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Abstract
Although Deep Neural Networks (DNNs) are of-
ten compared to biological visual systems, they
are far less robust to natural and adversarial ex-
amples. In contrast, biological visual systems can
reliably recognize different objects under a va-
riety of settings. While recent innovations have
closed the performance gap between biological
and artificial vision systems to some extent, there
are still many practical differences between the
two. In this Blue Sky Ideas presentation, we will
identify some key differences between standard
DNNs and biological perceptual systems that may
contribute to this lack of robustness. We will then
present recent work on biologically-plausible, ro-
bust DNNs that are derived from and can be easily
implemented on physical systems/neuromorphic
hardware.

1. Overview
Although convolutional neural networks (CNNs) are roughly
based on biological sensory processing, they lack many
computational and architectural motifs that are postulated
to contribute to robust perception in biological neural sys-
tems. Here, we focus on lateral and top-down connections,
which greatly outnumber feed-forward excitatory connec-
tions in primary sensory cortical areas (Binzegger et al.,
2004) but remain absent in most current DNN architectures.
These lateral and top-down connections have been shown
to convey context (Stettler et al., 2002; Liang et al., 2017),
attention (Noudoost et al., 2010), and expectation (Le Bec
et al., 2022) to form sparse representations of sensory stim-
uli for downstream tasks. In addition, experimental studies
implicate these mechanisms in robust visual processing in
humans (Elsayed et al., 2018; Daniali & Kim, 2022). In
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this Blue Sky Ideas presentation, we present recent work on
physics-based and neuromorphic DNN architectures with
recurrent top-down and lateral connections through the lens
of robustness.

2. Lateral Connections
Recent work suggests that transformers exhibit more ro-
bustness than CNNs (Bhojanapalli et al., 2021; Aldahdooh
et al., 2021; Shao et al., 2021; Zhou et al., 2022). This
robustness is thought to be due to self-attention (Bai et al.,
2021), which can be thought of as long- and short-range
lateral modulation. Although self-attention is one form of
lateral modulation, many others have been proposed in the
neuroscience literature to model the nonlinear lateral in-
teractions observed in cortical sensory areas, for example
divisive normalization (DN) (Carandini & Heeger, 2012;
Cornford et al., 2020; Burg et al., 2021) and lateral competi-
tion (Olshausen & Field, 1996; Rozell et al., 2008; Boutin
et al., 2021; Lian et al., 2019). In fact, single convolutional
layers outfitted with DN and/or lateral competition exhibit
significantly greater similarity to primary cortical sensory
areas than deep CNNs containing many more layers (Ol-
shausen & Field, 1996; 2004; Zhu & Rozell, 2013; Dodds
& DeWeese, 2019; Lian et al., 2019; Burg et al., 2021). To
illustrate this, we show that CNNs which perform lateral
competition in just the first layer (i.e. (Teti et al., 2022; Li
et al., 2022)), which we hereafter refer to as LCANets, repre-
sent primary visual cortical neurons significantly better than
standard CNNs and about the same as adversarially-trained
CNNs.

Mounting evidence suggests a strong correlation between
representational similarity to the visual cortex and adversar-
ial robustness (Li et al., 2019; Dapello et al., 2020; Safarani
et al., 2021; Riedel, 2022). As a result, we then hypothe-
sized that CNNs with lateral competition should be more
robust than standard CNNs to adversarial attacks although
recent evidence indicates they are not robust when the at-
tack is unknown before test time1 (Teti et al., 2022). To

1(Li et al., 2022) developed a heuristic to tune the λ parameter
for a specific attack/noise type after training and before testing,
which led to greater adversarial accuracy. However, this technique
would be very unlikely to work well in most practical settings for
a few different reasons.
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help understand why LCANets were less robust to adver-
sarial attacks, we compute the perturbation-to-signal ratio
(PSR) (Bakiskan et al., 2022) for every layer in a standard
CNN, adversarially-trained CNN, and LCANet. We will
discuss the results of this analysis, which indicate that the
representations in LCANet layers are actually affected less
than those in both standard CNNs and adversarially-trained
CNNs, and that the last layer or two leads to the adversar-
ial susceptibility of LCANets. This reinforces the idea that
lateral competition can have powerful effects on many down-
stream layers in a CNN, but it also suggests that CNNs may
require multiple layers with lateral competition to attain ad-
versarial robustness. Based on this, we present current work
on the development of CNNs with multiple lateral compe-
tition layers, which we refer to as LCANets++, including
tests against adversarial attacks.

3. Top-Down/Feedback Connections
In addition to lateral modulation, top-down feedback is a
critical component in biological perception that is often over-
looked in standard DNNs. This can be seen in anatomical
studies, where massive connections from high level to lower
level visual areas have been observed (Bullier et al., 1996;
Mittal et al., 2020), and neuroimaging studies, which have
reported distinct bidirectional activity streams with func-
tional consequences (Nielsen et al., 1999; Dijkstra et al.,
2017). Experimental evidence also suggests that these mas-
sive feedback connections originating in visual areas as high
as IT greatly modulate V1 responses, accounting for contex-
tual (Czigler & Winkler, 2010) and attentional (Noudoost
et al., 2010) effects. Top-down feedback is also thought to
be critical for reliable inference from weak or noisy stimuli
(DiCarlo et al., 2012), and in real-world scenarios with com-
peting stimuli, top-down processes interact with bottom-up
and lateral mechanisms to dynamically attend to behav-
iorally relevant information (Desimone et al., 1995; Kastner
& Ungerleider, 2001; McMains & Kastner, 2011).

As a result, we hypothesized that DNNs with recurrent
top-down connections should be more robust than standard
DNNs. Most current DNN models consist only of feed-
forward or bottom-up processes in which the higher layers
correspond to abstract features for decision making and low-
level representations feed the higher-level representations.
However, this information flow could be well supported in a
top-down fashion in which high-level representations mod-
ulate the low-level representations. Indeed, convolutional
sparse coding models endowed with top-down feedback
have exhibited many of the nonlinear behaviors observed
in biological perceptual systems (Paiton et al., 2015; Kim
et al., 2018; Lian et al., 2019; Kim et al., 2020; Boutin et al.,
2021).

Motivated by this, we focus our discussion on the energy-

based models (Paiton et al., 2015; Scellier & Bengio, 2017;
Kim et al., 2018; Laborieux et al., 2021), in which each layer
sends information to the previous layer via recurrent feed-
back connections. Energy-based models can be trained with
a framework called Equilibrium Propagation (EP) (Scellier
& Bengio, 2017). In contrast to backpropagation, which is
difficult to perform on neuromorphic hardware and is not
biologically-plausible, EP employs a local learning rule to
approximate backpropagation through time. We will also
discuss even more recent work, in which it was shown that
an EP-like updates could be performed with spike timing
dependent plasticity (STDP) (Bengio et al., 2015; 2017).
Therefore, energy-based models can be trained with EP
directly on neuromorphic hardware, drawing even closer
connections to biological systems while requiring orders
of magnitude less energy and time compared to standard
GPU-based DNNs.

Since energy models contain connections from a given layer
of neurons to the previous layer of neurons, expectation in
the form of feedback from the higher layers of cognition
changed the lower layers to conform to its belief. This
is functionally impossible in a feed-forward architecture,
yet it is postulated that this is how feedback in the brain
works (Walsh et al., 2020). Due to the symmetric feedback
connections, these energy-based models are also governed
by global attractors, which means it may be difficult for an
adversarial attack with a limited attack budget to escape the
attractor and cause a mis-classification, but there is currently
no evidence for or against this since these models have yet
to be adversarially attacked. In this part of the talk, we
will present current and ongoing work on the adversarial
robustness of energy-based models.

4. Recap
In this Blue Sky Ideas presentation, we examine possible
avenues toward the development of robust DNNs by iden-
tifying recent biologically-inspired models. Specifically,
we discuss CNNs with lateral connections within layers
and energy-based models, which are based on top-down
feedback. Although both of these mechanisms are found
throughout biological sensory areas and help form robust
sensory representations, they are hardly found in standard
DNNs. We hope this presentation spurs conversations and
ideas for future work on biologically-inspired robust ma-
chine learning models.
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