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ABSTRACT

Adversarial Training (AT) is the de-facto standard for improving robustness against
adversarial examples. This usually involves a multi-step adversarial attack applied
on each example during training. In this paper, we explore only constructing
Adversarial Examples (AEs) on a subset of the training examples. That is, we
split the training set in two subsets A and B, train models on both (A ∪ B) but
construct AEs only for examples in A. Starting with A containing only a single
class, we systematically increase the size of A and consider splitting by class and by
examples. We observe that: (i) adv. robustness transfers by difficulty and to classes
in B that have never been adv. attacked during training, (ii) we observe a tendency
for hard examples to provide better robustness transfer than easy examples, yet find
this tendency to diminish with increasing complexity of datasets (iii) generating
AEs on only 50% of training data is sufficient to recover most of the baseline AT
performance even on ImageNet. We observe similar transfer properties across tasks,
where generating AEs on only 30% of data can recover baseline robustness on the
target task. We evaluate our subset analysis on a wide variety of image datasets
like CIFAR-10, CIFAR-100, ImageNet-200 and show transfer to SVHN, Oxford-
Flowers-102 and Caltech-256. In contrast to conventional practice, our experiments
indicate that the utility of computing AEs varies by class and examples and that
weighting examples from A higher than B provides high transfer performance.
Code is available at http://github.com/mlosch/SAT.

1 INTRODUCTION

Imperceptible changes to an image can change the output of a well-performing classification model
dramatically. These so-called Adversarial Examples (AEs) have been the focus of a large body on
deep learning vulnerabilities of works since its discovery (Szegedy et al., 2014). To date, Adversarial
Training (AT) (Madry et al., 2018; Carlini et al., 2019) and its variants (Zhang et al., 2019; Carmon
et al., 2019; Wu et al., 2020) is the de-facto state-of-the-art in improving the robustness against
AEs. Essentially, AT generates adversarial perturbations for all examples seen during training.
While adversarial training is known to transfer robustness to downstream tasks (Shafahi et al., 2020;
Salman et al., 2020; Yamada & Otani, 2022) and that robustness is distributed unevenly across
classes (Tian et al., 2021; Xia et al., 2021), common practice dictates that AT “sees” adversarial
examples corresponding to the whole training data, including all classes and concepts therein. This is
independent of whether only adversarial robustness is optimized or a trade-off between robustness
and clean performance is desired (Stutz et al., 2019). This also holds for variants that treat individual
examples differently (Ding et al., 2020; Wang et al., 2020; Kim et al., 2021) or adaptively select
subsets to attack during training to reduce computational overhead (Hua et al., 2021; Dolatabadi et al.,
2022). In this common setup, it is thus difficult to ascertain if a generic, transferable robustness is
learned by the model, or if adversarial robustness is learned separately for each class in the training set.
In the worst case, a model that can only learn to be robust on a class-specific basis would have to be
presented with adversarially-perturbed images for every class of interest. A more preferable outcome,
on the other hand, would be a model with systematic adversarial robustness (Bahdanau et al., 2019;
Omran & Schiele, 2022): i.e. a model that systematically generalizes to novel combinations of
perturbations and classes that were separately encountered during training.
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Figure 1: Adversarial robustness transfers among classes. Using Subset Adversarial Training (SAT),
during which only a subset of all training examples (A) are attacked, we show that robust training
even on a single class provides robustness transfer to all other, non adv. trained, classes (B). E.g.,
SAT for A=cat, we observe an robust accuracy of 37.8% on B. Noteworthy is the difference of
transfer utility between classes. I.e. A=car provides very little transfer to B (17.1%). We investigate
this transfer among classes and provide new insights for robustness transfer to downstream tasks.
To shed light on this issue, we consider an analysis setup depicted in figure 1, we coin Subset
Adversarial Training (SAT), where we split the training data into two subsets A and B, train the
model conventionally on the union (A ∪B), but generate AEs only on examples from A (indicated
by the emoji). For example, we can split training data by class, with A = {car} or A = {cat} and
B = Ac, and investigate how adversarial robustness transfers. Surprisingly, we observe significant
adversarial robustness on Bval at test time, the degree of which depends on the class(es) in A. Of
course, A and B can be arbitrary partitions of the training data. For example, we could put only
“difficult” examples in A during training. At test time, we evaluate overall adversarial robustness
(since there is no natural split into Aval or Bval). These experiments reveal a rather complex interaction
of adversarial robustness between classes and examples.

Our analysis provides a set of contributions revealing a surprising generalizability of robustness
towards non-adv. trained classes and examples even under scarce training data setups. First, selecting
subsets of whole classes, we find that SAT provides transfer of adversarial robustness to classes which
have never been attacked during training. E.g. only generating adversarial examples for class car on
CIFAR-10, achieves a non-trivial robust accuracy of 17.1% on all remaining CIFAR-10 classes (see
figure 1, right). Secondly, we observe classes and examples that are hard to classify do generally
provide better robustness transfer than easier ones. I.e. class cat achieves more than twice the robust
accuracy on the remaining classes (37.8%) over class car (17.1%). Thirdly, SAT with 50% of
training data is sufficient to recover the baseline performance with vanilla AT even on hard datasets
like ImageNet. Fourthly, we observe similar transfer properties of SATed models to downstream
tasks. In this setting, exposing the model to only 30% of AEs during training, can recover baseline
AT performance on the target task. Lastly, while we observe promising amounts of transfer, there is
room for improvement. Our SAT approach can be viewed as an analytical tool that can foster the
development of models that exhibit stronger systematic generalization to adversarial perturbations.

2 RELATED WORK

Since their discovery (Szegedy et al., 2014), robustness against adversarial examples has mainly
been tackled using adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Zhang et al.,
2019). Among many others, prior work proposed adversarial training variants working with example-
dependent threat models (Balaji et al., 2019; Ding et al., 2020; Wang et al., 2020; Kim et al., 2021),
acknowledging that examples can have different difficulties. Some works also mine hard examples
(Hua et al., 2021) or progressively prune a portion of the training examples throughout training
(Dolatabadi et al., 2022; Kaufmann et al., 2022). However, all of these methods generally assume
access to adversarial examples on the whole training set. That is, while individual examples can
be dropped during training or are treated depending on difficulty, the model can see adversarial
perturbations for these examples if deemed necessary. Adversarial training is also known to transfer
robustness to downstream tasks (Salman et al., 2020; Yamada & Otani, 2022; Shafahi et al., 2020)
and adversarially robust representations can be learned in a self-supervised fashion (Gowal et al.,
2021). Here, a robust backbone is often adapted to the target task by re-training a shallow classifier –
sometimes in an adversarial fashion. It is generally not studied whether seeing adversarial examples
on the whole training set is required for good transfer. This is despite evidence that achieving
adversarial robustness is easier for some classes/concepts than for others (Benz et al., 2020; Nanda
et al., 2021; Xia et al., 2021; Tian et al., 2021), also for robustness transfer (Jain et al., 2023).
Complementing these works, we consider only constructing adversarial examples on a pre-defined
subset of the training set, not informed by the model or training procedure, and study how robustness
transfers across examples and tasks. Our work is thus related to the broader problem of measuring
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systematic generalization and considering the effects of spurious correlations (Bahdanau et al., 2019;
Ruis et al., 2020; Geirhos et al., 2020; Montero et al., 2021; Schott et al., 2022; Omran & Schiele,
2022).

3 BACKGROUND AND METHOD

3.1 ADVERSARIAL TRAINING (AT)

It is a well known fact that conventional deep networks are vulnerable to small, often imperceptible,
changes in the input. As mitigation, AT is a common approach to extend the empirical risk minimiza-
tion framework (Madry et al., 2018). Let (x, y) ∈ Dtrain be a training set of example and label pairs
and θ be trainable parameters, then AT is defined as:

min
θ

E(x,y)∈Dtrain

[
max

||δ||p≤ϵ
L(x+ δ, y; θ)

]
, (1)

where δ is a perturbation that maximizes the training loss L and thus training error. The idea being
that, simultaneously to minimizing the training loss, the loss is also optimized to be stable within a
small space ϵ around each training example ||δ||p ≤ ϵ, p ≥ 1. We consider the L2 norm in our main
paper and provide results for L∞ in the appendix A.8. This additional inner maximization is solved
by an iterative loop; conventionally consisting of 7 or more steps. In some settings (Goodfellow et al.,
2015; Stutz et al., 2019; Zhang et al., 2019), the robust loss is combined with the corresponding loss
on clean examples in a weighted fashion to control the trade-off between adversarial robustness and
clean performance.

3.2 AT WITHOUT PERTURBING ALL TRAINING EXAMPLES

Most proposed AT methodologies generate AEs on the whole training set. This being also valid for
methods which adaptively select subsets (Hua et al., 2021; Dolatabadi et al., 2022) during training,
for adaptive attack iterations (Zhang et al., 2020), for adaptive example weightings (Huang et al.,
2020; Zhang et al., 2021; Ge et al., 2023) or more traditional AT in which only a subset per batch
is adversarially attacked. These methods do not guarantee the exclusion of examples, that is, the
model is likely to see an AE for every example in the training set. From a broader perspective, the
necessity to generate AEs exhaustively for all classes appears unfortunate though. Ideally, we desire
robust models to be scalable, i.e. transfer flexibly from few examples and across classes to unseen
ones (Omran & Schiele, 2022). We propose SAT to investigate to what extent AT provides this utility.
To formalize, let A be a training subset and B contain the complement: A ⊂ Dtrain, B = Dtrain \A.
Then SAT applies the inner maximization loop of AT on the subset A only; on B the conventional
empirical risk is minimized:

min
θ

E(x,y)∈Dtrain

[
wA1(x,y)∈A max

||δ||2≤ϵ
L(x+ δ, y; θ) + wB1(x,y)∈BL(x, y; θ)

]
, (2)

where 1(x,y)∈A is 1 when the training example is in A and 0 otherwise. wA and wB define optional
weights, which are by default both set to 1. Note that this is different from balancing robust and clean
loss as discussed in (Goodfellow et al., 2015; Stutz et al., 2019; Zhang et al., 2019), where the model
still encounters adversarial examples on the whole training set.

Loss balancing. The formulation in equation 2 implies an imbalance between left and right loss
when the training split is uneven (|A| ≠ |B|). To counteract, we assign different values to wA and
wB based on their subset size. E.g., to equalize, we assign wB = 1 and wA = |B|/|A|. We will utilize
this loss balancing to improve robustness for transfer learning in section 4.3.

3.3 TRAINING AND EVALUATION RECIPES

Consider the depiction of SAT in figure 1. Prior to training, the training set is split into A and B
(left). For evaluation (middle), we split the validation set into a corresponding split of Aval and Bval,
if possible. For Class-subset Adversarial Training (CSAT), this split aligns with the classes on the
dataset: A and B are all training examples corresponding to two disjoint sets of classes while Aval
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and Bval are the corresponding test examples of these classes. As experimenting with all possible
splits of classes is infeasible, we motivate splits by class difficulty where we measure difficulty by the
average entropy of predictions per class – introduced as HC in the next paragraph. In contrast, we can
also split based on individual example difficulty. We provide empirical support for this approach in
the experimental section 4. Additionally, example difficulty has been frequently linked to proximity
between decision boundary and example (Baldock et al., 2021; Ding et al., 2020; Kim et al., 2021;
Hua et al., 2021; Agarwal et al., 2022). The closer the example is to the boundary, the harder it is
likely to classify. The hypothesis: hard examples provide a larger contribution to training robust
models, since they optimize for large margins (Ding et al., 2020; Wang et al., 2020). We refer to
this experiment as Example-subset Adversarial Training (ESAT). In contrast to CSAT, however,
there is no natural split of the test examples into Aval and Bval such that we evaluate robustness on
the whole test set (i.e., Dval).

As difficulty metric, we utilize entropy over softmax, which we empirically find to be as suitable
as alternative metrics (discussed in the supplement, section A.2). Consider a training set example
x ∈ Dtrain and a classifier f mapping from input space to logit space with N logits. Then the entropy
of example x is determined by H(f(x)) and of a whole class C ⊂ Dtrain is determined by HC(f),
the average over all examples in C:

H(f(x)) = −
N∑
i=1

σi(f(x)) · log σi(f(x)), HC(f) =
1

|C|
∑
x∈C

H(f(x)),

where σ denotes the softmax function. For our SAT setting, we rank examples prior to adversarial
training. This requires a classifier pretrained on Dtrain enabling the calculation of the entropy. To
strictly separate the effects between entropy and AT, we determine the entropy using a non-robust
classifier trained without AT. Similar to (Agarwal et al., 2022), we aggregate the classifier states
at multiple epochs during training and average the entropies. Let f1, f2, ...fM be snapshots of the
classifier from multiple epochs during training, where M denotes the number of training epochs.
Then the average entropy for an example is given by H(x) and for a class by HC(f):

H(x) =
1

M

M∑
e=1

H(fe(x)), HC =
1

M

M∑
e=1

HC(fe). (3)

4 EXPERIMENTS

As aforementioned, common practice performs AT for the whole training set. In the following, we
explore CSAT and ESAT, which splits the training set in two subsets A and B and only constructs AEs
for A such that the model never sees AEs for B. We start with single-class CSAT – A contains only
examples of a single class – and increase the size of A (section 4.1) by utilizing the entropy ranking
of classes HC (equation 3). ESAT, which splits into example subsets is discussed in section 4.2. Both
SAT variants reveal complex interactions between classes and examples while indicating that few AEs
provide high transfer performance to downstream tasks when weighted appropriately (section 4.3).

Training and evaluation details. Since AT is prone to overfitting (Rice et al., 2020), it is common
practice to stop training when robust accuracy on a hold-out set is at its peak. This typically happens
after a learning rate decay. We adopt this “early stopping” for all our experiments by following
the methodology in (Rice et al., 2020) but utilize Auto Attack (AA) to evaluate robust accuracy.
Throughout the course of the training, we evaluate AA after each learning rate decay on 10% of
validation data Dval and perform a final evaluation with the model providing the highest robust
accuracy. This evaluation is performed on the remaining 90% of validation data. This AA split
is fixed throughout experiments to provide consistency. If not specified otherwise, we generate
adversarial examples during training with PGD-7 within an L2 epsilon ball of ϵ = 0.5 (all CIFAR
variants) or ϵ = 3.0 (all ImageNet variants) – typical configurations found in related work. We
train all models from scratch and use ResNet-18 (He et al., 2016) for all CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009) experiments and ResNet-50 for all ImageNet-200 experiments. Here,
ImageNet-200 corresponds to the ImageNet-A subset (Hendrycks et al., 2021) to render random
baseline experiments tractable (to reduce training time). This ImageNet-200 dataset, contains 200
classes that retain the class variety and breadth of regular ImageNet, but remove classes that are
similar to each other (e.g. fine-grained dog types). We use all training and validation examples from
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Figure 2: CSAT on a single CIFAR-10 class A (blue), we observe non-trivial transfer to the non-adv.
trained classes B (green). Classes considered hard in CIFAR-10 (cat) offer best generalization
(+37.8% gain on non-adv. trained), while easy classes offer the worst (car, +17.1% gained). Note
that without AT, robust accuracy is close to 0% for all classes (orange). Right: same as left, but robust
accuracy is evaluated per class (along columns). Here, we observe an unexpected transfer property:
hard classes provide better transfer to seemingly unrelated classes (cat → truck: 53%) than related
classes (car → truck: 35%). Additional results for ϵ = 0.25 and ϵ = 1.0 in the appendix, section A.3.

ImageNet (Deng et al., 2009) that correspond to this subset classes. All training details can be found
in the supplement, section A.1.

4.1 CLASS SUBSET SPLITS

We start by investigating the interactions between individual classes in A using CSAT on CIFAR-10,
followed by an investigation on increasing the number of classes. Single-class subsets (CSAT). We
train all possible, single class CSAT runs (10) and evaluate robust accuracies on the adv. trained class
(A) and the non-adv. trained classes (B). The results are shown in figure 2, left. Each row represents a
different training run. Note that the baseline robust accuracy, trained without AT achieves practically
0% (indicated by orange line). Most importantly, we observe non-trivial robustness gains for all
classes that have never been attacked during training (B-sets). That is, irrespective of the chosen
class, we gain at least 17.1% robust accuracy (A=car) on the remaining classes and can gain up to
37.8% robust accuracy when A=cat. These robustness gains are unexpectedly good, given many
features of the non-adv. trained classes can be assumed to not be trained robustly. This is consistent
across different values for ϵ, as we show in the appendix section A.3.
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Figure 3: The hardest
classes (blue) have the high-
est entropy (green).

To investigate this phenomenon further, we analyze robust gains for
each individual class and present robust accuracies in the matrix in
figure 2, right, where training runs are listed in rows and robust ac-
curacies per class are listed in columns. Blue cells denote the adv.
trained class and green cells denote non-adv. trained classes. While
we see some expected transfer properties, e.g. CSAT on car provides
greater robust accuracy on the related class truck (35%) than unrelated
animal classes bird, cat, deer, dog (between 5% and 16%), the reverse
is not straight-forward. CSAT on bird provides 56% robust accuracy
on the seemingly unrelated class truck, 20%-points more than CSAT
on car. More generally, animal classes provide stronger robustness
throughout all classes than inanimate classes. We observe, that these
classes are also harder to classify and have a higher entropy HC as
shown in figure 3. This influence of class-entropy might also be utilized to augment the dataset, by
adding high entropy samples. We provide a simple proof-of-concept in the appendix, section A.4,
adding an 11th class to CIFAR-10.

Many-class subsets (CSAT). To increase the number of classes in A while maintaining a minimal
computational complexity, we utilize the average class entropy HC proposed in equation 3 to inform
us which ranking to select from. To improve clarity, we begin with a reduced set of experiments
on CIFAR-10 before transitioning to larger datasets. We utilize the observed correlation between
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Figure 4: Ranking CIFAR10 classes by difficulty (using entropy as proxy), we perform CSAT with an
increasing size of adv. trained classes in A. Class splits used for training (A and B) are stated on the
left. The resulting robust and clean accuracies on the validation set is shown on the right, separated
into performance on Bval and all. Compared with a random baseline of random class ranking (red),
we find the ranking by difficulty to have consistently better transfer to non-adv. trained classes (B).
Overall, this results in an improved robust accuracy on average over all classes.

class difficulty, average class entropy and robustness transfer HC to rank classes and construct 4
adv. trained subsets. Ranked by class entropy HC , we select 4 subsets showing in figure 4, left. As
observed before, cat and dog are hardest and thus first chosen to be in subset A. Truck and car on
the other hand are easiest and thus last. To gauge the utility of this ranking, we provide a robust and
clean accuracy comparison with a random baseline in figure 4, center and right. I.e., for each subset
A we select 10 random subsets and report mean and std. deviation (red line and shaded area). Similar
to the single-class setup, we observe subsets of the hardest classes to consistently outperform the
random baseline (upper middle plot), up until a subset size of |A| = 8, when it draws even. Also
note that the robust accuracy on Bval is improved across all splits, thus providing support that harder
classes – as initially observed on animate vs inanimate classes – offer greater robustness transfer.

For our experiments on larger datasets like CIFAR-100 and ImageNet-200, we additionally evaluate
a third ranking strategy. Beside selecting at random and selecting the hardest first, we additionally
compare with selecting the easiest (inverting the entropy ranking). We construct 9 subsets per type of
ranking (instead of 4) and report robust accuracies for selecting the easiest classes as well. Results are
presented in three columns in figure 5; one dataset per column. As before, we show robust accuracies
on the tested dataset (upper row) and robust accuracies on Bval (lower row). For CIFAR-10, we
calculate mean and std. dev. over 10 runs, for CIFAR-100 over 5 runs and for ImageNet-200 over
3 runs. Selecting hardest first (highest entropy) is marked as a solid line and easiest first (lowest
entropy) as a dashed line. First and foremost, we observe that irrespective of the dataset and the
size of A, we see robustness transfer to Bval. This transfer remains greatest with classes we consider
hard, while easy classes provide the least. Nonetheless, we see diminishing returns of such an
informed ranking when dataset complexity is increased. E.g. the gap between dashed and solid line
on ImageNet-200 is small and random class selection is on-par with the best. The results are similar
on CIFAR-100, as shown in figure 5, middle). Based on these results, entropy ranking and selecting
classes provides only slight improvements in general. Importantly though, we continue to see the
tendency of increased robustness transfer to Bval, which we will come back to in section 4.3.

4.2 EXAMPLE SUBSET SPLITS (ESAT)

Considering that splits along classes are inefficient in terms of reaching the full potential of adversarial
robustness, we investigate ranking examples across the whole dataset (ESAT). We follow with the
same setup as before but rank examples – and not classes – by entropy H. Since it is not feasible to
construct corresponding rankings on the validation set, we cannot gauge robustness transfer to Bval.
Instead, we will test transfer performance to downstream tasks in section 4.3. We consequently report
robust accuracy and clean accuracy on the whole validation set in figure 6. Similar results for L∞ are
provided in the appendix, section A.8.

Firstly, note that the increase in robust accuracy is more rapid than with CSAT w.r.t. the size of A. AT
only on 50% of training data (25k examples on CIFAR and 112k on ImageNet-200) and the resulting
average robust accuracy is very close to the baseline AT performance (gray line). Secondly, note
that the gap between hard (solid line) and easy example selection (dashed line) has substantially
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Figure 5: Class-subset Adversarial Training (CSAT) produces non-trivial robustness on classes that
have never been attacked during training (Bval). Along the x-axes we increase the class subset size of
A on which AEs are constructed and compare three different class-selection strategies: select hardest
first (solid lines), select easiest first (dashed line) and select at random (red). On average, random
selection performs as well as informed ranking (upper row), while the robustness transfer to Bval is
best for the hardest classes (lower row). AT on a single class provides already much greater robust
accuracies than without AT (orange).

widened. In practice, it is therefore possible to accidentally select poor performing subsets, although
the chance appears to be low given the narrow variance of random rankings (red). To some extent,
this observation supports the hypothesis that examples far from the decision border (the easiest to
classify) provide the least contribution to robustness gains. This is also supported by the reverse
gap in clean accuracy (bottom row in figure 6). That is, easiest-first-selection results in higher clean
accuracies than hardest-first, while robust accuracies are much lower. In contrast, however, we
observe random rankings (red) to achieve similar performances to hard rankings (solid lines) on all
datasets and subset sizes. This is somewhat unexpected, especially on small sizes of A (e.g. 5k).
Given the results, we conjecture that the proximity to the decision boundary plays a subordinate role
to increasing robustness. Instead, it is plausible to assume that diversity in the training data has a
large impact on learning robust features, also indicated by (Gavrikov & Keuper, 2022). Note, when
|A| is less than half the dataset, clean accuracy is improved over full AT (gray dot). In the appendix,
section A.7, we show it is possible to trade-off these improvements for additional robust accuracy
gains via TRADES Zhang et al. (2019).
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Figure 6: Example-subset Adversarial Training (ESAT) on CIFAR and ImageNet-200, provide quick
convergence to a full AT baseline (gray line and dot) with increasing size of A. We report robust
accuracy (upper row) and clean accuracy (lower row) and observe similar characteristics as with
CSAT (figure 5). I.e., selecting the hardest examples first (solid line) provide higher rob. accuracy
than easy ones (dashed line), although the gap substantially widens. Random example selection (red)
provides competitive performance on average. Across all datasets, common clean accuracy decreases
while robust accuracy increases (Tsipras et al., 2019). L∞ results in appendix, figure 18.

4.3 TRANSFER TO DOWNSTREAM TASKS

Previous experiments on ESAT could not provide explicit robust accuracies on the non-adv. trained
subset Bval since training and testing splits do not align naturally – recall the evaluation recipe outlined
in section 3.3. In order to test transfer performance regardless, we make use of the fixed-feature task
transfer setting proposed in (Shafahi et al., 2020). The recipe just slightly changes: split the data
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Figure 7: Impact of cross-entropy weighting on robustness transfer. For subset AT, we test different
weighting strategies for sets A and B given they are of unequal size. We observe that vanilla cross-
entropy (circle) offers the worst robustness transfer to CIFAR-10 (right). The best transfer (plus)
is provided when loss weights are chosen such that training is overemphasized on A, indicated by
dropping robust accuracies on B (compare left and center).

into A and B as usual and perform SAT. Fix all features, replace the last classification layer with a
1-hidden layered classifier and finetune only the new classifier on the target task. Importantly, neither
training nor validation set for the target task are split. We consider CIFAR-100 and ImageNet-200
and transfer to CIFAR-10, SVHN, Caltech-256 (Griffin et al., 2007) and Flowers102 (Nilsback &
Zisserman, 2008). We call SAT trained for transfer Source-task Subset Adversarial Training (S-SAT),
to emphasize that the subset training is performed on the source-task dataset.

In this section, we consider models that have “seen” only a fraction of AEs on the source task and
investigate the robustness transfer capabilities to tasks on which they have not explicitly adversarially
trained on. We find unexpectedly strong transfer performances, boosted by putting more weight on
the AEs.

Loss balancing improves robustness transfer. In contrast to the previously explored setting, we
observe the transfer setting to benefit from loss balancing. Recall equation 2 in section 3.2 in which
wA and wB can be assigned different values to balance the loss when |A| ≠ |B|. We show that the
vanilla configuration wA = wB = 1 transfers robustness to downstream tasks poorly, that balancing
the loss with wB = 1, wA = |B|/|A| lacks transfer performance for small |B| and that weighting
examples from A higher results in improved robustness transfer. We present results for all three
weightings in figure 7. The figure is organized in three columns, all reporting robust accuracy. The
first column reports the robust accuracy on subset Aval, the second on subset Bval and the third reports
the robust accuracy on the downstream task. Here, we train on CIFAR-100 and transfer to CIFAR-10.
The vanilla loss is indicated by circles and a solid line, the balanced loss wA = |B|/|A| by squares
and a dotted line and the loss overemphasizing A by a plus and a dashed line.

First and foremost, note that the robustness transfer for the vanilla configuration is substantially worse
than both alternatives (robust accuracy in top right). Transfer improves with use of loss balancing, e.g.
for |A| = 10, robust accuracy improves from 8% to 30%, but does not converge to the baseline AT
performance (gray line). This is an unwanted side effect of equalizing the weight between A and B.
When A is much smaller than B, less weight is assigned to the AEs constructed for A and robustness
reduces. Note, this effect can also be seen on Aval (top left in figure). Instead, we find it beneficial
to overemphasize on the AEs (plus with dashed line). This configuration assigns wA = 2|B|/|A| for
|A| = 10 and increases the weight to wA = 10|B|/|A| for |A| = 90. This results in improved robust
accuray on Aval, but low robust and clean accuracy on Bval. Interestingly, while the generalization to
Bval is low, robustness transfer to CIFAR-10 is very high. We use this loss weighting for all following
task transfer experiments.

Robustness transfer from example subsets. Using the weighted loss, we focus in the following on
S-ESAT on two source tasks: CIFAR-100 and ImageNet-200, and train on three downstream tasks.
Similar results for S-CSAT and SVHN as additional downstream task can be found in the supplement,
sections A.5 and A.9. Figure 8 presents results for three settings: CIFAR-100 → CIFAR-10 and
ImageNet-200 → Caltech-256,Oxford-Flowers-102. The first and second row show robust and clean
accuracy on the downstream task respectively. As before, we compare with a random (red) and a full
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Figure 8: Transfer from S-ESAT to three different downstream tasks. S-ESAT is trained on source
dataset CIFAR-100 (left) and ImageNet-200 (middle and right). We report robust (top row) and clean
(bottom) accuracies for increasing size of A. Similar to our investigation on transfer from A to B, we
find that hard examples provide better robustness transfer than easy ones, but random selections (red)
achieve competitive performances. Most importantly, “seeing” only few AEs (here 30% of source
data) recovers baseline AT performance (gray line). L∞ results in appendix, figure 19.

AT baseline (gray line). Selecting A to contain the hardest examples first (highest entropy) is marked
by a solid line; selecting easiest is marked by a dashed line. Similar results for L∞ are provided in
the appendix, section A.8.

In line with the improvements seen using appropriate loss weighting, we see similarly fast recovery of
baseline AT performance across all dataset. In fact, |A| containing only 30% of training data (15k and
70k) is sufficient to reach near baseline performance. On CIFAR-100 → CIFAR-10 and ImageNet-
200 → Flowers-102 even slightly outperforming the same with a further increase in size. Similar to
the non-transfer settings tested before, we see similar interactions between subset selection strategies.
I.e. hardest examples (solid line) provide greater robustness transfer than easiest (dashed line) while
a random baseline (red) achieves competitive performances. The latter consistently outperforming
entropy selection on ImageNet-200 → Flowers-102, supporting our observation in section 4.2: with
increasing dataset complexity, informed subset selection provides diminishing returns. Note that all
robust accuracy gains correlate proportionally to an increase in clean accuracy as well. This is in stark
contrast to the inverse relationship in previous settings. C.f. figure 5 and 6, for which clean accuracy
decreases. This interaction during transfer is similar to what is reported in (Salman et al., 2020):
increased robustness of the source model results in increased clean accuracy on the target task (over a
non-robust model). Intriguingly though, with appropriate weighting, the biggest robustness gains
on the downstream task happen under fairly small A. This is a promising outlook for introducing
robustness in the foundational setting (Bommasani et al., 2021), where models are generally trained
on very large datasets, for which AT is multiple factors more expensive to train. Note that our results
generalize to single-step attacks like fast gradient sign method (FGSM) (Goodfellow et al., 2015;
Wong et al., 2020) as well. We provide evaluations in the supplement, section A.10. While we
consider the fixed-feature transfer only, recent work has shown this to be a reliable indicator for utility
on full-network transfer (Salman et al., 2020; Kornblith et al., 2019).

5 CONCLUSION

We presented an analysis of how adversarial robustness transfers between classes, examples and tasks.
To this end, we proposed the use of Subset Adversarial Training (SAT), which splits the training data
into A and B and constructs AEs on A only. Trained on CIFAR-10, CIFAR-100 and ImageNet-200,
SAT revealed a surprising generalizability of robustness between subsets, which we found to be
based on the following observations: (i) adv. robustness transfers among classes even if some or
most classes have never been attacked during training and (ii) hard classes and examples provide
better robustness transfer than easy ones. These observations remained largely valid in the transfer to
downstream tasks like Flowers-102 and Caltech-256 for which we found that overemphasizing loss
minimization of AEs in A provided fast convergence to baseline AT robust accuracies, even though
transfer to B was severely reduced. Specifically, it appears that only few AEs (A containing 30% of
the training set) learn all of the robust features which generalize to downstream tasks. This finding
could be particularly interesting for AT in the foundational setting, in which very large datasets make
full AT challenging and 90% of the full robustness using 30% of data is preferred over no robustness.
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A APPENDIX

A.1 FULL TRAINING DETAILS

For all training setups listed in table 2, we train our models from scratch using SGD with a momentum
of 0.9. Dataset sizes are listed in table 1. All are data augmented based on the definitions in (Engstrom
et al., 2019). The sequence of transformations are listed in figure 9. Left, for CIFAR-10, CIFAR-100
and SVHN. Right, for ImageNet-200, Caltech-256 and Flowers-102.

Adversarial training for the L2 norm is performed with 7 steps of projected gradient descent
(PGD-7) within an ϵ2 = 0.5 for CIFAR and SVHN and ϵ = 3.0 for ImageNet-200, Caltech-256
and Flowers-102. For each step, we use a step size of 0.1 and 0.5 respectively. For the L∞ norm,
we use 10 steps of PGD during ESAT and a step size of 1/255 to avoid catastrophic forgetting when
|A| is small (see section A.8). For S-ESAT, we find it to be sufficient to perform PGD-7 with a
step-size of 2/255. This is likely mitigated by the weighted loss. For all datasets, we constrain the
maximum perturbation norm to ϵ∞ = 8/255. For all experiments, including L2 and L∞, we maximize
the default cross-entropy loss. For vanilla AT, all examples in a training batch are attacked. For all
SAT variants, we randomly sample training examples to construct a training batch and attack only
examples that are contained in A.

Class order. In the following, we list the order of classes ranked by entropy HC (equation 3).
CIFAR-10 can be derived from figure 4 in the main paper. In figures 10 and 11, we provide the list
for CIFAR-100 and ImageNet-200. On CIFAR-100, the first and thus hardest classes consist mostly
of animate categories like otter, rabbit and crocodile. The easiest on the other hand are inanimate
categories, specifically vehicle related classes, e.g. road, motorcycle or pickup-truck. Overall, the
animate-inanimate order is similar to CIFAR-10. On ImageNet-200, we observe a very different
order. Inanimate categories like spatula, drumstick or umbrella are among the hardest, while animate
classes like monarch (butterfly), flamingo or lorikeet are among the easiest. Named hard classes may
be difficult to distinguish due to a frequent presence of people in the images.

A.2 ALTERNATIVE RANKINGS

For simplicity, we focused our experiments on using entropy as a proxy to measure example and class
difficulty (c.f. equation 3). Multiple such difficulty metrics have been proposed in literature (Chang
et al., 2017; Hua et al., 2021; Baldock et al., 2021; Agarwal et al., 2022), of which we select a few from
recent literature to compare to: signed variance (SVar) (Hua et al., 2021) and variance of gradients
(VoG) (Agarwal et al., 2022). We want to highlight, that they perform very similar to our entropy
metric when utilized in our SAT framework. Figure 12 compares these two metrics with our used
entropy metric using ESAT on CIFAR-100. Overall, VoG has a slight edge over SVar and Entropy,
yet the differences remain small. On 5k attacked examples, Entropy (yellow line) achieves 21.0%,
VoG (red line) 21.9% and SVar (purple line) 22.3% robust accuracy. On 25k attacked examples,
Entropy achieves 38.0%, VoG 38.8% and SVar 38.1%. While some improvements over our simple
Entropy metric are possible, no proposed metric has a clear edge over the other.

- pad 4 pixels
- random crop to 32x32
- random horizontal flip
- color jitter [0.25, 0.25, 0.25]
- random rotation within +/- 2 deg.

- random crop to 224x224
- random horizontal flip
- color jitter [0.1, 0.1, 0.1]
- random rotation within +/- 2 deg.

Figure 9: Input transformation for CIFAR and SVHN datasets (left) and ImageNet-200, Caltech-256
and Flowers-102 (right) during training. During testing, no transformations are applied to CIFAR and
SVHN. The remaining datasets are resized such that the shortest side equals 256, after which they are
center cropped to 224.
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otter, lizard, seal, rabbit, mouse, crocodile, lobster, shrew, shark,
woman, beaver, bowl, turtle, squirrel, possum, snail, girl, kangaroo,
ray, forest, caterpillar, man, baby, dinosaur, lamp, elephant, couch, boy,
porcupine, snake, butterfly, leopard, crab, table, mushroom, dolphin,
willow_tree, beetle, spider, clock, fox, sweet_pepper, bee, house,
raccoon, tulip, bridge, bus, rose, tank, whale, train, worm, lion, poppy,
trout, bed, plate, can, telephone, tiger, hamster, aquarium_fish,
maple_tree, orchid, pear, mountain, tractor, oak_tree, rocket, skunk,
cockroach, television, cup, sea, cloud, lawn_mower, castle, bottle,
palm_tree, keyboard, apple, plain, pickup_truck, bicycle, orange, chair,
wardrobe, motorcycle, road

Figure 10: CIFAR-100 classes ranked by decreasing entropy HC . Animal classes are hardest,
inanimate classes easiest.

spatula, shovel, syringe, drumstick, hand blower, lighter, nail, maraca,
barrow, umbrella, bow, quill, iron, stethoscope, soap dispenser, dumbbell,
mask, reel, toaster, ant, walking stick, envelope, candle, sleeping bag,
sandal, tricycle, cowboy boot, cradle, breastplate, bubble, banjo, chest,
cliff, wine bottle, fountain, crayfish, doormat, Chihuahua, chain, apron,
kimono, cockroach, accordion, sewing machine, ocarina, revolver, torch,
piggy bank, goblet, studio couch, wreck, hermit crab, grand piano, beaker,
snail, marimba, sundial, mantis, vulture, sea lion, flagpole, washer,
acoustic guitar, mongoose, grasshopper, Christmas stocking, bikini, corn,
balance beam, fox squirrel, American alligator, academic gown,
feather boa, suspension bridge, stingray, acorn, common iguana, forklift,
parachute, mushroom, hotdog, American black bear, beacon, garbage truck,
cello, pug, bee, banana, volcano, baboon, centipede, golfcart, marmot,
limousine, African chameleon, leafhopper, canoe, wood rabbit, agama,
starfish, lynx, German shepherd, capuchin, balloon, goose,
submarine, golden retriever, mitten, jeep, hummingbird, armadillo,
weevil, porcupine, puck, snowplow, barn, fly, tarantula, Rottweiler,
pool table, red fox, harvestman, pretzel, ballplayer, American egret,
puffer, ladybug, pelican, obelisk, bald eagle, go-kart, bell pepper,
castle, snowmobile, junco, lemon, spider web, lion, water tower,
basketball, guacamole, toucan, tank, jellyfish, viaduct,
robin, ambulance, broccoli, flatworm, pomegranate, bison, sea anemone,
jay, rugby ball, organ, drake, cheeseburger, mosque, koala, garter snake,
African elephant, lycaenid, oystercatcher, box turtle, cabbage butterfly,
steam locomotive, goldfinch, jack-o’-lantern, school bus, lorikeet,
manhole cover, rapeseed, flamingo, yellow lady’s slipper, monarch

Figure 11: ImageNet-200 classes ranked by decreasing entropy HC . In contrast to the order on
CIFAR-10 and CIFAR-100, animate classes are generally not the most frequent among the hardest.
Instead its mostly inanimate objects.
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Figure 12: Various hardness metrics result in similar rob. accs. for ESAT on CIFAR-100.
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A.3 SINGLE CLASS CSAT WITH DIFFERENT ϵ

Supplementary to our CIFAR-10 single class results in figure 2, we provide additional results for
smaller and larger L2 ϵ in figure 13. Overall, we continue to observe non-trivial robustness transfer to
B, irrespective of ϵ. Interesting though, the robustness transfer notably increases for smaller ϵ = 0.25
(left), but also notably decreases for larger ϵ = 1.0 (right).
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Figure 13: For all ϵ, we observe non trivial robustness transfer to B, yet transfer diminishes with
increasing ϵ. For smaller ϵ though, the transfer is notably stronger. For ϵ = 1.0 we use a step-size of
0.2 and 0.1 otherwise.

A.4 DATASET AUGMENTATION – CIFAR-10 +1

As briefly mentioned in the main paper, we can utilize the class-entropy to robustness transfer
relationship to augment a dataset by samples with high entropy. Then, SAT is performed only on
these new samples to establish strong robustness on the original dataset. As a proof-of-concept, we
synthesized a set of 11th classes from CIFAR-100s super-classes (see figure 15) – of which there
are 20 – and perform SAT on this 11th class to evaluate the robust accuracy gains on the original
CIFAR-10 classes. Results are reported in figure 14. We continue to observe a correspondence
between average entropy Hc and the robustness transfer of a class. As in the main paper, we evaluate
Hc on non-adv. trained models. Note that, while the best performing setup (A = {rodent}) with
rob. acc of 33.3% does not improve upon the best in the main paper (A = {cat}, with a rob. acc
> 37.8%), the number of examples in A is only |A| = 2500, thus less than 5% of training data. This
provides an indication that such a dataset augmentation is possible.

A.5 FULL RESULTS FOR CSAT

Results for CSAT can be plotted for three different validation subsets: Aval, Bval and on the whole
dataset Dval. For clarity, we only showed robust accuracies on Dval and Bval in the main paper in
figure 5. Here, we provide all results. That is, in figure 16, we show robust accuracies in the upper
split and clean accuracies in the lower split for all 3 subsets.

Dataset Classes Size (Train/Test)
CIFAR-10 (Krizhevsky et al., 2009) 10 50 000 / 10 000
CIFAR-100 (Krizhevsky et al., 2009) 100 50 000 / 10 000
ImageNet-200 (Deng et al., 2009; Hendrycks et al., 2021) 200 259 906 / 10 000
Caltech-256 (Griffin et al., 2007) 257 24 485 / 6122
Flowers-102 (Nilsback & Zisserman, 2008) 102 1020 / 1020
SVHN (Netzer et al., 2011) 10 73 257 / 26 032

Table 1: Number of training and validation examples per dataset used. ImageNet-200 uses examples
from (Deng et al., 2009) only for classes defined in (Hendrycks et al., 2021)
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Figure 14: CSAT on CIFAR10 plus an additional class, synthesized from CIFAR-100. A consists
only of this additional 11th class, to test how much robust accuracy can be gained on the original
CIFAR-10 classes (orange). We observe a consistent link with the entropy of this 11th class (green)
with respect to the entropy of the CIFAR-10 classes (blue). The higher Hc, the higher the robust
accuracy.

A.6 CLEAN ACCURACY INDEPENDENT CSAT RESULTS

So far, we presented robust accuracies as well clean accuracies. To highlight, that the hardest
examples provide strongest robustness transfer which is independent of clean accuracy gains, we
show in figure 17 an additional robustness metric: Attack defense rate. We define Attack defense
rate as the robust accuracy on purely accurately classified examples. That is, given a dataset, we
select examples that are accurately predicted and perform AA. The fraction of robust examples are
reported. We observe, that the relationship between hardest, easiest and random examples are retained
w.r.t. figure 16 on all dataset. We thus conclude that the reported gains are independent of clean
accuracy.

A.7 ROBUSTNESS ACCURACY TRADE-OFF WITH TRADES

In the following, we investigate the impact of applying TRADES (Zhang et al., 2019) – adversarial
training with tuneable trade-off between clean and robust accuracy. This is of particular interest given

Conventional setting
Dataset Architecture Epochs Batchsize lr lr-decays L2 decay
CIFAR-10 PreActResNet-18 200 128 0.1 100, 150 5 · 10−4

CIFAR-100 PreActResNet-18 200 128 0.1 100, 150 5 · 10−4

ImageNet-200 ResNet-50 150 256 0.1 50, 100 1 · 10−4

Transfer setting
Dataset Architecture Epochs Batchsize lr lr-decays L2 decay
CIFAR-10 PreActResNet-18 + [512,10] 40 128 0.1 20, 30 5 · 10−4

SVHN PreActResNet-18 + [512,10] 40 128 0.1 20, 30 5 · 10−4

Caltech-256 ResNet-50 + [2048,257] 100 128 0.1 50, 75 1 · 10−4

Flowers-102 ResNet-50 + [2048,102] 100 102 0.1 50, 75 1 · 10−4

Table 2: Training settings for all used datasets for the conventional (upper rows) and the transfer
setting (lower rows). In the transfer setting, the last classifier layer is replaced with two linear layers
of size K ×K and K ×N , abbreviated as [K,N ]. K defines the number of feature channels and N
the number of classes.
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aquatic-mammal: [’beaver’, ’dolphin’, ’otter’, ’seal’, ’whale’]
fish: [’aquarium_fish’, ’flatfish’, ’ray’, ’shark’, ’trout’]
flower: [’orchid’, ’poppy’, ’rose’, ’sunflower’, ’tulip’]
container: [’bottle’, ’bowl’, ’can’, ’cup’, ’plate’]
fruit: [’apple’, ’mushroom’, ’orange’, ’pear’, ’sweet_pepper’]
device: [’clock’, ’keyboard’, ’lamp’, ’telephone’, ’television’]
furniture: [’bed’, ’chair’, ’couch’, ’table’, ’wardrobe’]
insect: [’bee’, ’beetle’, ’butterfly’, ’caterpillar’, ’cockroach’]
large-carnivore: [’bear’, ’leopard’, ’lion’, ’tiger’, ’wolf’]
building: [’bridge’, ’castle’, ’house’, ’road’, ’skyscraper’]
scene: [’cloud’, ’forest’, ’mountain’, ’plain’, ’sea’]
large-mammal: [’camel’, ’cattle’, ’chimpanzee’, ’elephant’, ’kangaroo’]
small-mammal: [’fox’, ’porcupine’, ’possum’, ’raccoon’, ’skunk’]
crustacean: [’crab’, ’lobster’, ’snail’, ’spider’, ’worm’]
human: [’baby’, ’boy’, ’girl’, ’man’, ’woman’]
reptile: [’crocodile’, ’dinosaur’, ’lizard’, ’snake’, ’turtle’]
rodent: [’hamster’, ’mouse’, ’rabbit’, ’shrew’, ’squirrel’]
tree: [’maple_tree’, ’oak_tree’, ’palm_tree’, ’pine_tree’, ’willow_tree’]
vehicle: [’bicycle’, ’bus’, ’motorcycle’, ’pickup_truck’, ’train’]
utility-vehicle: [’lawn_mower’, ’rocket’, ’streetcar’, ’tank’, ’tractor’]

Figure 15: 20 CIFAR-100 Superclasses for reference.

that clean accuracy for small |A| is higher than with full AT (e.g. see figure 6, enabling improved
robust accuracy.

clean acc. in % robust acc. in %
A = {cat} β on CIFAR-10 on A on B on CIFAR-10
w/o TRADES N/A 91.0 49.6 37.8 39.0
w/ TRADES 1.0 92.4 41.5 32.0 33.0

6.0 85.9 70.2 42.1 44.9
12.0 81.0 78.2 42.9 46.4
24.0 81.6 80.1 41.8 45.6

Table 3: TRADES (Zhang et al., 2019), applied to CSAT improves robustness transfer from single
class cat to B over baseline CSAT training. That is, we gain 5.1%-points to achieve a robust accuracy
on B of 42.9%.

TRADES on ESAT |A| = 5k 10k 15k 20k 25k 30k 35k 40k 45k full AT
β = 12.0 11.25 10.5 9.75 9.0 8.25 7.5 6.75 6.0 6.0

yes Rob. acc 57.2 62.1 65.7 66.1 67.7 67.6 68.2 66.4 69.0 69.0
Clean acc 87.0 87.4 84.2 85.6 84.3 87.0 84.0 88.0 88.4 88.6

no Rob. acc 52.1 59.1 63.3 64.9 66.3 66.8 67.7 68.7 68.5 69.0
Clean acc 91.9 91.2 90.5 89.7 89.4 89.4 89.2 89.4 89.5 89.2

Table 4: ESAT on CIFAR-10 combined with TRADES (Zhang et al., 2019). Trading off clean for
robust accuracy, we gain ≥ 66.0% robust accuracy earlier at 20k samples in contrast to 25k for
vanilla ESAT. However, our β choice decreases clean accuracy below full AT.

Zhang et al. (2019) proposed a loss with principled trade-off capability between clean and robust
accuracy for AT. We observe that clean accuracy is higher than with full AT when |A| is small, i.e.
less than 50% of examples. We investigate to what extent robust accuracy can be improved. First,
we conduct a hyperparameter sweep for TRADES β parameter which controls the trade-off. As
baseline we choose the best performing CSAT configuration on CIFAR-10 with L2ϵ = 0.5, that is
A = {cat}. Results are presented in table 3. Note that – as expected – clean accuracy decreases with
increasing β while robust accuracy increases. Although Zhang et al. (2019) recommend β to be less
than 10.0, we find 12.0 to provide best robustness transfer from A to B. This configuration achieves
42.9%(+5.1) robust accuracy on B while also increasing rob. acc. on A to 78.2%(+28.6), with the
expected decrease in overall clean accuracy (81.0%(−10.0)).

In a second experiment, we apply TRADES to ESAT on CIFAR-10. Given the β = 6.0 recommen-
dation in (Zhang et al., 2019) and our β = 12.0 observation for single class CSAT, we use linear
interpolation between these two values for general ESAT. That is, when |A| is small, we trade off
some of the gained clean accuracy for increased robustness with large β = 12, but decrease to β = 6
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Figure 16: Full robust (upper split) and clean accuracies (lower split) from CSAT experiments, plotted
for the whole dataset, Aval and Bval. Selecting the hardest classes first (solid lines), clean accuracies
and robust accuracies on Aval steadily increase, while selecting the easiest in contrast (dotted lines)
results in a steady decline. This provides additional support that entropy as metric provides a useful
account of difficulty, since easy classes can achieve higher accuracy. Furthermore, we note that clean
accuracy on the whole dataset is increasing or mostly stable, while on other datasets it is steadily
decreasing. This should be investigated further.

with increasing size of |A|. We compare ESAT-hardest first with and without TRADES in table 4.
We observe quicker robust accuracy convergence to the baseline. 66% robust accuracy is achieved
at 20k samples, instead of at 25k. However, our choice of β also induces a drop in clean accuracy
below full AT clean accuracy (85.6% clean accuracy at 20k vs 89.7% at 25k vs 89.2% for full AT).

A.8 L∞ RESULTS

While the main paper focuses on the L2 norm, we also provide a corresponding evaluation for L∞.

ESAT. We evaluate ESAT on CIFAR-10, CIFAR-100 and ImageNet-200 in figure 18 and S-ESAT
on CIFAR-100 → CIFAR-10 and ImageNet-200 → {Caltech-256,Flowers-102}. For ESAT in
figure 18, we find characteristics similar to the L2 results in figure 6. That is, few examples contribute
a large amount of overall robustness to the model and robustness increases quickly with size of A.
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Figure 17: As complement to the CSAT results in figure 16, we additionally show the defense rates
(for what fraction of accurately classified validation examples does Auto-Attack fail to find adv.
examples). As the defense rate shows robustness independent of clean accuracy, we can test whether
the robustness gains are in fact based on the improved robustness transfer from hard classes. We see
this being the case across all datasets.

Noteworthy though, is the low robust accuracy when A contains 10% of data, dropping to 0% on
CIFAR-10 and CIFAR-100. We have found this to be similar to catastrophic overfitting described for
single-step AT (Wong et al., 2020). The effect can be mitigated with more PGD iterations (10) and a
smaller step size (1/255), but is not resolved entirely. That is, note that the drop only occurs for the
hardest examples, but not for the easiest or a random selection.

S-ESAT. For S-ESAT, we show the same transfer configurations as in the main paper. In figure 19,
we observe similar characteristics as for L2. That is, fast convergence to baseline AT performance
and hard examples providing better robust transfer than easy examples. Also similar to L2, is the
observation that robustness transfer from ImageNet-200 to Flowers-102 is best when using a random
selection of examples.
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Figure 18: Example-subset Adversarial Training (ESAT) on CIFAR datasets and ImageNet-200 using
L∞ with norm ϵ∞ = 8/255, provide quick convergence to a full AT baseline (gray line and dot) with
increasing size of A. We report robust accuracy (upper row) and clean accuracy (lower row) and
observe similar characteristics as with CSAT (figure 5). I.e., selecting the hardest examples first (solid
line) provide higher rob. accuracy than easy ones (dashed line), although the gap substantially widens.
Random example selection (red) provides competitive performance on average. Across all datasets,
we see the common clean accuracy decrease while robust accuracy increases (Tsipras et al., 2019).
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Figure 19: Transfer from S-ESAT to three different downstream tasks using L∞ with norm ϵ∞ =
8/255. S-ESAT is trained on source dataset CIFAR-100 (left) and ImageNet-200 (middle and right).
We report robust (top row) and clean (bottom) accuracies for increasing size of A. Similar to our
observations for L2 in figure 8, we find that hard examples provide better robustness transfer than
easy ones, but random selections (red) achieve competitive performances. Most importantly, “seeing”
only few AEs (here 30% of source data) recovers baseline AT performance (gray line).
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ImageNet-200 → Flowers-102
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Figure 21: Transfer from S-CSAT to the same downstream tasks as in figure 8. S-CSAT is trained on
source dataset CIFAR-100 (left) and ImageNet-200 (middle and right). We report robust (top row)
and clean (bottom) accuracies for increasing size of A. We observe similar properties to S-ESAT,
yet find convergence to the baseline AT performance to be substantially slower; in line with our
discussion on SAT in section 3.2.

A.9 FULL RESULTS FOR TRANSFER SETTINGS
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Figure 20: Robustness transfer
from CIFAR-100 to SVHN using
S-ESAT

In the main paper, we omitted transfer results to SVHN as well
as using S-CSAT. Firstly, we provide the transfer result from
CIFAR-100 to SVHN in figure 20. Robust accuracies are plotted
on the upper plot, clean accuracies below. Note that 5k examples
in A are sufficient to reach baseline AT performance (gray line),
while 15k provides a substantial improvement in robust accuracy
( 22% vs 20%). Secondly, transfer results on S-CSAT aligned
with the experiments in section 4.3 are shown in figure 21. We
observe similar characteristics to the CSAT results in section 3.2,
i.e. selecting the hardest classes first (solid line) is only advanta-
geous on small A, while generally it draws even with the random
baseline (red). Overall, convergence to the full AT baseline is
slower than with S-ESAT.

A.10 SINGLE-STEP AT

While our main L2 experiments use AT with 7 PGD-steps, we
here show that non-trivial robustness transfer can be achieved
with single-step AT as well. We focus on transfer to downstream
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tasks and compare with the results shown in figure 8, section 4.3. I.e., we train one ESAT model on
CIFAR-100 and ImageNet-200 respectively, and finetune an additional classifier on either CIFAR-10,
Caltech256 or Flowers-102. We use FGSM-RS (Wong et al., 2020), with a step-size of 0.625 for
ϵ = 0.5 and 3.75 for ϵ = 3.0. All other training settings are consistent with previous experiments (c.f.
section A.1).

Results are shown in figure 22, comparing PGD-7 training (circles on solid line) and single-step
FGSM-RS (squares on dotted line). Generally, we observe very similar clean and robust accuracies
(lower and upper row) across all architectures. Specifically, FGSM-RS achieves slightly higher clean
accuracies and slightly lower robust accuracies – especially for small |A|. Nonetheless, single-step
AT converges to the full AT baseline (gray line) in a similar fast rate, i.e. generating AEs for around
30% of the training set is sufficient.
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ImageNet-200 → Caltech-256
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Figure 22: Comparison between PGD-7 and single step S-ESAT on the transfer setting to three
different downstream tasks. Training and evaluation using L2 norm. Our observations on robustness
transfer remain valid even for single step attacks. Except for CIFAR-100 → CIFAR-10, we find
robust accuracies and clean accuracies to be consistent with PGD-7.
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