Under review as a conference paper at ICLR 2025

APPENDIX

A CONNECTING MSE AND L2

Lemma 1. Consider the parameters of a model to be § € R%. A noisy approximation of the L>-
norm of parameters 0 can be represented as an average of Mean Squared Error between parameters
0 and samples z; € R4 from standard normal, N (0,1y). In other words,

) 1 n
dig 310 - 51 = 615 +

Proof. Consider Y; = || — z;||3 to be a random variable. Consider E[.] as the function calculating
the expectation of a random variable. As z; are i.i.d. samples of standard normal and 6 is a constant,
Y; are also i.i.d. samples. Using Strong Law of Large Numbers (Loeve|(1977))), we can say that:

RN
Pr | lim — Z;Y =ElY]]| =1 (7)
Now we would show that E[Y;] = ||0||3 + d, where d is the dimension of the parameter 6.

E[Y;] =E [[|6 — 2|3]
=E [QTH — 2l — 0Tz + lezl]

—E[676] - 2B[=76] + E[:72] ®
=079 -2 0;E[z] + Y _E[})]
J J
— oz + > @
J
— 02 +d (10

Here, is using linearity property of expectation and uses the fact that E[z;;] =

0 and E[2;;] is nothing but variance of that variable z;;, which is equal to 1.

Based |Equation 7|and [Equation 10} we can say that,

) 1 n
Jim 30— =] = 6] +d

1=1
O]
Lemma 2. Bernstein’s inequality (refer to \Vershynin| (2018)) Consider X1, Xo,- -+ , X,, as inde-

pendent, mean-zero and sub-exponential random variables. Define S, = Z:L:l X;. Then for every
€ > 0, we have

€2 €
Pr[|S,| > € < 2exp | —cmin = ,
D oim 1XG[[7, T max || Xy,

where ¢ > 0 is a constant and ||. ||y, is 1-sub-exponential norm of a random variable.

Theorem 3. Consider Yi, Y; € R% is a random variable defined as Y; = ||0 — z;||3, where z; ~

N(0,1,). Define S, = >, Y. Then, with a relative deviation d,

2
© (min(62nd,onv/d))

Pr[S, > (1 +0)E[S,]] <

(1)

e

where O(.) denotes the asymptotic average bound, commonly known as Big-Theta notation.

14

Under review as a conference paper at ICLR 2025

Proof. We first need to understand the distribution of the random variable, Y;. As Y; is the L?-
norm of a shifted d-dimensional standard normal distribution, Y; follows a non-central chi-squared
distribution with d degree of freedom and non-centrality parameter A = ||0||3

Y~ xa(N)
We know that the chi-square random variable is a sub-exponential random variable (Vershynin,

2018). We use the Lemma 2 to find the rate of convergence and its dependency with n and d. To
apply Lemma 2] we first need to centre the random variable,

Xi =Y; =B = 10 — 23 = (1015 + d) = 0 — 213 — (A + d) (12)
Now, X; is a mean-zero sub-exponential random variable. Now, we need to compute the 1-sub-
exponential norm of X;. The chi-squared distribution is known to have a finite sub-exponential
norm, but it’s complex to compute, so we use an upper bound for it. |Vershynin (2018) For a sub-
exponential random variable with variance o2, sub-exponential norm satisfies, || X ||, < Co where
C is some constant.

Var(X;) = Var(||0 — z)3) = 2(d + 2)\) (13)
As || — 2;]|3 is a non-central chi-square distribution, we directly use its variance formula to get

Now, for X}, 1-sub-exponential norm is
[Xillp, < Cv2(d+2A) (14)

Applying Bernstein’s inequality (Lemmal[2) to X;’s, we get,
Pr —cmin ¢ ‘
: 2n(d +2X)" \/2(d + 2))

>

i=1
>e| <2exp |—cmin e € (15)
b 2n(d +2X)" /2(d + 2))

To analyze the upper tail bound, consider S,, = Y . | Y;.

> e] < 2exp

n

> (v — E[vi))

i=1

Pr

n

S (v —EY) =] — Pr[S, > E[S,] + ¢ (16)

i=1

Pr

Let’s define relative deviation § as

* = E[5,)

Using |[Equation 15|[Equation 16|and [Equation 17|we can write that,

= e€=0E[S,] = e=dn(d+ N) (17)
[6n(d+N)?* on
2n(d+2X) " /2

d+))] as)
d+2N)
2 2
< 2exp l—cmin (5 n(d+ A _on

d+\) (19)
2(d+2X) 7\ /2(d + 2)\)

—~

Pr[S, > (1 +90)E[S,]] < 2exp lcmin (

_—~

—~

Consider 6; to be the value of 6 on j** index. Then
A =|0|5 > db2,, where 0, = min 6,

min

1<j<d
A= 0]5 < dbZ,,. where 0., = max 0,
1<j<d
d2(912nin + 1)2 < (d+)‘)2 < d2(972nax + 1)2
d(26%, +1) = d+2X — d(202,,+1)
2 2 2 2 2
d (emzn + 1) < (d + /\) < d (emax + 1)
202, +1) = d+2x — (262, +1)
d+\)?
c.d < (d—|—72;\ < co.d where c1,co > 0 are some constants
d+\)?
(d+ 21 ~6(d)

15

Under review as a conference paper at ICLR 2025

Similarly, 2= ~ ©(Vd)

Based on the above claims, [Equation T9|can rewritten as,
Pr (S, > (14 0)E[S,]] < 2exp[—c.O(min(6nd, 6nv/d))] (20)

for some absolute constant ¢ > 0.]

From the we can observe that for a fixed deviation §, the probability that .S,, is far from
E[S,] is inversely proportional to n X d.

B HYPERNETWORK

Hypernetworks (. ; ¢) are a class of neural networks designed to generate the parameters of another
network, referred to as the target network C(. ;). Introduced by Ha et al.|(2017)), hypernetworks im-
prove parameter efficiency and adaptability in machine learning models by learning a mapping from
task-specific embeddings e; to the weights of the target network 6;, instead of directly optimizing
the target network’s weights. This enables greater flexibility in handling diverse tasks.

The hypernetwork framework comprises two main components:

1. Hypernetwork: A neural network responsible for generating the weights of the target
network. In UnCLe, we employ a multi-layer perceptron as the hypernetwork.

2. Target Network: The primary network that performs the desired classification tasks us-
ing weights generated by the hypernetwork. Our experiments utilize both ResNet18 and
ResNet50 as the target network.

When a learning request is encountered, the hypernetwork generates the main network parameters
conditioned on the task embedding e;. To achieve this, the hypernetwork parameters ¢ and the task
embedding e; are optimized by minimizing the task-specific loss L:,sx, Which is computed using
the data set D, corresponding to the current task. In our case, the task-specific loss is the Cross
Entropy loss.

As tasks are learned continually, to ensure that knowledge of previously learned tasks is preserved,
a regularization term is introduced. This term enforces the hypernetwork to generate consistent pa-
rameters for those tasks by aligning the output of the current hypernetwork with that of a frozen copy
of the hypernetwork, denoted by ¢*, saved prior to training on the current task. The regularization
term leverages a knowledge distillation approach, comparing the outputs of the current and frozen
hypernetworks for the embeddings of previous tasks.

The overall learning objective is defined as follows, where 3 controls the strength of the regulariza-
tion:

t—1
. 1 "
ar%mlnﬁmsk +4- Lrega where Lreg = —1 Z H,H(et’; 0]) - H(et’§ ¢)||§ 2D
s€t =1

Here, L,., represents the regularization term, calculated as the average squared difference between
the outputs of the frozen and current hypernetworks for all previous tasks. This approach ensures that
the parameters of the hypernetwork remain stable for previously learned tasks, effectively mitigating
catastrophic forgetting.

They key benefit of using task embeddings to generate task-specific parameters results is negligible
parameter growth as new tasks are added, ensuring high parameter efficiency. Since the hypernet-
work generates all task-specific parameters and its core parameters are shared across tasks, it also
facilitates inter-task knowledge transfer. This allows improvements in one task to benefit others.

A schematic representation of this architecture is presented in|Figure B.7

The hypernetwork consists of three hidden layers with dimensions 128, 256, and 512. Given the
large size of the generated ResNet parameters, the hypernetwork’s last layer becomes excessively

16

Under review as a conference paper at ICLR 2025

Yt
- -
-~
e -
N T
> >
- -
; -
C1:200 - 4
Hy 6 ot
t

Figure B.7: Schematic of the architecture showcasing the task ez, and chunk embeddings c, the
hypernetwork and its various heads #, the generated parameters 6, the ResNet classifier F and, the
input image xy and the predicted output ;.

large. To address this, we partition the main network parameters into smaller chunks and gener-
ate them separately. This significantly reduces the size of the hypernetwork’s last layer, thereby
minimizing the overall size of the hypernetwork.

Similar to how the hypernetwork generates task-specific networks by conditioning on unique task
embeddings, it generates large networks in chunks by conditioning on unique chunk embeddings.
These chunk embeddings are concatenated with task embeddings to create unique task-chunk em-
bedding pairs, which generate the corresponding chunk of the parameters for the specific task net-
work.

The chunk embeddings, like task embeddings, are learned through backpropagation. To prevent
catastrophic forgetting, the chunk embeddings are frozen after the first task. In our implementation,
both chunk and task embeddings have a dimension of 32. We found that dividing each task-specific
network into 200 chunks strikes an effective balance between efficiency and performance.

Building on the previously described approach of generating task-specific network parameters in
chunks, the hypernetwork further optimizes parameter generation by dividing its final layer into
specialized heads. Each head is responsible for generating a specific type of parameter required
for the target network: network weights, batch normalization parameters, and residual connection
parameters. By explicitly separating the generation of different parameter types, the hypernetwork
avoids generating unnecessary or redundant parameters. Each head is optimized to produce only the
parameters relevant to its designated role, reducing computational overhead and memory usage.

The chunk-based parameter generation approach described earlier is seamlessly integrated with the
specialized heads. For each chunk, the hypernetwork’s heads produce only the subset of parameters
required for that chunk, whether it is network weights, batch normalization parameters, or residual
connection parameters. By generating parameters in chunks and assigning specialized roles to the
final layer heads, the hypernetwork achieves a high degree of parameter efficiency. This design
ensures that the size of the hypernetwork remains manageable even when generating large target
networks like ResNet18 or ResNet50.

This architecture strikes an effective balance between scalability, modularity, and efficiency, making
it well-suited for tasks requiring the generation of large and complex networks. The schematic of
the hypernetwork used is described in [Figure B.7/

B.1 INITIALISATION

Classic weight initialization methods such as the Xavier Initialisation and the Kaiming He Initialisa-
tion, when applied on the hypernetwork, fail to generate classifier parameters in the correct scale. To
counteract this, we employ Hyperfan Initialization, a principled parameter initialization technique

17

Under review as a conference paper at ICLR 2025

for hypernetworks proposed by |Chang et al.. The goal of hyperfan initialization is to result in the
generated parameters themselves following Kaiming He initialization.

C HYPERPARAMETER TUNING

C.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for 5. We perform experiments
with 8 values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The

results of the hyperparameter search are presented in[Table C.4}

Dataset 1 0.1 0.01 0.001
Permuted MNIST 96.24 96.68 96.64 96.52
Five Datasets 94.46 94.42 94.13 94.54
CIFAR-100 48.58 72.16 52.62 15.72

TinyImageNet 3433 3574 537 4849

Table C.4: Results of tuning hyperparameter 3. The highest average accuracy values are highlighted
in bold.

As apparent, the chosen values for /3 are as follows: le-2 for TinyImageNet, 1e-3 for Five Datasets
and le-1 for both Permuted MNIST and CIFAR-100.

C.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN

We perform a hyperparameter search to determine the ideal value for . Our search range comprises
the ~ values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
attain an FA of less than chance (% where c is the number of classes, in this case 10%). We first
select all the « values that result in an FA < 10. We then pick the ~ that maximizes RA among those
selected values. The results of the hyperparameter search are presented in We find that
the burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.

| FA | RA

| 01 001 0001 | 01 001 0.001

Permuted-MNIST | 10412 10417 17.907 | 96.524 96544 96.602
CIFAR-100 8.000 10.830 17.190 | 70950 71.817 72.173

5-Datasets 8.278 8.070 9.783 | 92.868 92.779 92.847
Tiny-ImageNet 10.000 10.000 10.000 | 45.590 48.625 48.623

Dataset

Table C.5: Table depicting the FA and RA for various gamma values across datasets.

The chosen v values are le-1 for 5-Datasets and 1e-2 elsewhere.

D EXPERIMENTAL DETAILS

D.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning
requests generated through random seeds. Experiments on the Five Datasets benchmark are per-
formed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize
sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request

sequences. The sequences used are presented in[lable D.6

18

Under review as a conference paper at ICLR 2025

Datasets | SeqNos | Sequences
5-Dataset | 1 | LO—-Ll -U0—L2—L3—L4— Ul
(7 requests) \ 2 \ 13 +14—-12—10—L1—U3—U0
| 3 | L0—»1L2—U0—L4—L3—U2—U4
Permuted-MNIST | 1 | LI-L0—-Ul—-L5—1L8—-L9—-L7—-U0—-12—L3—~14—>0U8—-U3—U5—L6
%lngfR'{o;) | 2 | L—-L7—12—Ll—-L0—Ul—-L9—U7—U2—U0—L4—U4—L8—U6—L5
| 3 | L7-»LI—-L2—18—1L0—Ul—-L3—L6—U3—U2—L4—L5—U8—L9— U7

L3 —-+L0—-U3—19—L5—L17—LI -L7—L14—LI5S—L19—UI7— U7 —
1 —+L6—-Ul5—-U9—LI12—-14—-U5—U4—U6—U0—Ul —-Ul4—Ul2—

Tiny-TmageNet SLI3>LI8—12— LIl —L8

(30 requests)

L12—-L13—-L5—-1L8—12—-U8—L14—-UI3—-U5—U2—L3—-U3—L16—
2 —Ul2—-LIl -Ul6 -L7—LI5—LI0 -L19—-19 —Ul4—-U7—LI8—L6—
— L1 - L0 — L4 —-U6— L17

2—-L7—-02—-LI8—=LI2—U7—Ul8 —-LI16—-L0—Ul6 —U0—LI3—L4—
3 —Ul12 -UI3 -L9—L19—-UI9—- U4 —-LI1I0—LI4—L5—U5—UI0—LIl —
—L1—-Ul —-L17—L6 —L3

Table D.6: This table provides three different sequences that are used to understand the generaliz-
ability of our approach. Here, L#n implies ‘learn task n’ and U#n implies ‘unlearn task n’. Also
for different task we have different sequence length showing that our method can scale to longer
sequences.

D.2 BASELINES: ADDENDUM

Methods that use DER++ as the base CL method use a standard ResNet backbone architecture with
independent heads for each task. As these are in a task incremental setting, we get task IDs during
inference, which is used to choose the required head. For these methods, we used Adam Optimizer
with a learning rate of 0.001. For different datasets, learning epochs were different. 5-Datasets were
trained for 20 epochs, CIFAR100 was trained for 30 epochs, Permuted-MNIST was trained for 10
epochs, and Tiny-ImageNet was trained for 30 epochs.

Methods that use Hypernetwork generate weights for the main network, which is a ResNet. In these
cases the learning hyperparameters were the same as UnCLe.

CLPU [Liu et al|(2022)) is a method that perform exact unlearning. It requires apriori knowledge
about which task has a possibility to be unlearned and which task will never be unlearned. Based on
this information, the task that can be unlearned in the future is used to train an independent network.
When they receive a request to unlearn a particular task, they just drop that network. In our CLU
setup, no such assumption was made about the prior information, so we assume every task can get
an unlearning request in the future. So, the direct implementation would be having independent
networks for each task and throwing the network when an unlearning request is received. So, it
is apparent that we will get a Forget set Accuracy of zero and an Unlearning Time of zero. Also,
as the network is unavailable to us, we will not be able to calculate the divergence with uniform
distribution.

LWSF [Shibata et al.|(2021b) introduces a new setup of learning with selective forgetting where, at
every request, we will receive a set of classes to learn and a set of classes to forget. An extreme case
of their setup is ours, where at every request, we either receive to learn classes or to unlearn classes.
They introduced an approach using class-specific mnemonic codes. We observed that when their
approach was applied to an extreme case like ours, they failed to unlearn the task. Their approach
primarily used the advantage of learning and unlearning together and leveraged the catastrophic
forgetting behavior of neural networks. So, to get the full potential of their approach, we calculated
all the unlearning metrics for an unlearning operation after the next learning request arrives. Note
that there can be multiple unlearning requests simultaneously; in that case, after all the unlearning,
when the next learning comes, we will calculate all the unlearning metrics after that. As a reason for
this modification, we don’t compute unlearning time for this method as it won’t be a fair comparison.
For this method, we used a batch size of 200 with SGD optimizer and momentum as 0.9. We used
a learning rate of 0.1 for all the datasets. For LWSF, Permuted-MNIST was not converging during
training, so we didn’t report results for this dataset.

19

Under review as a conference paper at ICLR 2025

BadTeacher Chundawat et al.| (2023a)) is a baseline that uses a random network as a teacher model
for the forget set and uses KL-divergence to match the distribution of the forget class to that of a
random model. For the retained set, it tries to reduce the cross entropy corresponding to the ground
truth. For our CLU setup, we modified the algorithm where for the CL part, we use a DER++,
experience reply-based method where the memory buffer is again used to get the retain and forget
set. We performed a

SalUn [Fan et al.| (2024) targets specific model weights that are most influenced by the data to be
removed (the data from forget set) rather than modifying the entire model. This selective adjustment
helps the unlearned model retain high performance on the remaining data. It needs to generate the
weight saliency map corresponding to the forget set, which it does based on gradients. Based on this
approach, we designed a baseline with DER++ as the base CL algorithm. To set this in a CL setup,
the weight saliency mask needs to be created every time we encounter an unlearning request.

SCRUB [Kurmanyji et al.| (2023)) is designed to selectively remove knowledge of specific data points
from a pre-trained model while maintaining overall model performance on the remaining data. Un-
learning Phase (Forgetting): A student model is trained to deviate from the predictions of a pre-
trained teacher model on the data that must be forgotten (the “forget set”). This step ensures that
the model forgets specific information tied to those data points. Retention Phase: While the student
model unlearns the forget set, it is simultaneously trained to match the performance of the teacher
model on the remaining dataset (the “retain set”). This ensures that the model retains its predictive
power on data that does not need to be forgotten. Based on this approach, we designed a baseline
with DER++ as the base CL algorithm.

SSD [Foster et al.| (2024b)) SSD operates as a two-step, post hoc method that does not require re-
training the model, making it computationally efficient and suitable for scenarios where training
data might not be readily accessible. Parameter Selection phase: SSD uses the Fisher information
matrix to identify parameters crucial to the data that need to be forgotten. Dampening phase: It
dampens these parameters’ effects proportionally to their importance, allowing the model to forget
the targeted data while maintaining performance on the remaining data. Based on this approach we
designed a baseline with base CL algorithm as DER++.

GKT & GKT-Hnet: These baselines are based on the paper (Chundawat et al. (2023b) where a
generator is used to generate samples that are then used to forget information from the main network.
We designed two methods, one that uses DER++ as the base CL algorithm and the other that uses
Hypernetwork as the base algorithm.

JiT & JiT-Hnet: These baselines are based on |[Foster et al. (2024a), which leverages Lipschitz
continuity to perform unlearning in a zero-shot manner. This approach involves smoothing the
output of the model with respect to perturbations of the input data targeted for deletion, which helps
in forgetting the specific data points while maintaining the model’s overall performance. We used
two different variants of this method for our setup, where one (JiT) uses DER++ as the base CL
algorithm, and the other (JiT-Hnet) uses Hypernetwork as the base CL algorithm. We tuned the
hyperparameters for each of these and found not much difference was achieved. So we have the
same hyperparameters as provided in [Foster et al.|(2024a).

Others Apart from all these baselines, we also used FT where when an unlearning request is en-
countered, the current model is fine-tuned on the whole retain set. This also uses DER++ as the
base CL approach. RT is one of the baselines that retrain the whole network from scratch on the
retrain set to perform unlearning. Hnet is a baseline that uses a hypernetwork as the CL algorithm
and uses the implicit forgetting nature of the neural network to perform unlearning. It just removes
the the particular regularization for the forget task, so the unlearning will only be apparent once a
new learning request is encountered. RT-Hnet is a baseline that uses Hypernetwork as the base CL
algorithm, and whenever an unlearning request is encountered, it trains a new hypernetwork in a
sequential fashion on the retrain set.

20

Under review as a conference paper at ICLR 2025

D.3 METRICS: ADDENDUM
D.3.1 AVERAGE RETAIN SET ACCURACY

The Average Retain Set Accuracy (RA) measures Unlearning Stability, indicating undesirable
spillover effects over the tasks to be retained. It is the mean of the accuracy of all the retained
tasks measured at the end of the sequence.

D.3.2 AVERAGE FORGET SET ACCURACY

The Average Forget Set Accuracy (FA) is a measure of Unlearning Completeness. It is the mean
of the accuracy of all the forget tasks, measured at the end of their respective unlearn operations.
An ideal FA value should be close to (100/N,) where N, is the number of classes per task. All
experiments performed with UnCLe entail tasks with 10 classes each, putting the ideal FA value at
10.

D.3.3 OuTPUT DIVERGENCE FROM UNIFORM DISTRIBUTION

This is simultaneously a measure of Unlearning Completeness and Unlearning Detectability. An
ideal unlearning algorithm should be both complete and undetectable in its wake. This metric mea-
sures the Jensen-Shannon divergence between the output logit distribution and the uniform distribu-
tion. An exact unlearning algorithm would report a divergence score of zero.

D.3.4 MEMBERSHIP INFERENCE ATTACK

The Membership Inference Attack (MIA) metric is a critical tool in evaluating the effectiveness of
machine unlearning methods. MIAs exploit the model’s behavior to infer whether a specific data
point was included in its training set, raising concerns about privacy and data retention. In the
context of machine unlearning, the MIA metric is employed to measure how effectively a model has
“forgotten” the training data. The objective is for the model to behave indistinguishably on forgotten
data and new, unseen data, indicating successful unlearning. To evaluate this, adversarial attacks are
used, where an attacker attempts to infer the membership status of data samples targeted for removal.

If a MIA value is 50%, it generally indicates that the attack performs no better than random guess-
ing. In this context, the attack’s ability to correctly determine whether a data point was part of the
training set is equivalent to a coin flip, where the attacker has a 50% chance of correctly identifying
membership or non-membership|Tu et al.|(2024). A 50% MIA value suggests that the model has suc-
cessfully mitigated the attack, as the adversary cannot infer membership status with any meaningful
accuracy.

Datasets | 5-Datasets | Permuted-MNIST | CIFAR100 | Tiny-ImageNet
Methods | Mean Std | Mean Std | Mean Std | Mean Std

FT* 49.56 0.22 | 49.63 0.07 45.00 0.66 | 45.26 0.73
RT* 4995 037 | 49.98 0.07 49.82 0.50 | 49.72 0.23
BadTeacher | 50.03 0.16 | 50.04 0.11 53.06 0.82 | 52.54 0.33
SCRUB 50.25 0.21 | 49.99 0.01 50.00 0.00 | 50.00 0.00
SalUn 50.25 0.29 | 49.85 0.13 46.26 042 | 47.47 0.73

JiT 49.99 0.17 | 49.95 0.08 4580 0.73 | 47.28 0.15
GKT 50.05 0.08 | 49.99 0.01 49.88 0.20 | 49.93 0.06
SSD 4998 0.03 | 50.01 0.01 50.00 0.00 | 50.00 0.00

RT-Hnet* 49.75 0.06 | 49.90 0.04 50.28 0.39 | 50.05 0.22
Jit-Hnet 50.10 0.06 | 50.02 0.08 48.74 1.11 | 49.39 0.24
GKT-Hnet | 4999 0.19 | 49.98 0.22 50.12 0.11 | 50.10 0.05

UnCLe 50.01 0.09 | 50.00 0.02 | 50.00 0.00 | 50.00 0.00

Table D.7: That table compares the MIA performance of different baseline approaches against Un-
CLe. Here, we provide results on all 4 datasets on request sequence 1, averaged across 3 seeds.

21

Under review as a conference paper at ICLR 2025

presents MIA values, with mean and standard deviation (std) across various methods and
datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The values, which are around
50%, suggest a general trend where models are largely resistant to MIA, indicating that attackers
have difficulty distinguishing between data points in and out of the training set.

As our setup is a setup for task unlearning with task incremental continual learning, we use different
heads for different tasks. when forgetting a particular task, the corresponding head is severely ran-
domized by each of the methods. So when performing MIA, the representation corresponding to the
forget head is already random for all the cases, providing indistinguishable representations leading
to an equivalent performance in MIA for all the methods.

Apart from this, our approach, UnCLe, exhibits near-perfect resistance to MIA, consistently showing
a mean MIA value of 50.00% across all datasets. This means that the attacker’s ability to infer
whether a data point was part of the training set is equivalent to random guessing, signifying robust
privacy protection.

E OTHER EXPERIMENTS

E.1 BASELINES: ALTERNATIVE UNLEARNING STRATEGIES

‘ RA FA UNI MIA UuT ‘ RA FA UNI MIA uT
| 5-Datasets | CIFAR-100

Fixed Noise | 83.04 10.94 -inf 50.07 18.74 | 21.79 1036 -inf = 49.97 25.76
Norm Reduce | 94.31 26.11 5244 51.19 183 | 62.75 34.42 4127 4413 2539
Discard ey 94.52 8091 -214.0 5025 0.00 | 60.21 20.70 11.21 46.88 0.00
UnCLe 94.12 10.04 1000 50.01 3328 | 62.65 10.00 100.0 50.00 41.70

| Permuted-MNIST | Tiny-ImageNet

Fixed Noise | 84.55 9.870 -inf 4999 1048 | 3468 9440 -inf 50.11 22.62
Norm Reduce | 96.70 9499 -4956 49.10 10.34 | 55.11 36.61 080 42.65 2242
Discard e 96.87 61.79 -64.54 49.11 0.00 | 56.50 1554 6.88 4844 0.00

UnCLe 96.87 10.00 100.0 50.00 13.16 | 5524 10.00 100.0 50.00 29.63

Methods

Table E.8: Table exploring various noising strategies on each of the four datasets. Results are on
Request Sequence 1. All the other unlearning hyperparameters (v, E,) are kept constant for these
experiments.

We experiment with a variety of noising strategies and compare our approach to norm reduction and
fixed noise perturbation. Norm reduction uses the unlearning objective from Fixed
noise perturbation uses the objective ||H(ef; @) — 2|3 + v - Ly where the noise z is fixed
throughout all tasks. Discard ey is the baseline in which to perform unlearning, remove the for-
get task embedding ey, and replace them with random embedding. From the Table E.8] we conclude
that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task
accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas
UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good RA
but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it com-
promises the model’s stability and impacts RA, as noted in the methodology. We also observe that
UnCLe, compared to all the other baselines, has the closest MIA value to 50, proving its superiority
in data privacy.

E.2 SATURATION ALLEVIATION

A CL model is said to be saturated when the amount of free parameters available is insufficient
to accommodate a new task without incurring catastrophic forgetting of old tasks. In the field of
Continual Learning, saturation is typically encountered when a large number of tasks are learned
relative to the model’s size. Saturation is a prime motivation for dynamic architectures that can
expand model capacity to accommodate a greater number of classes [Yoon et al|(2018). However,
dynamic architectures suffer from issues such as having a large memory footprint and little to no
knowledge transfer.

22

Under review as a conference paper at ICLR 2025

A saturated model suffers from the stability-plasticity dilemma [Kirkpatrick et al.] (2017). Such
a model loses all its plasticity owing to all its parameters being tasked with storing information
pertaining to a large variety of tasks. Attempts to forcefully learn new tasks will compromise its
stability, resulting in catastrophic forgetting of old tasks. In regularization-based CL, where the
model capacity cannot be expanded, there is no existing solution that can enable the model to learn
new tasks without compromising stability. In such situations, we hypothesize that unlearning can
alleviate saturation by effectively removing old and obsolete tasks, thereby making way for new
tasks.

The hypernetwork in UnCLe maintains separate task embeddings for each task. Each of these em-
beddings, when input into the hypernetwork, generates task-specific classifier models. The consis-
tency of the generation as the model adds new tasks continually is preserved by a regularization term
depicted in Whenever there is a new learning operation, the regularization term enforces
that the output of the hypernetwork in its current state is similar to that of the hypernetwork before
the current operation. To do this, a copy of the hypernetwork is made, and the copy’s parameters
are frozen. Now, as a new operation is performed and the hypernetwork’s parameters change, the
distillation-inspired regularization term makes sure that the hypernetwork’s output for past tasks’
embeddings remains consistent, thereby minimizing forgetting. As a task is unlearned, the hyper-
network is no longer regularized with respect to its embedding when it learns future tasks. As a
result, this reduces the number of constraints on the hypernetwork, helping alleviate saturation and
improving the learning of new tasks post-unlearning.

To empirically demonstrate this phenomenon, we perform a comparison between a model that only
learns tasks and UnCLe, which both learns and unlearns tasks. We analyze the results in two ways.
As presented in Algorithm [E-8] we compare the performance of each task right after the learning
operation. As we can observe, after every unlearning operation, there is a notable performance when
the next task is learned compared to Only Learning. Furthermore, compares the perfor-
mance of the tasks that remain at the end of the sequence of operations. In both cases, we find that
UnCLe consistently outperforms the baseline that only performs learning operations, demonstrating
that unlearning old tasks help learn new tasks better.

70

0 || |‘|‘||“
2?0 PO O AD>AD N
VNV NV VOV VOO

9 A
\\)'\/

mmm Only Learning
UnCLe

NIRIRNING

VNN NN N R R IR AV RSN
Request Sequence

Test set Accuracy
N w ey w o
o o o o o

.
o

Figure E.8: A comparison between the individual task accuracies of UnCLe and a trivial baseline that
only performs learning operations. Each of the above measurements are made immediately after the
operation is performed. Note that tasks that follow unlearning operations consistently benefit from
a higher accuracy. UnCLe outperforms the trivial baseline in every task that is retained.

E.3 BURN-IN ANNEALING

We leverage the forward transfer observed in unlearning to enhance UnCLe’s efficiency by intro-
ducing an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate
is reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduc-
tion capitalizes on the model’s improved adaptability over time, significantly decreasing Unlearning

23

Under review as a conference paper at ICLR 2025

mmm Only Learning
unCLe

T19 T13 T18 T2 T11 T8

Tasks

w B wu [e)]
o o o o

Test Accuracy

N
o

1

o

o

Figure E.9: A comparison between the final accuracies of the tasks that remain. UnCLe is compared
with a trivial baseline that only performs learning operations. The measurements are made at the
end of the sequence of operations.

Time (UT) without compromising performance. As shown in[Table E.9 the Forget-Task Accuracy
(FA) and Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy
maintains the quality of unlearning while optimizing computational efficiency.

‘ FA UNI UuT ‘ FA UNI UT
\ CIFAR-100 | Tiny-ImageNet

without Annealing | 10.00 100.0 43.98 | 10.00 100.0 45.12
with Annealing 10.00 100.0 41.70 | 10.00 100.0 29.63

Methods

Table E.9: A comparison of UnCLe with and without Burn-In annealing.

E.4 STABILITY

Stability remains a significant challenge for existing unlearning frameworks, particularly in scenar-
ios involving the continual learning and unlearning of tasks. Our experiments reveal critical short-
comings in baseline methods, which tend to destabilize models when tasked with balancing the dual
demands of preserving knowledge for some tasks while unlearning others. We present the results of
our experiments in [Figure 4]in the main paper and in [Figure E.10] and [Figure E-T1]in the appendix.
The instability of existing unlearning methods in continual settings manifests in two ways:

E.4.1 FORGETTING RETAINED TASKS

Existing unlearning methods inadvertently cause catastrophic forgetting in tasks that are meant to
be retained. This occurs because unlearning operations often modify shared model parameters,
leading to unintentional degradation in the performance of previously learned tasks. Replay of data
from previous tasks serves as the saving grace, helping salvage lost performance. However, this
dependency on replay is not always practical, given that the lost performance will persist until a new
learning operation follows. Even then, the lost performance almost never recovers fully.

We can observe this phenomenon in|Figure E.10|and[Figure E.11} In between the learning of the task
and its eventual unlearning, we find that the task accuracy degrades whenever an unlearning opera-
tion is encountered only to rise back up when the next learning operation occurs. As mentioned, this
is entirely due to replay, in the absence of which, the lost performance would remain lost. Various

24

Under review as a conference paper at ICLR 2025

baselines exhibit this instability in maintaining task accuracies to varying degrees whereas UnCLe
stays close to the accuracy obtained right after the learning operation.

UnClLe, by contrast, is designed to maintain task stability firmly until a task is explicitly unlearned.
This is achieved through the careful design of the hypernetwork and task-specific embeddings, which
ensure that task representations remain untouched unless explicitly targeted for unlearning. This
parameter isolation allows UnCLe to uphold the performance of retained tasks without requiring re-
play, making it a more efficient and reliable solution for continual learning and unlearning scenarios.

E.4.2 REMEMBERING FORGOTTEN TASKS

A key expectation from any unlearning algorithm is that it must ensure unlearning is both thorough
and permanent. Thoroughness implies that all knowledge related to the unlearned task is effectively
erased from the model, leaving no residual influence on future operations. Permanence ensures
that once a task is unlearned, its knowledge cannot be recovered when new tasks are introduced.
Our findings highlight an alarming shortfall in existing unlearning methods: after unlearning a task,
subsequent learning of new tasks can unintentionally restore the performance of the unlearned task
to a level close to what it was before unlearning. As witnessed in [Figure E.10] and [Figure E.11]
we find that the task accuracy jumps back up after unlearning when new tasks are learned. Various
baselines exhibit this phenomenon to varying degrees whereas UnCLe stays close to the accuracy
obtained right after the unlearning operation.

We believe that this occurs because existing methods often fail to completely eliminate the inter-
nal representations associated with the unlearned task. Instead, these representations may persist in
latent forms within shared parameters or feature spaces, leading to unintended recovery when new
tasks reinforce similar patterns. This troubling discovery raises serious concerns about the relia-
bility and security of current unlearning frameworks, particularly in applications where permanent
removal of knowledge is a regulatory or ethical necessity.

UnCLe directly addresses this issue by ensuring that unlearning is irreversible. Its hypernetwork-
based architecture, coupled with a noise-alignment unlearning objective, thoroughly erases task-
specific representations from the model. By aligning the outputs of the hypernetwork for unlearned
tasks to noise, UnCLe effectively eliminates any trace of the unlearned task’s influence on model
behavior. Unlike existing methods, UnCLe prevents recovery of unlearned tasks when new tasks are
subsequently introduced, making it a more reliable framework for permanent unlearning.

The stark contrast between UnCLe and existing methods underscores the importance of designing
unlearning algorithms that meet the dual requirements of stability and permanence. The short-
comings of existing methods, particularly their inability to guarantee permanence, demand further
investigation. Future work should focus on:

1. Analyzing Residual Representations: Understanding why and how unlearned tasks persist
in shared model spaces and developing techniques to eliminate such residual traces.

2. Defining Robust Metrics: Establishing rigorous benchmarks and metrics for evaluating the
thoroughness and permanence of unlearning beyond task-specific accuracy.

UnCLe’s advancements in stability and permanence represent a significant step forward in continual
learning and unlearning. By addressing critical challenges in a robust and efficient manner, it sets a
strong foundation for the next generation of unlearning frameworks.

25

Under review as a conference paper at ICLR 2025

()}
o

o O

Accuracy on Task 0
= N w B ul
o O

”4——.4__-1~~

o O

(0
o O

Accuracy on Task 3
- N W B
o o

o O

~
o

(@)}
o O O

o

Accuracy on Task 5

= N W b~ U
o O o

—_—— = [V. - === ——
UnCLe SSD GKT JiT Salun SCRUB BadTeacher

Figure E.10: Figure tracking task accuracies through the sequence of operations on the CIFAR 100
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

26

Under review as a conference paper at ICLR 2025

50

N w N
o o o

Accuracy on Task O

-
o

N w N %4
o o o o

Accuracy on Task 1

.
(=}

L]
Lo
Gy
Lo
{s
45
&
4>
4,
(,Zs
4,
7%
(%3

vl =)
o o

o
o

Accuracy on Task 6
N w
o o

=
o

> o 9 A A
T E

ul
o

.
e

N
o

K PUTTEEN
SR A S Nt
ANCEET THUr I L o e

N S = p
.= 1

w
o

Accuracy on Task 9
~
o

-
o

m? L 9 L ~y D
ARV B ~ o~

3
3

414
(,13
‘13
Uz

(%4

N
—_—— cmupm- nnngigunns s = == ——
UnCLe SSD GKT JiT Salun SCRUB BadTeacher

Figure E.11: Figure tracking task accuracies through the sequence of operations on the Tinylma-
geNet dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

27

Under review as a conference paper at ICLR 2025

E.5 PRIMARY EXPERIMENTS: ADDENDUM

E.5.1 RESNETI8 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these
experiments is performed on Sequence 1 (Table D.6). The results are averaged over three runs with
different seeds. We can observe from [Table E.10] [Table E.11] [Table E.12] [Table E.13| [Table E.14
and[Table E.T5|that UnCLe performs better than all the other baselines on at least 3 out of 5 metrics.
On the metric in which UnCLe is not the best, it performs equally well compared to the best one.
These tables show UnCLe’s superiority over other unlearning baselines.

| RA | FA | UNI | SBY | UT
| mean std | mean std | mean std | mean std | mean std

BadTeacher | 62.87 8.07 | 9.650 0.65 | 99.96 0.02 | 89.24 2.64 | 5145 7.76
SCRUB 1090 2.44 | 9340 0.58 -inf - 75.64 133 | 111.7 10.6
SalUn 5894 987 | 3516 5.02 | 99.35 0.14 | 8895 251 | 3809 303

Methods

JiT 16.66 277 | 8990 193 | -31.09 424 | 76.87 1.12 | 2358 56.6
GKT 10.82 125 | 1521 1.68 | 9637 0.76 | 7535 042 | 37.39 6.02
SSD 3022 225 | 15.07 6.14 | 9999 0.01 | 79.74 522 | 3846 39

Jit-Hnet 1474 469 | 13.15 449 -inf - 74.44 8.69 | 201.0 16.9
GKT-Hnet | 10.07 0.71 | 10.69 1.4 | 8319 136 | 77.10 043 | 4292 227

UnCLe | 93.77 040 | 9.600 0.99 | 100.0 0.00 | 99.94 0.04 | 10.89 0.02

Table E.10: Results on 5-Datasets (Sequence 1) with ResNet-18 Backbone

| RA | FA | UNI | SBY | UT
| mean std | mean std | mean std | mean std | mean std

BadTeacher | 65.13 3.67 | 10.11 052 | 9955 0.01 | 88.58 0.4 6.65 3.29
SCRUB 5339 3.5 | 10.00 0.00 | -inf - 7473 026 | 18.00 4.14
SalUn 69.29 242 | 4624 099 | 81.83 031 | 91.57 048 | 85.69 12.62

Methods

JiT 68.96 193 | 40.74 041 | 3500 649 | 87.82 092 | 2896 6.79
GKT 61.53 349 | 11.01 0.57 | 93.16 483 | 7033 0.53 | 38.80 1.23
SSD 4731 545 | 10.00 0.00 | 9998 0.01 | 66.72 0.44 | 4440 0.50

Jit-Hnet 51.52 18.8 | 21.84 471 | 6449 1422 | 8821 4.52 | 2050 1.59
GKT-Hnet | 40.87 5.85 | 13.80 1.11 | 91.32 147 | 72.67 138 | 47.06 272

UnCLe | 6697 3.59 | 10.00 0.00 | 100.0 0.00 | 99.33 039 | 1326 0.01

Table E.11: Results on CIFAR100 (Sequence 1) with ResNet-18 backbone

Methods | RA | FA | UNI | SBY | UT
| mean std | mean std | mean std | mean std | mean std

BadTeacher | 53.76 1.63 | 12.12 052 | 9947 0.02 | 8596 0.12 | 6310 1.28
SCRUB 11.71 190 | 10.00 0.00 | -inf - 7045 135 | 1731 1.09
SalUn 59.47 080 | 3927 1.64 | 71.80 093 | 89.21 0.18 | 44.18 552

JiT 59.88 0.65 | 38.60 0.77 | 47.13 543 | 86.27 025 | 17.18 033
GKT 5431 031 | 13.01 090 | 97.39 0.05 | 7145 031 | 11274 3.85
SSD 53.37 260 | 1026 036 | 9999 0.00 | 67.81 0.78 | 4530 0.48

Jit-Hnet 59.20 1.77 | 1632 0.23 | 89.57 254 | 8732 1.85 | 1537 0.70
GKT-Hnet | 4834 1.15 | 1092 043 | 9697 0.56 | 73.74 0.62 | 4530 0.83

UnCLe | 5922 214 | 10.00 0.00 | 100.0 0.00 | 98.58 0.66 | 11.42 0.03

Table E.12: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone

28

Under review as a conference paper at ICLR 2025

Methods | _RA | FA | UNIL | sBY | UT

| Mean Std | Mean std | Mean std | mean std | mean std
FT* 9447 0.12 | 67.70 2.11 19.93 0.10 | 98.52 1.09 1139 57.8
RT* 9335 0.19 | 10.38 1.53 | 9920 0.09 | 98.26 1.33 1532 436
BadTeacher | 92.17 0.04 | 1020 040 | 9995 0.01 | 83.87 13.1 | 55.50 35.4
SCRUB 9.97 0.46 9.84 0.14 -inf - 87.93 323 | 118.9 50.6
SalUn 9239 026 | 59.24 274 | 9847 0.07 | 93.53 4.18 | 358.3 51.6
JiT 86.93 6.09 | 2990 496 | -3.76 112 | 84.52 133 | 213.7 443
GKT 89.77 0.31 12.13 095 | 96.64 1.32 | 72.46 18.1 | 36.08 0.07
SSD 86.32 040 9.93 0.13 | 99.66 0.13 | 71.88 185 | 35.16 14.9
CLPU 91.73 0.22 0.00 0.00 - - 97.22 1.55 0.00 0.00
RT-Hnet* 70.78 1.71 14.08 054 | -30.27 7.54 | 78.04 22.6 1149 5423

Hnet 96.60 0.16 | 96.91 0.09 | -405.1 19.1 | 83.59 154 - -
Jit-Hnet 76.81 14.1 1027 094 | 89.58 9.28 | 76.51 17.6 | 257.5 20.9
GKT-Hnet 9534 0.37 1446 0.35 91.03 0.55 | 75.01 17.6 | 43.77 0.34
UnCLe | 9687 020 | 10.00 006 | 100.0 000 | 99.99 001 | 1316 0.05

Table E.13: Results on Permuted-MNIST (Sequence 1) with ResNet-18 Backbone

Methods ‘ RA ‘ FA ‘ UNI ‘ SBY ‘ UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 95.12 0.68 70.51 1.29 3.29 1.78 99.01 0.13 | 776.66 43.88
RT* 95.19 0.41 10.22 0.68 99.17 0.02 98.56 0.20 | 939.12 219.29
BadTeacher | 94.88 0.30 9.94 0.54 99.96 0.00 90.78 1.97 50.52 27.79
SCRUB 10.06 0.07 9.81 0.31 -inf - 73.16 0.36 | 112.72 40.27
SalUn 95.30 0.11 56.92 0.87 98.83 0.05 94.53 0.40 | 448.90 168.07
JiT 36.59 4723 | 19.70 3.11 66.60 7.48 79.06 1.43 | 191.15 30.01
GKT 92.35 0.25 10.70 0.82 97.01 1.00 7472 0.24 34.68 0.05
SSD 89.75 0.74 9.84 0.16 99.94 0.01 7422 0.11 34.11 13.12
CLPU 95.21 0.29 0.00 0.00 - - 97.72 0.16 0.00 0.00
RT-Hnet* 82.94 14.33 14.02 0.55 -35.60 21.74 | 84.17 2.56 1045 45.6
Hnet 96.67 0.29 96.71 0.12 | -280.94 27.89 | 89.53 0.01 - -
Jit-Hnet 94.15 2.19 10.55 0.54 92.11 7.14 78.65 2.32 | 220.32 44.34
GKT-Hnet 96.31 0.09 13.84 0.33 90.92 0.47 76.66 0.30 41.94 0.38
UnCLe ‘ 97.00 0.15 ‘ 9.84 0.16 ‘ 100.00 0.00 ‘ 99.97 0.02 ‘ 11.01 0.02
Table E.14: Results on Permuted-MNIST (Sequence 2) with ResNet-18 Backbone
Methoas | RA | FA | UNL | SBY | UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 9422 0.10 | 65.17 1.93 21.65 1.19 | 9840 0.06 1297 82.42
RT* 9349 0.06 | 10.62 1.01 9946 0.06 | 97.93 0.12 1505 412
BadTeacher | 79.56 4.29 10.28 0.81 9994 0.02 | 9096 0.46 | 49.34 15.3
SCRUB 9.97 0.08 9.98 0.25 -inf - 6245 439 | 118.0 47.2
SalUn 8240 0.89 | 64.78 2.31 98.30 0.13 | 93.50 0.11 | 488.8 203
JiT 3445 423 | 31.00 11.7 | 7194 114 | 79.05 10.5 | 189.0 36.0
GKT 12.80 2.35 11.43 0.72 | 96.37 1.44 | 68.62 0.19 | 36.70 0.07
SSD 9.90 0.32 9.92 045 | 99.99 0.00 | 67.81 0.13 | 36.81 9.92
CLPU 91.72 0.16 0.00 0.00 - - 96.97 0.10 0.00 0.00
RT-Hnet* 49.57 8.69 | 16.15 0.74 5.80 8.45 | 6949 2.50 1635 97.2
Hnet 96.80 0.08 | 96.72 0.11 | -345.1 299 | 9459 0.02 - -
Jit-Hnet 941 0.43 9.73 0.63 -inf - 69.83 345 | 1823 40.9
GKT-Hnet 13.96 2.53 1725 2.26 | 89.65 091 | 71.46 0.35 | 44.55 0.40
UnCLe ‘ 9698 0.23 ‘ 9.93 0.19 ‘ 100.0 0.00 ‘ 99.99 0.00 ‘ 14.79 0.22

Table E.15: Results on Permuted-MNIST (Sequence 3) with ResNet-18 Backbone

29

Under review as a conference paper at ICLR 2025

E.5.2 RESNET50 RESULTS

The results from the primary results table, are obtained from Sequence 1, averaged over
three runs with different seeds. This section hosts the results from all three sequences, reported
with mean and standard deviation obtained from averaging each experiment performed over three
different seeds. The section is organized as a list of tables, with one table for each dataset-sequence
pair, in the order of 5-Datasets, CIFAR-100, and Tiny-ImageNet.

Methots | RA | FA | UNL | SBY | UT
| mean std | mean std | mean std | mean std | mean std
FT* 88.66 045 | 6799 2.83 23.85 1.66 97.58 0.15 1595 22.3
RT* 84.79 1.88 | 9.600 422 | 99.76 0.03 96.58 0.36 1566 19.5

BadTeacher | 54.38 235 | 8550 1.23 | 99.99 0.0 86.14 6.71 | 76.78 163
SCRUB 9.160 0.15 | 1297 0.08 -inf - 77.55 10.1 | 171.1 5.81
SalUn 7475 156 | 25.02 122 | 99.19 0.02 | 93.80 0.27 | 4919 8.01

JiT 19.10 13.8 | 17.20 3.55 -inf - 87.09 148 | 2421 314
GKT 10.27 091 | 13.67 1.52 | 9458 210 | 7524 0.22 | 57.67 5098
SSD 8850 0.00 | 1036 0.09 | 99.79 0.05 | 72.83 040 | 47.12 0.45

LWSF* 31.76 - 025 | 0.00 0.00 | 9998 0.01 | 51.21 1.05 - -
CLPU 85.00 043 | 0.00 0.00 - - 96.50 0.15 | 0.00 0.00
RT-Hnet" 76.23 331 | 1844 0.78 | -108.5 71.04 | 95.63 0.48 | 1896 1.25
Hnet ™" 9456 0.28 | 96.73 0.04 | -381.0 63.54 | 99.99 0.07 - -
Jit-Hnet 10.19 1.18 | 11.29 437 -inf - 73.65 6.20 | 306.6 5.08
GKT-Hnet | 10.53 0.61 | 1448 1.00 | 88.66 0.77 | 77.19 0.11 | 83.30 1.37

UnCLe | 9412 043 | 10.04 1.14 | 100.0 00 | 9991 0.16 | 3328 11.7

Table E.16: Results on 5-Datasets (Sequence 1) with ResNet-50 Backbone

Methots | KA | FA | UNIL | SBY | UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 88.54 0.53 | 58.07 2.4 42.12 5.03 | 95.62 0.13 3920 79.7
RT* 86.14 372 | 9.410 0.59 | 99.80 0.07 | 94.85 0.60 | 3851 68.5

BadTeacher | 40.01 3.01 | 8270 037 | 9994 0.03 | 8525 1.09 | 69.38 275
SCRUB 990 024 | 12.80 2.63 -inf 0 66.65 032 | 119.6 145
SalUn 56.29 7.81 | 2940 271 | 9356 1.01 | 87.62 1.72 | 3575 4.25

JiT 11.66 3.51 | 2231 63 19.88 143 | 77.09 248 | 1703 33.6
GKT 1052 022 | 1444 088 | 97.24 084 | 6698 026 | 6648 113
SSD 10.10 0.01 | 1459 4.66 | 1000 0.0 | 66.54 0.68 | 33.24 0.19

CLPU 83.18 1.62 0.0 0.0 - - 93.94 0.37 0.0 0.0
RT-Hnet" 62.78 6.57 | 1055 1.01 | -75.78 17.3 | 85.05 0.04 | 3956 15.1
Hnet™ 96.39 0.07 | 93.84 024 | -5248 50.6 | 9997 0.07 - -
Jit-Hnet 9770 023 | 17.18 88 | 75,77 597 | 83.46 439 | 2022 5.89
GKT-Hnet | 9.010 1.14 | 9370 0.69 | 90.22 146 | 68.62 032 | 87.28 1.08

UnCLe | 9591 0.07 | 9930 323 | 100.0 0.0 | 99.83 0.07 | 36.12 0.18

Table E.17: Results on 5-Datasets (Sequence 2) with ResNet-50 Backbone

30

Under review as a conference paper at ICLR 2025

Methods | _RA | FPA | UNL | SBY | UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 91.21 045 | 58.63 059 | 6.520 2.24 | 97.75 0.38 | 568.0 15.08
RT* 91.87 0.66 7.86 1.81 | 99.56 0.06 | 9531 042 | 551.8 7.12

BadTeacher | 39.07 252 | 1020 096 | 9999 0.00 | 79.02 258 | 74.15 11.56
SCRUB 922 239 | 1022 0.55 -inf - 8590 7.73 | 1659 3.08
SalUn 37.55 675 | 2199 196 | 9922 0.07 | 86.75 0.22 | 468.0 6.16

JiT 1256 7.53 | 11.77 143 | -5548 579 | 73.85 230 | 2255 14.94
GKT 835 088 | 13.03 125 | 96.71 025 | 67.29 047 | 50.69 0.39
SSD 1242 755 | 1022 055 | 9951 078 | 73.44 11.7 | 46.09 1.24

CLPU 89.54 079 | 0.00 0.00 - - 95.30 0.25 | 0.00 0.00
RT-Hnet" 94.05 0.13 | 9350 048 | -119.1 68.6 | 9589 1.84 | 597.2 125
Hnet™" 9296 0.13 | 9326 0.08 | -442.1 40.1 | 99.95 0.05 - -
Jit-Hnet 7.12 0.66 | 1140 295 | -62.05 114 | 7239 0.57 | 289.8 4.23
GKT-Hnet | 15.11 494 | 13.74 090 | 91.83 2.07 | 72.32 0.64 | 76.71 1.85

UnCLe | 9324 0.76 | 11.40 3.05 | 100.0 0.00 | 99.93 0.07 | 19.50 0.00

Table E.18: Results on 5-Datasets (Sequence 3) with ResNet-50 Backbone

Methods | RA | FPA | UM | SBY | UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 7243 346 | 5544 4.16 | 10.50 9.08 96.60 3.45 | 719.6 130
RT#* 6291 3.62 9.69 1.17 | 99.19 0.10 9245 4.12 | 5774 112

BadTeacher | 61.75 4.47 | 1457 0.60 | 99.63 001 | 86.13 699 | 1095 2.23
SCRUB 2945 7.18 | 10.06 0.10 -inf - 64.85 189 | 30.02 6.96
SalUn 66.56 3.58 | 4489 2.14 | 59.85 3.05 | 89.32 5.09 | 5147 0.10

JiT 65.94 358 | 4393 248 | 22.11 384 | 8731 597 | 2401 5.60
GKT 57.05 3.15 | 1070 0.44 | 9597 0.18 | 70.23 175 | 68.61 7.72
SSD 4327 425 | 10.00 0.00 | 9997 0.01 | 6595 186 | 573 031

CLPU 63.10 3.77 | 0.00 0.00 - - 91.44 393 | 0.00 0.00
RT-Hnet* 23.81 0.89 | 9.71 1.37 | -1.24 2773 | 6353 255 | 8452 125
Hnet 60.52 3.73 | 6284 272 | -8550 2534 | 82774 15.0 - -
Jit-Hnet 60.79 445 | 1697 349 | 7497 758 | 8520 123 | 22.94 1.87
GKT-Hnet | 4022 749 | 997 0.83 | 90.98 143 | 73.62 179 | 8346 9.58

UnCLe 62.65 385 | 10 0.00 | 100.0 0 |9919 042 | 4170 425

Table E.19: Results on CIFAR-100 (Sequence 1) with ResNet-50 Backbone

Methods | RA | FA | UNIL | SBY | UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 7345 347 | 57.81 1.24 9.05 3.15 | 97.52 0.17 | 3872 952
RT* 67.42 241 9.84 1.60 | 99.14 020 | 94.03 0.58 | 399.5 61.1

BadTeacher | 66.67 3.58 | 1297 137 | 99.73 0.02 | 85.80 1.13 | 7.22 0.36
SCRUB 13.13 4.09 | 10.00 0.00 -inf - 69.12 097 | 24.66 1.04
SalUn 7233 3.00 | 4416 221 | 5345 1.56 | 90.13 0.53 | 46.60 0.32

JiT 71.80 338 | 4598 026 | 1426 393 | 89.21 0.72 | 20.15 1.03
GKT 61.00 227 | 11.82 085 | 9543 0.64 | 72.47 022 | 61.26 4.15
SSD 46.45 1.43 | 10.00 0.00 | 99.56 0.36 | 70.55 0.61 | 538 048

CLPU 69.83 1.85 | 0.00 0.00 - - 9247 036 | 0.00 0.00
RT-Hnet* 4432 6.60 | 10.06 1.06 | -9.17 10.1 | 72.37 286 | 4125 30.8
Hnet 66.08 2.07 | 6259 137 | -66.95 169 | 88.48 0.87 - -
Jit-Hnet 66.97 2.81 | 2024 234 | 84.11 351 | 90.76 4.88 | 24.10 6.61
GKT-Hnet | 5858 598 | 11.36 0.29 | 9141 0.88 | 77.35 0.83 | 86.52 8.85

UnCLe 66.82 2.85 | 10.00 0.00 | 100.0 0.00 | 994 0.55 | 29.52 0.65

Table E.20: Results on CIFAR-100 (Sequence 2) with ResNet-50 Backbone

31

Under review as a conference paper at ICLR 2025

Methods ‘ RA ‘ FA ‘ UNI ‘ SBY ‘ UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 7201 2.19 | 58.79 3.25 5.55 6.56 96.88 1.24 | 659.3 181
RT* 6247 2.65 9.79 1.34 99.25 0.12 9221 0.82 | 618.1 93.11
BadTeacher | 52.76 1.51 14.55 1.58 99.56 0.02 86.65 0.69 | 11.47 1.99
SCRUB 10.00 0.00 | 10.00 0.00 -inf - 61.99 0.78 | 32.53 2.85
SalUn 5792 2.15 | 48.07 1.99 57.57 1.80 89.00 1.30 | 53.57 0.38
JiT 55.19 552 | 46.77 2.28 26.37 4.19 87.20 1.34 | 20.17 1.87
GKT 11.91 1.38 | 12.67 1.30 91.88 2.51 65.83 0.33 | 68.73 5.49
SSD 10.00 0.00 | 10.36 0.62 99.94 0.01 62.46 2.16 6.17 1.12
CLPU 61.23 2.56 0.00 0.00 - - 90.31 1.71 0.00 0.00
RT-Hnet* | 1542 1.75 | 9.60 045 | 1093 1581 | 5879 099 | 7894 524
Hnet 60.66 237 | 6204 035 | -131.33 2554 | 9277 089 | -]
Jit-Hnet | 28.17 795 | 17.87 0.69 | 83.00 284 | 8235 345 | 2409 335
GKT-Hnet | 954 094 | 1144 149 | 89.80 472 | 67.90 034 | 93.04 241
UnCLe ‘ 58.15 6.09 ‘ 10.00 0.00 ‘ 100.00 0.00 ‘ 98.85 0.74 ‘ 41.12 0.59
Table E.21: Results on CIFAR-100 (Sequence 3) with ResNet-50 Backbone
Methods ‘ RA ‘ FA ‘ UNI ‘ SBY ‘ UT
| Mean Std | Mean std | Mean std | mean std | mean std
FT* 60.08 030 | 52,56 238 | -11.47 6.08 | 9555 030 | 6942 28.6
RT* 51.86 0.16 | 1047 059 | 9923 0.07 | 90.74 0.82 | 693.2 27.8
BadTeacher | 52.79 140 | 1573 1.09 | 99.55 0.00 | 83.76 0.36 8.68 0.32
SCRUB 19.48 154 | 10.00 0.00 -inf - 71.13 0.79 | 32.52 2.72
SalUn 5844 1.57 | 36.02 123 | 65.02 0.70 | 86.94 1.14 65.2 2.15
JiT 5786 2.13 | 32770 048 | 21.10 4.79 | 8442 042 | 17.71 0.95
GKT 5244 1.53 11.35 077 | 97.16 0.75 | 7090 0.54 | 147.6 72.8
SSD 39.78 343 | 10.37 062 | 9998 0.01 | 69.70 1.83 5.81 0.32
CLPU 5490 1.27 0.00 0.00 - - 89.54 0.85 0.00 0.00
RT-Hnet* 53.54 2.76 9.74 0.86 | -23.62 123 | 73.55 040 | 758.0 56.0
Hnet 57.53 226 | 5431 335 | -72.66 4.57 | 76.06 043 0.00 0.00
Jit-Hnet 54.10 2.39 | 13.05 0.35 | 91.07 1.65 | 81.61 0.28 | 22.83 3.73
GKT-Hnet 4440 2.26 9.85 0.30 | 94.43 1.51 | 73.61 051 | 75.75 0.05
UnCLe ‘ 5524 3.66 ‘ 10.00 0.00 ‘ 100.0 0.00 ‘ 98.19 0.73 ‘ 29.63 0.29

Table E.22: Results on Tiny-ImageNet (Sequence 1) with ResNet-50 Backbone

32

Under review as a conference paper at ICLR 2025

F COMPARISON OF REQUEST SEQUENCES

Sequence 1 Sequence 2 Sequence 3

Permuted-MNIST 5-Datasets

CIFAR-100

Tiny-ImageNet

Ideal UnCLe Overlap

Figure F.12: A collage of radar plots displaying UnCLe’s performance over different request se-
quences and datasets. The sequences are presented in This shows that UnCLe’s perfor-
mance is agnostic to sequences.

33

	Connecting MSE and L2
	Hypernetwork
	Initialisation

	Hyperparameter Tuning
	Learning Hyperparameter: Beta
	Unlearning Hyperparameters: Gamma & Burn-in

	Experimental Details
	Operation Sequences
	Baselines: Addendum
	Metrics: Addendum
	Average Retain Set Accuracy
	Average Forget Set Accuracy
	Output Divergence from Uniform Distribution
	Membership Inference Attack

	Other Experiments
	Baselines: Alternative Unlearning Strategies
	Saturation Alleviation
	Burn-In Annealing
	Stability
	Forgetting Retained Tasks
	Remembering Forgotten Tasks

	Primary Experiments: Addendum
	ResNet18 Results
	ResNet50 Results

	Comparison of Request Sequences

