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In this Appendix, we provide additional details and experimental results to complement the proposed1

method. First, we describe supplementary experimental details in Section 1. Then, we provide extra2

quantitative results, including a comparison on ImageNet30 [2] dataset, employing FlatMatch to3

other SSL methods in Section 2. Further, we show more empirical results to qualitatively validate4

FlatMatch in Section 3. Finally, we summarize this paper and make a discussion on prospective5

research in Section 4.6

1 Supplementary Details7

The experimental setting of this paper follows Wang et al. [4]. Specifically, the hyper-parameters8

are composed of algorithm-dependent parameters and algorithm-independent parameters, which are9

shown in Table 1 and Table 2, respectively. For algorithm-dependent parameters of FlatMatch, we10

use the same unlabeled data and labeled data ratio as FreeMatch [5] as well as all other baseline11

methods to sample data into a mini-batch. The perturbation magnitude α is based on the results from12

hyper-parameter sensitivity analysis in the main paper and is chosen as 0.05 for all experiments. For13

updating the historical gradient using a memory buffer, we use EMA with factor α to ensemble the14

gradient result. Moreover, we choose the thresholding strategy from FreeMatch and use an EMA15

decay. Note that for combining the cross-sharpness regularization from FlatMatch with empirical risk,16

we find that there is no need to introduce another weight to trade off the two loss functions, hence17

the weight for cross-sharpness is just set to 1 for all experiments. For algorithm-independent hyper-18

parameters, we have listed the important model setting, optimizer parameters, and data sampling19

setting as below. Note that all baseline methods follow the implementation of USB [4] and are trained20

with EMA decay with 0.999 to smooth the parameter updating.21

Table 1: Algorithm-dependent hyper-parameters.
Algorithm FlatMatch

Unlabeled Data to Labeled Data Ratio (CIFAR-10/100, STL-10, SVHN) 7

Unlabeled Data to Labeled Data Ratio (ImageNet30) 1

Perturbation magnitude ρ for all experiments 0.05

EMA factor α for updating gradient 0.999

Thresholding EMA decay for all experiments 0.999

Trade-off weight λX-sharp for cross-sharpness 1
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Table 2: Algorithm-independent hyper-parameters.
Dataset CIFAR-10 CIFAR-100 STL-10 SVHN ImageNet30

Model WRN-28-2 WRN-28-8 WRN-37-2 WRN-28-2 ResNet-50

Weight decay 5e-4 1e-3 5e-4 5e-4 3e-4

Batch size 64 128

Learning rate 0.03

SGD momentum 0.9

EMA decay 0.999

2 Additional Quantitative Results22

In this section, we conduct additional experiments on CIFAR10 and ImageNet30 [2] datasets to23

compare the performance between some of the most edge-cutting methods, including FixMatch [3],24

Dash [6], FlexMatch [7], FreeMatch [5], SoftMatch [1], and our FlatMatch.25

2.1 Combining FlatMatch with Other Methods on CIFAR1026

We choose CIFAR10 dataset with the number of labeled data varied as 40, 250, and 4000, and apply27

the FlatMatch methodology to several recently proposed SSL methods to show the effectiveness of28

the proposed cross-sharpness regularization. The results are shown in Table 3, as we can see that our29

method can further boost the learning performance of all five methods on all three settings, which30

proves that the cross-sharpness method is quite universal to SSL approaches and can bring non-trivial31

performance enhancement. Note that in the 40 labels setting, we compute our cross-sharpness on 50032

examples with fixed labels, as demonstrated in Section 5.2 from the main paper.33

Table 3: Performance on boosting other SSL methods using FlatMatch.

Dataset CIFAR10

# label 40 250 4000

FixMatch 7.47±0.28 4.86±0.05 4.21±0.08

FixMatch+FlatMatch 6.50±1.25 4.27±2.15 3.92±1.65

Dash 8.93±3.11 5.16±0.23 4.36±0.11

Dash+FlatMatch 6.73±2.49 4.48±1.56 4.02±1.30

FlexMatch 4.97±0.06 4.98±0.09 4.19±0.01

FlexMatch+FlatMatch 4.47±0.92 4.25±1.37 3.88±0.75

SoftMatch 4.91±0.12 4.82±0.09 4.04±0.02

SoftMatch+FlatMatch 4.30±1.32 3.98±1.14 3.84±0.86

FreeMatch 4.90±0.04 4.88±0.18 4.10±0.02

FlatMatch (from main paper) 4.28±1.61 3.90±1.72 3.55±0.64

2.2 Comparing FlatMatch to Other Methods on ImageNet3034

To further testify the performance of FlatMatch on a large-scale dataset, we conduct experiments on35

ImageNet30 dataset which is a subset from the original ImageNet dataset and contains 30000 training36

examples with resolution 256×256 from 30 classes. The experiments on ImageNet30 are more37

time-consuming which normally takes 5 days to finish, much more than CIFAR10 dataset which takes38

2 days. We vary the number of labeled data as 1500 and 3000 and show the comparison in Table 4.39

We observe the effectiveness of FlatMatch over all other baseline methods in both two settings, which40

again validates the superiority of our method and its effective performance on large-scale datasets.41
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Table 4: Comparison on ImageNet30.

Dataset ImageNet30

# label 1500 3000

FixMatch 12.48±0.67 8.25±0.54

Dash 13.29±1.26 8.79±0.42

FlexMatch 11.48±0.52 8.04±0.75

SoftMatch 10.81±0.40 7.78±0.61

FreeMatch 10.34±0.46 7.21±0.19

FlatMatch 9.71±1.55 6.77±1.27

3 Additional Qualitative Results42

To further evaluate the flatness of different SSL models during training, we leverage a validation43

set to compute the sharpness. The sharpness is measured by the increase of loss within a ℓ244

bounded neighbor, which is formally defined as Sharpness := L(θ+ ϵ∗(θ))−L(θ),where ϵ∗(θ) =45

argmax∥ϵ∥2≤ρ L(θ+ϵ). Specifically, we compare the proposed FlatMatch with FixMatch, Dash, and46

FreeMatch, and use fully supervised learning as a baseline method. The experiments are conducted on47

CIFAR10 and SVHN datasets whose results are shown in Figure 1. First, we observe that FlatMatch48

achieves the lowest sharpness curve during training on both two datasets, which indicates the SSL49

model learned by FlatMatch is more robust to perturbations and would not oscillate significantly50

when facing changes in parameter space. Moreover, we find that fully supervised learning does not51

improve the flatness as the training proceeds, while all SSL methods can decrease the sharpness to52

some extent, which demonstrates that training with unlabeled data can help improve the flatness of53

SSL models.54

Figure 1: Comparison of sharpness between various SSL methods during training.

Furthermore, as shown in the main paper, we find that FlatMatch has limited performance on55

extremely scare labeled settings. However, this limitation can be addressed by introducing some56

unlabeled data with fixed labels to improve the computation of cross-sharpness. Hence, here we57

investigate the effect of changing the number of fixed on the performance of FlatMatch. Specifically,58

we conduct experiments on CIFAR10 and SVHN datasets and fixing different numbers of labels as59

0 (“w/o fix label”), 250, 500, 1000, 2000, 40001. The results are shown in Figure 2. We find that60

both too few fixed labels, i.e., 250 labels and too many fixed labels, i.e., 4000 labels in CIFAR1061

and 2000 labels in SVHN, would show a performance drop compared to the optimal number, 50062

fixed labels. This is because if the number of fixed labels is too small, the gradient computation63

would be inaccurate, further limiting the learning results. On the other hand, too many fixed labels64

1The 4000 fixed labels setting is not conducted on SVHN as the performance of 2000 fixed labels setting
already shows significantly performance degradation.
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would introduce noisy labeled unlabeled data, which would largely mislead the SSL and show serious65

performance degradation.66

Figure 2: Analysis on changing the number of fixed labels.

4 Summary and Future Work67

In this paper, we propose a novel FlatMatch approach that minimizes the cross-sharpness measure68

to improve the generalization performance of SSL. Through extensive quantitative and qualitative69

experiments, we have thoroughly evaluated the performance of FlatMatch and demonstrated its70

superiority to other compared methods. Thanks to the generalization improvement of FlatMatch, the71

classification accuracy on many scenarios have even passed the fully-supervised baseline.72

However, the learning performance of SSL still largely depends on the careful selection of labeled73

data. Specifically, in the barely-supervised learning scenario, if the selected scarce labeled data74

deviate from the cluster center, the learning performance of many existing SSL methods would75

be significantly affected. This is due to the generalization performance between labeled data and76

unlabeled data being largely mismatched. Under this scenario, the performance of FlatMatch should77

be further evaluated.78
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