tasks) is defined by stacking the reward for each of the 12 tasks for a given state as a
vector. The corresponding reward weights w⋆

i for i = 1, . . . , 12 are defined by one hot vectors, where the ith element
of w⋆

i is 1 and other elements are 0. Thus, the inner product ϕ⊤w⋆
i naturally recovers the reward for the ith task. For

running experiments with this task, we use the open source code base https://github.com/mike-gimelfarb/
deep-successor-features-for-transfer.git.

Comparison of SF-DQN (with and without GPI) and DQN (GPI). We first provide a comparison of the performance
of SF-DQN with GPI, SF-DQN without GPI, and DQN with GPI, in Figure 4a. Here we consider the average transfer
performance for four tasks, after training on a source task. It can be seen that SFDQN with GPI performs better compared
to its no GPI counterpart. Both of these agents perform significantly better compared to DQN with GPI. hence, this result
validates our theoretical results for the performance of these three methods.

Effect of ∥w(0)
Trg − w⋆Trg∥. Next, we investigate the performance of the SFDQN agent when the target task reward

mappings are not known and learned simultaneously with successor features. We consider varying distances from the
initial target task reward mapping to the true target task reward mapping. The results are shown in Figure 4b. It can be seen
that when the reward mappings are initialized far away from the true reward mappings, the convergence of the SF-DQN

22

https://github.com/mike-gimelfarb/deep-successor-features-for-transfer.git
https://github.com/mike-gimelfarb/deep-successor-features-for-transfer.git


SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Src Trg
training task

100

200

300

400
ta

rg
et

 ta
sk

 re
wa

rd
SFDQN (GPI)
SFDQN (no GPI)
DQN (GPI)

(a) Comparison of DQN (GPI) and SF-DQN (with and without
GPI)

Src Trg
training task

50
100
150
200
250
300
350
400

ta
rg

et
 ta

sk
 re

wa
rd

w(0)
Trg w*

Trg
1.0
10.0
100.0

(b) Comparison of different initializations for target task reward
mapping

Figure 4: Single source to single target task transfer experiments on Reacher environment

agent is slower compared to that is initialized closer to the true reward mappings. This aligns with our convergence analysis
for the SF-DQN agent with GPI.

Single source task to multiple target tasks transfer learning. Next we compare the performance of SFDQN and DQN
with GPI for transferring knowledge from single source tasks to multiple target tasks. The results are given in Figures 5a,
5b, and 5c. It can be seen that SFDQN outperforms DQN significantly for most target tasks, which shows the efficacy of
knowledge transfer in SFDQN with GPI. The gap of performance seems to be different for different target tasks, suggesting
that the performance gain for SFDQN with GPI can vary depending on the source and target task relationship.

Multiple source tasks to single target task transfer learning. Next we investigate the effect of GPI for transferring
knowledge from multiple source tasks to single target task. The results are given in Figure 3a. It can be seen that SFDQN
outperforms DQN significantly, which shows the efficacy of knowledge transfer in SFDQN with GPI.

Src Trg1
training task

0

100

200

300

400

ta
rg

et
 ta

sk
 re

wa
rd

(a) Source to target task 1 trans-
fer performance

Src Trg2
training task

100

200

300

400

ta
rg

et
 ta

sk
 re

wa
rd

(b) Source to target task 2
transfer performance

Src Trg3
training task

100

200

300

400

ta
rg

et
 ta

sk
 re

wa
rd

(c) Source to target task 3 trans-
fer performance

Src1 Src2 Src3 Trg
training tasks

100

200

300

400

ta
rg

et
 ta

sk
 re

wa
rd

SFDQN (GPI)
DQN (GPI)

(d) Multiple source to target
task transfer performance

Figure 5: Multple source/target tasks transfer experiments on Reacher environment

F. Proof of lemmas in Appendix B
F.1. Proof of Lemma 6

Lemma 6 provides the lower and upper bounds for the eigenvalues of the Hessian matrix of population risk function in (29).
According to Weyl’s inequality in Lemma 1, the eigenvalues of ∇2

ℓf(·) at any fixed point θ can be bounded in the form
of (86). Therefore, we first provide the lower and upper bounds for ∇2

ℓf at the desired ground truth θ⋆. Then, the bounds
for ∇2

ℓf at any other point θ is bounded through (29) by utilizing the conclusion in Lemma 10. Lemma 10 illustrates the
distance between the Hessian matrix of f at θ and θ∗. Lemma 11 provides the lower bound of Ex

(∑K
j=1α

⊤
j

∂ψ
∂θℓ,k

(θ⋆)
)2

23



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

when x belongs to sub-Gaussian distribution, which is used in proving the lower bound of the Hessian matrix in (87).

Lemma 10. Let f(θ) be the population risk function defined in (29). If θ is close to θ⋆ such that

∥θ − θ⋆∥2 ≲
ρ1
K

(82)

we have

∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2 ≲

1

K
· ∥θ − θ⋆∥2. (83)

Lemma 11. Suppose the following assumptions hold:

1. {θj}Kj=1 ∈ RKℓ are linear independent,

2. Let p(h) : RKℓ −→ [ 0 1 ] be the probability density for h such that Eh∥h∥22 ≤ +∞.

Let α ∈ RKℓKℓ−1 be the unit vector defined in (35), we have

ρ1 := min
∥α∥2=1

∫
R

( K∑
j=1

α⊤hϕ′(θ⊤ℓ,jh)
)2

pH(h) · dh > 0, (84)

where R ⊂ RKℓ with
∫
R fH(h) > 0. Moreover, if further assuming h belongs to Gaussian distribution, we have

ρ1 > 0.091.

Lemma 12. Let h(ℓ)(θ) be the function defined in (36). When θ is sufficiently close to θ⋆, i.e., ∥θ − θ⋆∥2 is smaller than
some positive constant c < 1, we have

∥h(ℓ)(θ)∥2 ≲ ∥x∥2,
∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2 ≲ ∥θ − θ⋆∥2 · ∥x∥2.

(85)

Proof of Lemma 6. Let λmax(θ) and λmin(θ) denote the largest and smallest eigenvalues of ∇2
ℓf(θ) at θ, respectively.

Then, from Lemma 1, we have
λmax(θ) ≤ λmax(θ

⋆) + ∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2,

λmin(θ) ≥ λmin(θ
⋆)− ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2.
(86)

Then, we provide the lower bound of the Hessian matrix of the population function at θ⋆. Let P be the distribution for
h(ℓ)(θ) when x ∼ µ⋆ with probability density function denoted as pH . For any α ∈ RKℓK with ∥α∥2 = 1, we have

min
∥α∥2=1

α⊤∇2
ℓf(θ

⋆)α

=
1

K2
min

∥α∥2=1
Eh∼P

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

=
1

K2
min

∥α∥2=1

∫
RKℓ−1

( K∑
j=1

α⊤
j h

(ℓ)Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

pH(h(ℓ)) · dh(ℓ)

=
1

K2
min

∥α∥2=1

∫
{h(ℓ)|Jℓ,k ̸=0}

( K∑
j=1

α⊤
j h

(ℓ)ϕ′(θ⋆⊤ℓ,j h
(ℓ))

)2

pH(h(ℓ)) · dh(ℓ)

≳
ρ1
K2

,

(87)

where the last inequality comes from Lemma 11, and Lemma 11 holds since h(ℓ) belongs to sub-Gaussian distribution and
θℓ is full rank.

24



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Next, the upper bound of ∇2
ℓf can be bounded as

max
∥α∥2=1

α⊤∇2
ℓf(θ

⋆)α

=
1

K2
max

∥α∥2=1
Ex

( K∑
j=1

α⊤
j h

(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j h(ℓ))
)2

=
1

K2
max

∥α∥2=1
Ex

K∑
j1=1

K∑
j2=1

α⊤
j1h

(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j1h
(ℓ)) ·α⊤

j2h
(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j2h

(ℓ))

=
1

K2

K∑
j1=1

K∑
j2=1

Exα
⊤
j1h

(ℓ) · Jℓ,kϕ′(θ⋆Tℓ,j1h
(ℓ)) ·α⊤

j2h
(ℓ) · Jℓ,kϕ′(θ⋆⊤ℓ,j2h

(ℓ))

≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1h

(ℓ))4 · E(ϕ′(θ⋆⊤ℓ,j1h
(ℓ)))4 · Ex(α

⊤
j2h

(ℓ))4 · Ex(ϕ
′(θ⋆⊤ℓ,j2h

(ℓ)))4
]1/4

≤ 1

K2
max

∥α∥2=1

K∑
j1=1

K∑
j2=1

[
Ex(α

⊤
j1x)

4 · Ex(α
⊤
j2x)

4
]1/4

≤ 3

K2

K∑
j1=1

K∑
j2=1

∥αj1∥2 · ∥αj2∥2 ≤ 6

K2

K∑
j1=1

K∑
j2=1

1

2

(
∥αj1∥22 + ∥αj2∥22

)
=

6

K
.

(88)

Therefore, we have

λmax(θ
⋆) = max

∥α∥2=1
α⊤∇2

ℓf(θ
⋆; p)α ≤ 6

K
. (89)

Then, given (82), we have

∥θ − θ⋆∥2 ≲
2ρ1
K

. (90)

Combining (90) and Lemma 10, we have

∥∇2
ℓf(θ)−∇2

ℓf(θ
⋆)∥2 ≲

ρ1
K2

. (91)

Therefore, from (91) and (86), we have

λmax(θ) ≤ λmax(θ
⋆) + ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2 ≤ 6

K
+

ρ1
2K2

≤ 7

K
,

λmin(θ) ≥ λmin(θ
⋆)− ∥∇2

ℓf(θ)−∇2
ℓf(θ

⋆)∥2 ≥ ρ1
K2

− ρ1
2K2

=
ρ1
2K2

,
(92)

which completes the proof.

F.2. Proof of Lemma 7

The error bound between ∥∇ℓf − gt∥2 is divided into bounding I1, I2, I3, and I4 as shown in (98). I1 represents the
deviation of the gradient of Dt to their expectation, which can be bounded through concentration inequality. I2 is derived
from the distribution shift between the trajectory and its stationary distribution, which can be bounded with assumption 2.
I3 come from the data distribution shift between the behavior policy and optimal policy. I4 comes from the inconsistency
of the "noisy" label and the "ground truth" label in the population risk function (29). To ensure a smooth presentation, we
will defer the proof of I1 − I4 until we have completed the main proof of Lemma 7.

25



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Proof of Lemma 7. From (32), we know that

g(t)(θ
(t)
ℓ,k;Xm)

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− y(t)m

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ϕ(θ⋆; sm, am)− γ · ψ(s′m, a′m; θ(t))

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t,n); sm, am)− ψ(θ⋆; sm, am) + γ ·max

a′
ψ(s′m, a

′; θ⋆)

− γ · ψ(s′m, a′m; θ(t))
)
· ∂ψ(θ

(t,n);Xm)

∂θℓ,k

=
∑
m∈Dt

(
ψ(θ(t); sm, am)− ψ(θ⋆; sm, am)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

+ γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)− ψ(s′m, a

′
m; θ(t))

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k

:=
∑
m∈Dt

b
(t)
ℓ,k(θ

(t);Xm) + ∆b
(t)
ℓ,k(θ

(t);Xm),

(93)

where we have

b
(t)
ℓ,k(θ

(t);Xm) =
(
ψ(θ(t); sm, am)− ψ(θ⋆; sm, am)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k
(94)

and

∆b
(t)
ℓ,k(θ

(t);Xm) =
(
max
a′

ψ(θ⋆; s′m, a
′)− ψ(θ(t−1); s′m, a

′
m)

)
· ∂ψ(θ

(t);Xm)

∂θℓ,k
. (95)

Then, let us define b̄(t)ℓ,k as

b̄
(t)
ℓ,k(θ;X ) = E(s,a)∼µt

(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∇θψ(θ; s, a). (96)

From (29), we know that

∂fπ⋆

∂θℓ,k
(θ(t)) = E(s,a)∼µ⋆

(
ϕ(θ(t); s, a)− ϕ(θ⋆; s, a)

)
· ∂ϕ(θ

(t); s, a)

∂θℓ,k
. (97)

Then, from (93) and (97), we have

g(t)(θ
(t)
ℓ,k;Xm)− ∂fπ⋆

∂θℓ,k
(θ(t);Xm)

=
∑
m∈Dt

b
(t)
ℓ,k(θ

(t);Xm) + ∆b
(t)
ℓ,k(θ

(t);Xm)− ∂fπ⋆

∂θℓ,k
(θ(t);Xm)

=

[
b
(t)
ℓ,k(θ

(t)
ℓ,k;Xm)− EXm∼Dt b

(t)
ℓ,k(θ

(t)
ℓ,k;Xm)

]
+

[
EXm∼Dt b

(t)
ℓ,k(θ

(t);Xm)− b̄
(t)
ℓ,k(θ

(t);Xm)

]
+

[
b̄
(t)
ℓ,k(θ

(t))− ∂fπ⋆

∂θℓ,k
(θ(t))

]
+ EXm∼Dt∆b

(t)
ℓ,k(θ

(t);Xm)

:=I1 + I2 + I3 + I4.

(98)

Therefore, we have ∥∥∥g(t)(θ(t)ℓ,k;Xm)− ∂fπ⋆

∂θℓ,k
(θ(t))

∥∥∥
2
≤ ∥I1∥2 + ∥I2∥2 + ∥I3∥2 + ∥I4∥2. (99)

26



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Next, we first provide the bound for ∥I1∥2, ∥I2∥2, ∥I3∥2, and ∥I4∥2 as

∥I1∥2 ≤ 1

Kℓ
· ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
,

∥I2∥2 ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ ,

∥I3∥2 ≤ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct,

∥I4∥2 ≤ γ

Kℓ
· ∥θ(t − θ⋆∥2,

(100)

where |A| is the size of action space. The details for the derivation of I1- I4 can be found after the proof.

Let α ∈ RKd and αj ∈ Rd with α = [αT1 ,α
T
2 , · · · ,αTK ]T , with probability at least 1− q−d, we have

∥g(t)(θℓ; θ)−∇ℓfπ⋆(θ)∥22 =
∣∣∣αT (g(t)(θ)−∇fπ⋆(θ)

)∣∣∣2
≤

K∑
k=1

∣∣∣αTk (g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

)∣∣∣2
≤

K∑
k=1

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2
· ∥αk∥22

≤max
k

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2
.

(101)

In conclusion, we have

∥g(t)(θℓ; θ)−∇ℓfπ⋆(θ)∥2

≤max
k

∥∥∥g(t)(θℓ,k; θ)− ∂fπ⋆

∂θℓ,k
(θ)

∥∥∥2
2

≤max
k

∥I1(k)∥2 + ∥I2(k)∥2 + ∥I3(k)∥2 + ∥I4(k)∥2

≤ 1

Kℓ
· ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
+
Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆

+ |A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct +

γ

Kℓ
· ∥θ(t) − θ⋆∥2,

(102)

where τ⋆ = min{t | λνt ≤ ηT }

F.2.1. PROOF OF UPPER BOUND OF I1

Proof. We define a random variable

Z(ℓ)(k) =
(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· Jℓ,k ·αTh(ℓ)(θ)

with (s, a) ∼ Dt and
Z(ℓ)
m (k) =

(
Q(xm; θ)−Q(xm; θ⋆)

)
· Jℓ,k ·αTh(ℓ)

n (θ)

as the realization of Z(ℓ) for m ∈ Dt, where α is any fixed unit vector.

According to the definition of I1 in (98), we can rewrite I1 as

I1 =
1

Kℓ

[ ∑
m∈Dt

Z(ℓ)
m (k)− E(s,a)∼DtZ

(ℓ)(k)
]
. (103)

27



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Then, for any p ∈ N+, we have

(
E|Z(ℓ)|p

)1/p
=
(
EX∼Dt |ψ(θ; s, a)− ψ(θ⋆; s, a)|p · |Jℓ,kσ′(w⊤

ℓ,kx)| · |αTh(ℓ)|p
)1/p

≤
(
EX∼Dt,1 |ψ(θ; s, a)− ψ(θ⋆; s, a)|p · |αTh(ℓ)|p

)1/p

≤
(
EX∼Dt

∣∣∣∥θ − θ⋆∥2 · ∥x(s, a)∥2
∣∣∣p · ∣∣αTx(s, a)∣∣p)1/p

≲ · ∥θ − θ⋆∥2 · p.

(104)

From Definition 2, we know that Z(ℓ) belongs to sub-exponential distribution with ∥Z(ℓ)∥ψ1
≲ ∥θ − θ⋆∥2. Therefore, by

Chernoff inequality, for any s ∈ R, we have

P
{∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m (k)− EZ(ℓ)(k)

∣∣∣ < t

}
≤ 1− e−(∥θ−θ⋆∥2)

2·|Dt|·s2

e|Dt|·st
. (105)

Let t = ∥θ − θ⋆∥2
√

d log q
N and s = 2

∥θ−θ⋆∥2
· t for some large constant q > 0. Then, with probability at least 1− q−d, we

have ∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m (k)− EZ(ℓ)(k)

∣∣∣ ≲ ∥θ − θ⋆∥2 ·

√
d log q

|Dt|
. (106)

From Lemma 4 and (103), with probability at least 1− |S 1
2
(d)| · q−d, we have

∥I1∥2 ≤ 2 · 1

Kℓ

∣∣∣∣∣ 1

|Dt|
∑
m∈Dt

Z(ℓ)
m − EZ(ℓ)

∣∣∣∣∣ ≲ 1

Kℓ
∥θ − θ⋆∥2 ·

√
d log q

|Dt|
. (107)

From Lemma 3, we know that |S 1
2
(d)| ≤ 5d. Therefore, the probability for (107) holds is at least 1 −

(
q
5

)−d
. Because

q ≫ 5, we denote the probability as 1− q−d for convenience.

F.2.2. PROOF OF UPPER BOUND OF I2

Proof. I2 is the bias of the data because the data (s, a) at iteration t depends on the neural network parameters θ(t). Recall
the definition of b(t)ℓ,k and b̄(t)ℓ,k, we define

∆t = b
(t)
ℓ,k(θ

(t);Xm)− b̄
(t)
ℓ,k(θ

(t);Xm). (108)

It is easy to verify that
∥b(t)ℓ,k(θ;Xm)− b

(t)
ℓ,k(θ̃;Xm)∥2 ≤ (1 + γ) · ∥θ − θ̃∥2,

∥b̄(t)ℓ,k(θ;Xm)− b̄
(t)
ℓ,k(θ̃;Xm)∥2 ≤ (1 + γ) · ∥θ − θ̃∥2,

and ∥b(t)ℓ,k∥ ≲
Rmax

1− γ
.

(109)

Then, we have
∆t(θ)−∆t(θ̃) ≲ (1 + γ) · ∥θ − θ̃∥2. (110)

Therefore, we have

∆t(θ
(t)) ≤ ∆t(θ

(t−τ)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi. (111)

Then, we need to bound δt(θ(t−τ)).

28



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Let us define the observed tuple Ot(s, a, s′) as the collection of the state, action, and the next state at the t-th iteration.
Note that

θ(t−τ) −→ st−τ −→ st −→ Ot (112)

forms a Markov chain introduced by the policy πt.

Let θ̃(t−τ,0) and Õt be independently drawn from the marginal distributions of θ(t−τ,0) and Ot, respectively.

With Lemma 9 in (Bhandari et al., 2018), we have

E∆t(θ
(t−τ), Ot)− E∆t(θ̃

(t−τ), Õt) ≲ 2 sup
θ,O

|∆t(θ,O)| · λ · ντ . (113)

By definition, we have E ∆m(θ̃(t−τ), Õt) = 0 and

|∆t(θ,O)| ≤ 2 Rmax

1− γ
. (114)

Therefore, we have

E∆t(θ
(t)) ≤E∆t(θ

(t−τ)) +
1 + γ

1− γ
·Rmax ·

t−1∑
i=t−τ

ηi

≤Rmax

1− γ

(
λ · ντ + (1 + γ) · τ · ηt−τ

)
,

(115)

where the last inequality comes from the fact that the step size ηm is non-increasing.

Choose τ⋆ = min
{
t = 0, 1, 2, · · · | λντ ≤ ηT

}
. When t ≤ τ⋆, we choose τ = t and have

E∆t(θ
(t)) ≤ Rmax

1− γ
· τ⋆ · η0. (116)

When n > τ⋆, we can choose τ = τ⋆ and obtain

E∆t(θ
(t)) ≤ Rmax

1− γ
· (1 + γ)τ⋆ · ηt−τ⋆ . (117)

Combining (116) and (117), we have

|I2| ≤
Rmax

1− γ
· (1 + γ)τ⋆ · ηmax{0,t−τ⋆}, (118)

where τ⋆ = min{t | λνt ≤ ηT }.

F.2.3. PROOF OF BOUND OF I3

Proof. We have

I3 =b̄
(t)
ℓ,k(θ

(t))− ∂fπ⋆

∂θℓ,k
(θ(t))

=E(s,a)∼µt

(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆
(
ψ(θ; s, a)− ψ(θ⋆; s, a)

)
· ∂ψ(θ; s, a)

∂θℓ,k

=E(s,a)∼µt

(
ψ(θ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

ψ(θ⋆; s′, a′)
)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆
(
ψ(θ; s, a)− r(s, a)− γ · Es′∼pa

s,s′
max
a′

ψ(θ⋆; s′, a′)
)
· ∂ψ(θ; s, a)

∂θℓ,k

=E(s,a)∼µt,s′∼pa
s,s′

(
ψ(θ; s, a)− r(s, a)− γ ·max

a′
ψ(θ⋆; s′, a′)

)
· ∂ψ(θ; s, a)

∂θℓ,k

− E(s,a)∼µ⋆,s′∼pa
s,s′

(
ψ(θ; s, a)− r(s, a)− γ ·max

a′
ψ(θ⋆; s′, a′)

)
· ∂ψ(θ; s, a)

∂θℓ,k

(119)

29



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Then, we have ∣∣∣ ∫
(s,a)

∫
s′

(
µ⋆(ds, da)P(ds′|s, a)− µt(ds, da)P(ds′|s, a)

)∣∣∣
=
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)π⋆(da|s)P(ds′|s, a)− Pt(ds)πt(da|ds)P(ds′|s, a)

)∣∣∣
≤
∣∣∣ ∫

(s,a)

∫
s′

(
P⋆(ds)− Pt(ds)

)
π⋆(da|s)P(ds′|s, a)

∣∣∣
+
∣∣∣ ∫

(s,a)

∫
s′
Pt(ds)

(
πt(da|ds)− π⋆(da|ds)

)
P(ds′|s, a)

∣∣∣.
(120)

From Theorem 3.1 in (Mitrophanov, 2005), we know that∣∣∣ ∫
(s,a)

(
P⋆(ds)− Pt(ds)

)∣∣∣ ≤ |A|(logν λ−1 +
1

1− ν
)Ct

and
∥∥πt(da|ds)− π⋆(da|ds)

∥∥ ≤ Ct.

(121)

Therefore, the bound of I3 can be found as

∥I3∥2 ≤ Rmax

1− γ
· |A| · Ct · (1 + logν λ

−1 +
1

1− ν
)

=|A| · Rmax

1− γ
· (1 + logν λ

−1 +
1

1− ν
) · Ct.

(122)

F.2.4. PROOF OF BOUND OF I4

Proof. We have

∥I4∥ =∥∆b(t)ℓ,k(θ
(t);Xm)∥2

=max
s,a

γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)− ψ(s′m, a

′
m; θ(t))

)
·
∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≤max
s,a

γ ·
(
max
a′

ψ(s′m, a
′; θ⋆)−max

a′
ψ(s′m, a

′; θ(t))
)
·
∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≤γ · max
s,a,a′

∣∣∣ψ(s′m, a′; θ⋆)− ψ(s′m, a
′; θ(t))

∣∣∣ · ∥∥∥∂ψ(θ(t);Xm)

∂θℓ,k

∥∥∥
2

≲γ · ∥θ(t) − θ⋆∥2 ·
1

Kℓ

≤ γ

Kℓ
∥θ(t) − θ⋆∥2.

(123)

F.3. Proof of Lemma 8

Proof of Lemma 8. From the update rule of w in Algorithm 1, we have

w(t+1) −w⋆ =w(t) −w⋆ − κt ·
∑
m∈Dt

(ϕ⊤mw
(t) − rm) · ϕm

=w(t) −w⋆ − κt ·
∑
m∈Dt

(ϕ⊤mw
(t) − ϕmw

⋆) · ϕm

=
(
I − κt

∑
m∈Dm

ϕ⊤mϕm

)
· (w(t) −w⋆).

(124)

30



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

For any unit vector α ∈ dim(w), we have

|α⊤EDtϕ
⊤ϕα| ≤ max

∥ϕ∥2

|α⊤ϕ|2 ≤ ϕ2max,

|α⊤EDtϕ
⊤ϕα| ≥ |α⊤ϕmin|2 ≥ 0.

(125)

Also, it is easy to verify that |α⊤EDtϕ
⊤ϕα| = 0 if only and if ϕm are all parallel to each other. As ϕm does not parallel

to each other, let ρ2 > 0 denote the minimal eigenvalue of EDtϕ
⊤ϕ.

Given ϕ is bounded, ϕ belongs to the sub-Gaussian distribution. Similar to (106), with Chebyshev’s inequality, we have∥∥∥∥∥ ∑
m∈Dm

ϕ⊤mϕm − EDtϕ
⊤ϕ

∥∥∥∥∥
2

≤

√
d log q

|Dt|
(126)

with probability at least 1− d−q . Let N ≥ c−2
N d log q, according to Lemma 1, we have

λmin(
∑

m∈Dm

ϕ⊤mϕm) ≤ λmin(EDtϕ
⊤ϕ)− cN ≤ ρ2 − cN . (127)

When we choose κt = 1
ϕmax

, we have

∥w(t+1) −w⋆∥2 ≤
(
1− ρ2 − cN

ϕmax

)
· ∥w(t) −w⋆∥2. (128)

G. Proof of lemmas in Appendix C

Proof of Lemma 9.
∣∣Qπ⋆ii (s, a)−Q

π⋆j
i (s, a)

∣∣ can be upper bounded as∣∣Qπ⋆ii (s, a)−Q
π⋆j
i (s, a)

∣∣
=
∣∣∣ri + γ ·

∑
s′

pas,s′Q
π⋆i
i

(
s′, π⋆i (s

′)
)
−
(
ri + γ ·

∑
s′

pas,s′Q
π⋆j
i

(
s′, π⋆j (s

′)
))∣∣∣

=γ ·
∣∣∣∑

s′

pas,s′Q
π⋆i
i

(
s′, π⋆i (s

′)
)
−
∑
s′

pas,s′Q
π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣

≤γ ·
∑
s′

pas,s′ ·
∣∣∣Qπ⋆ii (

s′, π⋆i (s
′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣

≤γ ·
∑
s′

pas,s′ ·
[∣∣∣Qπ⋆ii (

s′, π⋆i (s
′)
)
−Q

π⋆j
j

(
s′, π⋆j (s

′)
)∣∣∣+ ∣∣∣Qπ⋆jj (

s′, π⋆j (s
′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

=γ ·
∑
s′

pas,s′ ·
[∣∣∣max

a′
Q
π⋆i
i

(
s′, a′

)
−max

a′
Q
π⋆j
j

(
s′, a′

)∣∣∣+ ∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

≤γ ·
∑
s′

pas,s′ ·
[
max
a′

∣∣∣Qπ⋆ii (
s′, a′

)
−Q

π⋆j
j

(
s′, a′

)∣∣∣+ ∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

≤γ ·
∑
s′

pas,s′ ·
[
max
s′,a′

∣∣∣Qπ⋆ii (
s′, a′

)
−Q

π⋆j
j

(
s′, a′

)∣∣∣+max
s′

∣∣∣Qπ⋆jj (
s′, π⋆j (s

′)
)
−Q

π⋆j
i

(
s′, π⋆j (s

′)
)∣∣∣]

(129)

Let
I5 = max

s,a

∣∣∣Qπ⋆ii (
s, a

)
−Q

π⋆j
j

(
s, a

)∣∣∣
and

I6 = max
s,a

∣∣∣Qπ⋆jj (
s, a

)
−Q

π⋆j
i

(
s, a

)∣∣∣ ≥ max
s

∣∣∣Qπ⋆jj (
s, π⋆j (s)

)
−Q

π⋆j
i

(
s, π⋆j (s)

)∣∣∣.
31



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Then, we have

I5 =max
s,a

∣∣∣ri + γ ·
∑
s′

pas,s′ max
a′

Q
π⋆i
i (s′, a′)− rj − γ ·

∑
s′

pas,s′ max
a′

Q
π⋆j
j (s′, a′)

∣∣∣
≤max

s,a
|ri(s, a)− rj(s, a)|+ γmax

s,a

∑
s′

pas,s′ ·max
a′

|Qπ
⋆
i
i (s′, a′)−Q

π⋆j
j (s′, a′)|

≤max
s,a

|ri(s, a)− rj(s, a)|+ γ · I5.

(130)

Therefore, we have

I5 ≤ 1

1− γ
max
s,a

|ri(s, a)− rj(s, a)|. (131)

Similar to (130), we have

I6 ≤max
s,a

|ri(s, a)− rj(s, a)|+ γmax
s,a

∑
s′

pas,s′ · |Q
π⋆j
j (s′, π⋆j (s

′))−Q
π⋆j
i (s′, π⋆j (s

′))|

≤max
s,a

|ri(s, a)− rj(s, a)|+ γ · I6.
(132)

Therefore, we have

I6 ≤ 1

1− γ
max
s,a

|ri(s, a)− rj(s, a)|. (133)

Therefore, we have ∣∣Qπ⋆ii (s, a)−Q
π⋆i
j (s, a)

∣∣ ≤ γ(I5 + I6) ≤
2γ

1− γ
·max

s,a
|ri(s, a)− rj(s, a)|. (134)

H. Additional proof of the lemmas
H.1. Proof of Lemma 10

The distance of the second order derivatives of the population risk function f(·) at point θ and θ⋆ can be converted into
bounding P1, P2, which are defined in (136). The major idea in proving P1 is to connect the error bound to the angle
between θ and θ⋆ given h(ℓ) belongs to the sub-Gaussian distribution.

Proof of Lemma 10. From the definition of f in (29), we have

∂2f

∂θℓ,j1∂θℓ,j2
(θ⋆) =

1

K2
ExJℓ,kσ′(θ⋆⊤j1 h) · Jℓ,kσ

′(θ⋆⊤j2 h) · h
⋆h⋆⊤,

and
∂2f

∂θℓ,j1∂θℓ,j2
(θ) =

1

K2
Exσ

′J ⋆
ℓ,k(θ

⊤
ℓ,j1h) · J

⋆
ℓ,kσ

′(θ⊤ℓ,j2h) · hh
⊤,

(135)

where h = h(ℓ)(θ) and h⋆ = h(ℓ)(θ⋆).

Then, we have

∂2f

∂θℓ,j1∂θℓ,j2
(θ∗)− ∂2f

∂θℓ,j1∂θℓ,j2
(θ)

=
1

K2
Ex

[
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)J ⋆

ℓ,kσ
′(θ⋆Tℓ,j2h

⋆)h⋆h⋆⊤

− Jℓ,kσ′(θ⊤ℓ,j1h)Jℓ,kJℓ,kσ
′(θ⊤ℓ,j2h)hh

⊤]
=

1

K2
Ex

[
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)h⋆h⋆⊤ − Jℓ,kσ′(θ⊤ℓ,j2h)hh

⊤)
+ Jℓ,kσ′(θ⊤ℓ,j2h)

(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h)h
⋆h⋆⊤ − Jℓ,kσ′(θ⊤ℓ,j1h)hh

⊤)]
:=

1

K2
(P1 + P2).

(136)

32



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

For any a ∈ RKℓ with ∥a∥2 = 1, we have

a⊤P1a =ExJ ⋆
ℓ,kσ

′(θ⋆Tℓ,j1h
⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
)
. (137)

Then, we have

|a⊤P1a| =
∣∣∣ExJ ⋆

ℓ,kσ
′(θ⋆Tℓ,j1h

⋆)
(
J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
)∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
∣∣∣

≤Ex

∣∣∣J ⋆
ℓ,kσ

′(θ⋆Tℓ,j2h
⋆)(a⊤h⋆)2 − J ⋆

ℓ,kσ
′(θ⋆⊤ℓ,j2h

⋆)(a⊤h)2
∣∣∣

+ Ex

∣∣∣J ⋆
ℓ,kσ

′(θ⋆⊤ℓ,j2h
⋆)(a⊤h)2 − Jℓ,kσ′(θ⋆⊤ℓ,j2h)(a

⊤h)2
∣∣∣

+ Ex

∣∣∣Jℓ,kσ′(θ⋆⊤ℓ,j2h)(a
⊤h)2 − Jℓ,kσ′(θ⊤ℓ,j2h)(a

⊤h)2
∣∣∣

≲∥θ − θ⋆∥2 + ∥θ − θ⋆∥2 + Ex

∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⋆⊤ℓ,j2h)
)
· (a⊤h)2

∣∣∣
≲∥θ − θ⋆∥2 + Ex

∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⋆⊤ℓ,j2h)
)
· (a⊤h)2

∣∣∣.

(138)

Utilizing the Gram-Schmidt process, we can demonstrate the existence of a set of normalized orthonormal vectors denoted
as B = {a, b, c,a⊥

4 , · · · ,a⊥
d } ∈ Rd. This set forms an orthogonal and normalized basis for Rd, wherein the subspace

spanned by a, b, c includes a, θℓ,j2 , and θ∗ℓ,j2 . Then, for any x ∈ Rd, we have a unique z = [z1, z2, · · · , zd]⊤ such that

h = z1a+ z2b+ z3c+ · · ·+ zda
⊥
d .

Because (i) a, θℓ,j2 , and θ∗ℓ,j2 belongs to the subspace spanned by vectors {a, b, c} and (ii) a⊥
4 , · · · ,a⊥

d , · · · are orthogonal
to a, b, and c. Then, we know that

θ⋆⊤ℓ,j2h =θ⋆⊤ℓ,j2(z1a+ z2b+ z3c+ · · ·+ zda
⊥
d )

=z1θ
⋆⊤
ℓ,j2a+ z2θ

⋆⊤
ℓ,j2b+ z3θ

⋆⊤
ℓ,j2c+ · · ·+ zdθ

⋆⊤
ℓ,j2a

⊥
d

=z1θ
⋆⊤
ℓ,j2a+ z2θ

⋆⊤
ℓ,j2b+ z3θ

⋆⊤
ℓ,j2c+ 0

=θ⋆⊤ℓ,j2(z1a+ z2b+ z3c)

:=θ⋆⊤ℓ,j2h̃.

(139)

where h̃ = z1a+ z2b+ z3c. Similar to (139), we have θ⊤ℓ,j2h = θ⊤ℓ,j2h̃ and a⊤h = a⊤h̃.

Then, we define I4 as

I4 :=Eh

∣∣∣(σ′(θ⋆⊤ℓ,j2h)− σ′(θ⊤ℓ,j2h)
)
·
(
a⊤h

)∣∣∣
=

∫
Rh

|σ′(θ⊤ℓ,j2h)− σ′(θ⋆Tℓ,j2h)| · |a⊤h|2 · fH(h)dh

=

∫
Rz

|σ′(θ⊤ℓ,j2h)− σ′(θ⋆Tℓ,j2h)| · |a⊤h|2 · fZ(z) · |Jh(z)|dz

(140)

where |Jh(z)| is the determinant of the Jacobian matrix ∂h
∂z . Since z is a representation of h based on an orthogonal and

normalized basis, we have |Jh(z)| = 1. According to (139), I4 can be rewritten as

I4 =

∫
Rz

|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆Tℓ,j2h̃)| · |a⊤h̃|2 · fZ(z)dz

=

∫
Rz

|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆Tℓ,j2h̃)| · |a⊤h̃|2 · fZ(z1, z2, z3)dz1dz2dz3
(141)

where in the last equality we abuse fZ(z1, z2, z3) to represent the probability density function of (z1, z2, z3) defined in
region Rz .

33



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Next, we show that z is rotational invariant over Rz . Let R = [a b c · · · a⊥
d ], we have h = Rz. For any z(1)

and z(2) with ∥z(1)∥2 = ∥z(2)∥2. We define h(1) = Rz(1) and h(2) = Rz(2). Since x is rotational invariant and
∥h(1)∥2 = ∥h(2)∥2 = ∥z(1)∥2 = ∥z(2)∥2, then we know h(1) and h(2) has the same distribution density. Then, z(1) and
z(2) has the same distribution density as well. Therefore, z is rotational invariant over Rz .

Then, we consider spherical coordinates with z1 = Rcosσ1, z2 = Rsinσ1sinσ2, z3 = Rsinσ1cosσ2. Hence, we have

I4 =

∫
|σ′(θ⊤ℓ,j2h̃)− σ′(θ⋆⊤ℓ,j2h̃)| · |R cosσ1|2 · fZ(R, σ1, σ2) ·R2 sinσ1 · dRdσ1dσ2. (142)

Since z is rotational invariant, we have that
fZ(R, σ1, σ2) = fZ(R). (143)

Then, we have

I4 =

∫
|σ′(θ⊤ℓ,j2(h̃/R))− σ′(θ⋆Tℓ,j2(h̃/R))| · |R cosσ1|2 · fZ(R)R2 sinσ1dRdσ1dσ2

=

∫ ∞

0

R4fz(R)dR

∫ ψ1(R)

0

∫ ψ2(R)

0

| cosσ1|2 · sinσ1

· |σ′(θ⊤ℓ,j2(h̃/R))− σ′(θ⋆Tℓ,j2(h̃/R))|dσ1dσ2
≤
∫ ∞

0

R4fz(R)dR

∫ π

0

∫ 2π

0

sinσ1 · |σ′(θ⊤ℓ,j2 x̄)− σ′(θ⋆Tℓ,j2 x̄)|dσ1dσ2,
(144)

where the first equality holds because σ′(θ⊤i,,j2h) only depends on the direction of h, and x̄ := h/R =
(cosσ1, sinσ1 sinσ2, sinσ1 cosσ2) in the last inequality.

Because z belongs to the sub-Gaussian distribution, we have Fz(R) ≥ 1 − 2e−
R2

σ2 for some constant σ > 0. Then, the
integration of R can be represented as∫ ∞

0

R4fZ(R)dR =

∫ ∞

0

R4d
(
1− Fz(R)

)
≤
∫ ∞

0

4R3
(
1− Fz(R)

)
dR

≤
∫ ∞

0

8R3e−
R2

σ2 dR

≤ 32√
2π
σ

∫ ∞

0

R2e−
R2

σ2 dR

=32σ2

∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR,

(145)

where the last inequality comes from the calculation that∫ ∞

0

2R2e−
R2

σ2 dR =
√
2πσ3,∫ ∞

0

2R3e−
R2

σ2 dR = 4σ4.

(146)

Then, we define x̃ ∈ RKℓ belongs to Gaussian distribution as x̃ ∼ N (0, σ2I). Therefore, we have

I4 ≤ 32σ2 ·
∫ ∞

0

R2 1√
2πσ2

e−
R2

σ2 dR

∫ π

0

∫ 2π

0

sinσ1 · |σ′(θ⊤ℓ,j2 x̄)− σ′(θ⋆⊤ℓ,j2 x̄)|dσ1dσ2
= 32σ2 · Ez1,z2,z3

∣∣σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆⊤ℓ,j2 x̃)|
≂ Ex̃

∣∣σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|,
(147)

where x̃ belongs to Gaussian distribution.

34



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Therefore, the inequality bound over a sub-Gaussian distribution is bounded by the one over a Gaussian distribution. In
the following contexts, we provide the upper bound of Ex̃

∣∣σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|.
Define a set A1 = {x|(θ⋆⊤ℓ,j2 x̃)(θ

⊤
ℓ,j2
x̃) < 0}. If x̃ ∈ A1, then θ⋆⊤ℓ,j2 x̃ and θ⊤ℓ,j2 x̃ have different signs, which means the

value of σ′(θ⊤ℓ,j2 x̃) and σ′(θ⋆⊤ℓ,j2 x̃) are different. This is equivalent to say that

|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆⊤ℓ,j2 x̃)| =

{
1, if x̃ ∈ A1

0, if x̃ ∈ Ac
1

. (148)

Moreover, if x̃ ∈ A1, then we have

|θ⋆Tℓ,j2 x̃| ≤|θ⋆Tℓ,j2 x̃− θ⊤ℓ,j2 x̃| ≤ ∥θ⋆ℓ,j2 − θℓ,j2∥2 · ∥x̃∥2. (149)

Let us define a set A2 such that

A2 =
{
x̃
∣∣∣ |θ⋆Tℓ,j2 x̃|
∥θ∗ℓ,j2∥2∥x̃∥2

≤
∥θ∗ℓ,j2 − θℓ,j2∥2

∥θ∗ℓ,j2∥2

}
=
{
θx̃,θ∗ℓ,j2

∣∣∣| cos θx̃,θ⋆ℓ,j2 | ≤ ∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

}
.

(150)

Hence, we have that

Ex̃|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|
2 =Ex̃|σ′(θ⊤ℓ,j2 x̃)− σ′(θ⋆Tℓ,j2 x̃)|
=Prob(x̃ ∈ A1)

≤Prob(x̃ ∈ A2).

(151)

Since x̃ ∼ N (0, ∥a∥22I), θx̃,θ⋆ℓ,j2 belongs to the uniform distribution on [−π, π], we have

Prob(x̃ ∈ A2) =
π − arccos

∥θ⋆ℓ,j2−θℓ,j2∥2

∥θ⋆ℓ,j2∥2

π
≤ 1

π
tan(π − arccos

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

)

=
1

π
cot(arccos

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

)

≤ 2

π

∥θ⋆ℓ,j2 − θℓ,j2∥2
∥θ⋆ℓ,j2∥2

≤∥θ⋆ℓ − θℓ∥2

(152)

Hence, (144) and (152) suggest that

I4 ≲ ∥θi − θ⋆i ∥2 · ∥a∥22,
and ∥P1∥2 ≤ ∥θ − θ⋆∥2 + I4 ≲ ∥θ − θ⋆∥2,

(153)

The same bound that is shown in (153) holds for P2 as well.

35



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Therefore, we have

∥∇2
ℓf(θ

⋆)−∇2
ℓf(θ)∥2 = max

∥α∥2≤1

∣∣∣α⊤
(
∇2
ℓf(θ

⋆)−∇2
ℓf(θ)

)
α
∣∣∣

≤ 1

K2

K∑
j1=1

K∑
j2=1

∥P1 + P2∥2 · ∥αj1∥2 · ∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥θ − θ⋆∥2 · ∥αj1∥2∥αj2∥2

≲
1

K2
·
K∑
j1=1

K∑
j2=1

∥θ − θ⋆∥2 ·
(∥αj1∥22 + ∥αj2∥22

2

)
≲

1

K
· ∥θ⋆ − θ∥2,

(154)

where α ∈ RKd and αj ∈ RKℓ with α = [α⊤
1 ,α

⊤
2 , · · · ,α⊤

K ]⊤.

H.2. Proof of Lemma 11

We aim to prove that
∫
R

(∑K
j=1α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h) · dh is strictly greater than zero for any α. Therefore, the
ρ1 in (6) is strictly greater than zero. The proof is inspired by Theorem 3.1 in (Du et al., 2019). It is obvious that
(
∑K
j=1α

⊤hσ′(θ⊤ℓ,jh))
2 is greater or equal to zero. Given (

∑K
j=1α

⊤hσ′(θ⊤ℓ,jh))
2 is continuous, we only need to show

that α such that
∑K
j=1α

⊤hσ′(θ⊤ℓ,jh) ̸= 0 for any α, namely, {hσ′(θ⊤ℓ,jh)}Kj=1 are linear independent.

Proof of Lemma 11. Let H be a Hilbert space on RKℓ , and the inner product of H is defined as

⟨f, g⟩ =
∫
R
f(h)⊤g(h)fH(h) · dh, ∀f, g ∈ H, (155)

where the Lebesgue measure of R over RKℓ is non-zero. Instead of directly proving
∫
R

(∑K
k=1α

⊤hσ′(θ⊤k h)
)2

fH(h) ·
dh > 0 for anyα, we note that it is sufficient to prove that {hσ′(θ⊤k h)}k∈[K] are linear independent over the Hilbert space
H. Namely, if {hσ′(θ⊤k h)}k∈[K] are linear independent, we have

α⊤hσ′(θ⊤k h) ̸= 0 almost everywhere. (156)

Therefore, we can know that
∫
R

(∑K
j=1α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h) · dh is strictly greater than zero.

Next, we provide the whole proof for that {xσ′(θ⊤k h)}k∈[K] are linear independent over the Hilbert space H.

We define a group of functions {ψj(h)}Kj=1, where ψj(h) = hσ′(θ⊤j h). From the assumption in Lemma 11, we can
justify that Eh∼D|ψj(h)|2 ≤ Eh∼D|h|2 <∞.

Let Xi = {h | θ⊤i h = 0} for any i ∈ [K]. For any fixed k, we can justify that Xk cannot be covered by other sets {Xk}j ̸=k
as long as θk does not parallel to any other weights θj with j ̸= k. Namely, Xk ̸⊂ ∪j ̸=kXj . The idea of proving the claim
above is that the intersection of Xj and Xk is only a hyperplane in Xk. The union of finite many hyperplanes is not even a
measurable space and thus cannot cover the original space. Formally, we provide the formal proof for this claim as follows.

Let λ be the Lebesgue measure on Xk, then λ(Xk) > 0. When θj does not parallel to θk, Xk ∩ Xj is only a hyperplane in
Xk for j ̸= k. Hence, we have λ(Xj ∩ Xk) = 0. Next, we have

λ
(
Xk ∩ (∪j ̸=kXk)

)
≤

∑
j ̸=k

λ(Xk ∩ Xj) = 0. (157)

Therefore, we have
λ
(
Xk/(∪j ̸=kXk)

)
= λ(Xk)− λ

(
Xk ∩ (∪j ̸=kXk)

)
= λ(Xk) > 0. (158)

36



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

Therefore, we have Xk/(∪j ̸=kXj) is not empty, which means that Xk ̸⊂ ∪j ̸=kXj .

Next, Since Xk/(∪j ̸=kXj) is not an empty set, there exists a point zk ∈ Xk/(∪j ̸=kXj) and r0 > 0 such that

B(zk, r) ∩ Dj = ∅ with ∀r ≤ r0 and j ̸= k, (159)

where B(zk, r) stands for a ball centered at zk with a radius of r. Then, we divide B(zk, r) into two disjoint subsets such
that

B+
r = B(zk, r) ∩ {h | θ⊤k h > 0},

B−
r = B(zk, r) ∩ {h | θ⊤k h < 0}.

(160)

Because zk is a boundary point of {h|θ⊤k h = 0}, both B+
r and B−

r are non-empty.

Note that ψj(h) is continuous at any point except for the ones in Xj . Then, for any j ̸= k, we know that σj(θ⊤k h) is
continuous at point zk since zk ̸∈ Xj . Hence, it is easy to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = ψk(zk). (161)

While for ψk, we know that ψk(h) ≡ 0 for h ∈ B−
r , (ii) ψk(h) = h for h ∈ B+

r . Hence, it is easy to verify that

lim
r→0+

1

λ(B+
r )

∫
B+
r

ψk(h)dh = zk

lim
r→0−

1

λ(B−
r )

∫
B+
r

ψk(h)dh = 0.

(162)

Now let us proof that {ψj}Kj=1 are linear independent by contradiction. Suppose {ψj}Kj=1 are linear dependent, we have

K∑
j=1

αjψj(h) ≡ 0, ∀h. (163)

Then, we have

lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh = 0

(164)

Then, we have

0 = lim
r→0+

1

λ(B+
r )

∫
B+
r

K∑
j=1

αjψj(h)dh− lim
r→0+

1

λ(B−
r )

∫
B+
r

K∑
j=1

αjψj(h)dh

=αkzk

(165)

where the last equality comes from (161) and (162).

Note that zk cannot be 0 because zk ̸∈ Xj . Therefore, we have αk = 0. Similarly to (165), we can obtain that αj = 0
by define zj following the definition of zk for any j ∈ [K]. Then, we know that (163) holds if and only if α = 0, which
contradicts the assumption that {ψj}Kj=1 are linear dependent.

In conclusion, we know that {ψj}Kj=1 are linear independent, and
∫
R

(∑K
j=1α

⊤hσ′(θ⊤ℓ,jh)
)2

pH(h)·dh is strictly greater
than zero.

37



SF-DQN: Provable Knowledge Transfer using Successor Feature for Deep Reinforcement Learning

H.3. Proof of Lemma 12

Proof of Lemma 12. From the definition of (36), we have

∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2
=∥σ

(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

=∥σ
(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
+ σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

≤∥σ
(
θ⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
∥2 + ∥σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ)
)
− σ

(
θ⋆⊤ℓ−1h

(ℓ−1)(θ⋆)
)
∥2

≤∥θℓ−1 − θ⋆ℓ−1∥2 · ∥h(ℓ−1)(θ)∥2 + ∥h(ℓ−1)(θ)− h(ℓ−1)(θ⋆)∥2.

(166)

With the assumption in the Lemma 12 such that θ is close enough to θ⋆, we have

∥θi∥2 ≤ ∥θ⋆i ∥2 + ∥θi − θ⋆i ∥2 ≲ 1. (167)

Therefore, we have
∥h(i)(θ)∥2 ≤ ∥θi∥2 · · · ∥θ1∥2 · ∥x∥2 ≲ ∥x∥2. (168)

Then, we have

∥h(ℓ)(θ)− h(ℓ)(θ⋆)∥2
≤∥θℓ−1 − θ⋆ℓ−1∥2 · ∥x∥2 + ∥h(ℓ−1)(θ)− h(ℓ−1)(θ⋆)∥2

≤
ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥x∥2 + ∥h(1)(θ)− h(1)(θ⋆)∥2

=

ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥x∥2 + ∥x− x∥2

=

ℓ−1∑
i=1

∥θi − θ⋆i ∥2 · ∥h(i−1)(θ)∥2

≤∥θ − θ⋆∥2 · ∥x∥2,

(169)

which completes the proof.

38


	Introduction
	Related Works

	Preliminaries
	Problem Formulation and Algorithm
	Successor feature Deep Q-Network

	Theoretical Results
	Summary of Major Theoretical Findings
	Assumptions
	Main Theoretical Findings
	Convergence analysis of SF-DQN
	Improved performance with GPI.
	Improved Performance with the Knowledge Transfer

	Technical Challenges, and Comparison with Existing Works

	Experiments
	Conclusions
	Notations and preliminary results
	Useful Lemmas for matrix concentration
	Definitions of Sub-Gaussian and Sub-exponential.

	Proof of Theorem 1
	Proofs of Theorems 3 and 4
	Proof of Theorem 2
	Additional numerical experiments
	Synthetic data settings
	Additional experiments on synthetic RL benchmarks
	Real Data: Reacher environment

	Proof of lemmas in Appendix B
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of upper bound of I1
	Proof of upper bound of I2
	Proof of bound of I3
	Proof of bound of I4

	Proof of Lemma 8

	Proof of lemmas in Appendix C
	Additional proof of the lemmas
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12


