Checklist

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
 - (b) Did you describe the limitations of your work? [Yes] See Section 7.
 - (c) Did you discuss any potential negative societal impacts of your work? [N/A] We don't foresee direct negative societal impacts from our algorithm.
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 - (b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes] Code is available at https://github.com/TeaPearce/Censored_Quantile_Regression_NN.
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes] See Appendix B.1.
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] Standard errors over ten random seeds are included in main results in Figure 2 and Table 4.
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix [B]
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [Yes] Data details are given in Appendix B.4.
 - (b) Did you mention the license of the assets? [Yes] All datasets used are opensourced.
 - (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] We don't create new assets. Links to datasets used are provided in Appendix B.4.
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [Yes] Data details are given in Appendix [B.4]
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 - (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 - (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

A Analytical Results

A.1 Proofs

Theorem 1. Let the likelihood for each datapoint at each quantile be an asymmetric Laplace distribution with scale, $\lambda = \sqrt{\tau - \tau^2}$, and asymmetry, $k = \tau/\sqrt{\tau - \tau^2}$. The negative log likelihood is,

$$-\log p(y|\mathbf{x},\theta,\mathbf{w},y^*) = \sum_{\tau \in grid_{\tau}} \mathcal{L}_{Port.}(\theta, y, \mathbf{x}, \tau, \mathbf{w}, y^*) + \text{constant}.$$
 (11)

Proof. Define the likelihood over all quantiles of interest, and split censored datapoints into two pseudo datapoints, one at the censoring location and one at the large pseudo value y^* , to give a weighted likelihood,

$$p(y|\mathbf{x}, \theta, \mathbf{w}, y^*) = \prod_{\tau \in \text{grid}_{\tau}} p(y|\mathbf{x}, \theta, \mathbf{w}, y^*, \tau),$$
(12)

$$p(y|\mathbf{x},\theta,\mathbf{w},y^*,\tau) = \prod_{i\in\mathcal{S}_{\text{observed}}} p(y_i|\mathbf{x}_i,\theta) \prod_{j\in\mathcal{S}_{\text{censored}}} p(y_j|\mathbf{x}_j,\theta)^{w_j} p(y^*|\mathbf{x}_j,\theta)^{1-w_j}.$$
 (13)

We write the asymmetric Laplace density with $\hat{y}_{j,\tau}$ as the location parameter and scale λ and asymmetry k,

$$f(y_j; \hat{y}_{j,\tau}, \lambda, k) = \frac{\lambda}{k+1/k} \begin{cases} \exp((\lambda/k)(y_j - \hat{y}_{j,\tau})) & \text{if } \hat{y}_{j,\tau} > y_j \\ \exp(-\lambda k(y_j - \hat{y}_{j,\tau})) & \text{else} \end{cases}$$
(14)

Setting $\lambda = \sqrt{\tau - \tau^2}$ and $k = \tau / \sqrt{\tau - \tau^2}$ and rearranging,

$$f(y_j; \hat{y}_{j,\tau}, \lambda, k) = (\tau - \tau^2) \exp(y_j - \hat{y}_{j,\tau}) (-\tau + \mathbb{I}[\hat{y}_{j,\tau} > y_j])$$
(15)

$$\log f(y_j; \hat{y}_{j,\tau}, \lambda, k) = -\rho_\tau(y_j, \hat{y}_{j,\tau}) + \text{constant}$$
(16)

Taking the logarithm of Eq. 13 we have,

$$\log p(y|\mathbf{x},\theta,\mathbf{w},y^*) = \sum_{\tau \in \text{grid}_{\tau}} \sum_{i \in \mathcal{S}_{\text{observed}}} \log p(y_i|x_i,\theta) + \sum_{j \in \mathcal{S}_{\text{censored}}} \log p(y_j|x_j,\theta)^{w_j} + \log p(y^*|x_j,\theta)^{1-w_j}.$$
(17)

Eq. 16 may be substituted into this if all likelihoods of observed and censored pseudo datapoints are chosen to follow asymmetric Laplace distributions. Taking the negative then recovers the theorem's result.

Theorem 2. If \hat{q}_j is underestimated, one iteration of the algorithm acts to increase the quantile predictions, $\hat{y}_{j,\tau}$, by the same amount, or even higher, than if the weight had been correct. If \hat{q}_j is overestimated, $\hat{y}_{j,\tau}$, is decreased by the same amount, or even lower, than with the correct weight.

Remark. Note that if a quantile \hat{q}_j is underestimated, it's desirable to increase the quantiles relating to that datapoint, for input \mathbf{x}_j and predictions $\hat{y}_{j,\tau}$. If a quantile \hat{q}_j is instead overestimated, it's desirable to decrease the quantiles for input \mathbf{x}_j and predictions $\hat{y}_{j,\tau}$. We refer to this desired behaviour as 'self-correcting'.

Proof. Denote q_j the true quantile that censored datapoint j is censored in, and $w_j = (\tau - q_j)/(1 - q_j)$ the corresponding true weight. We now consider one iteration of the algorithm in the case that the estimated quantile is underestimated.

- 1. Model underpredicts the censored quantile, $\hat{q}_j = q_j \epsilon$, for some $\epsilon > 0$.
- 2. The corresponding weight is also underestimated, $\hat{q}_j < q_j \implies \hat{w}_j < w_j$, shown in lemma [2.1]

3. Lemma 2.3 shows that, for censored datapoint j, the gradient of Eq. 4 wrt the quantile prediction $\hat{y}_{j,\tau}$ is,

$$\frac{\partial \mathcal{L}_{\text{Port.}}(\theta, \mathcal{D}, \tau, \mathbf{w}, y^*)}{\partial \hat{y}_{j,\tau}} = \begin{cases} -\tau & \text{if, } \hat{y}_{j,\tau} < y_j \\ w_j - \tau & \text{if, } y_j \le \hat{y}_{j,\tau} < y^* \\ 1 - \tau & \text{if, } y^* \le \hat{y}_{j,\tau} \end{cases}$$
(18)

Hence, if \hat{w}_j is underestimated it holds that, $\frac{\partial \mathcal{L}_{\text{Port.}}(\theta, \mathcal{D}, \tau, \hat{\mathbf{w}}, y^*)}{\partial \hat{y}_{j,\tau}} \leq \frac{\partial \mathcal{L}_{\text{Port.}}(\theta, \mathcal{D}, \tau, \mathbf{w}, y^*)}{\partial \hat{y}_{j,\tau}}$.

4. When this gradient is used for optimisation, this has the effect of increasing the quantile prediction, $\hat{y}_{j,\tau}$, by either the same amount, or even higher, than if the weight had been correct.

Similar (reversed) logic applies if the quantile is initially overestimated, $\hat{q}_j = q_j + \epsilon$, (e.g. lemma 2.2) which encourages decreasing the quantile predictions, $\hat{y}_{j,\tau}$, by the same amount or lower than with correct weights. Hence, weight estimates will be improved in future iterations of the algorithm. Note that this applies to all quantiles, $\tau \in \operatorname{grid}_{\tau}$.

Lemma 2.1. Let, $\hat{q}_j = q_j - \epsilon$, and $\epsilon > 0$. It holds that, $\hat{q}_j < q_j \implies \hat{w}_j < w_j$, for, $\tau \in (0, 1)$, and, $\hat{q}_j, q_j \in (0, 1)$.

Proof. From the definition of the weights, $\hat{w}_j < w_j \implies (\tau - q_j - \epsilon)/(1 - q_j - \epsilon) < (\tau - q_j)/(1 - q_j)$. Let $a \coloneqq \tau - q_j$ and $b \coloneqq 1 - q_j$. Note that, a < b, since by assumption, $\tau < 1$. We must show that,

$$\frac{a-\epsilon}{b-\epsilon} < \frac{a}{b} \tag{19}$$

$$\frac{a-\epsilon}{b-\epsilon}\frac{b}{a} < 1 \tag{20}$$

$$\frac{ab - b\epsilon}{ab - a\epsilon} < 1, \text{ which holds since, } a < b.$$
(21)

Lemma 2.2. Let, $\hat{q}_j = q_j + \epsilon$, and $\epsilon > 0$. It holds that, $\hat{q}_j > q_j \implies \hat{w}_j > w_j$, for, $\tau \in (0, 1)$, and, $\hat{q}_j, q_j \in (0, 1)$.

Proof. This proof follows lemma 2.1. We now have,

$$\frac{ab+b\epsilon}{ab+a\epsilon} > 1, \text{ which holds since, } a < b.$$
(22)

Lemma 2.3. The partial derivative of Portnoy's loss wrt the predicted quantile, for censored datapoint *j*, is given by,

$$\frac{\partial \mathcal{L}_{Port.}(\theta, \mathcal{D}, \tau, \mathbf{w}, y^*)}{\partial \hat{y}_{j,\tau}} = \begin{cases} -\tau & \text{if, } \hat{y}_{j,\tau} < y_j \\ w_j - \tau & \text{if, } y_j \le \hat{y}_{j,\tau} < y^* \\ 1 - \tau & \text{if, } y^* \le \hat{y}_{j,\tau} \end{cases}$$
(23)

Proof. Recalling that,

$$\rho_{\tau}(y_{i}, \hat{y}_{i,\tau}) = (y_{i} - \hat{y}_{i,\tau}) \left(\tau - \mathbb{I}[\hat{y}_{i,\tau} > y_{i}]\right),$$
(24)

we have,

$$\frac{\partial \rho_{\tau}(y_i, \hat{y}_{i,\tau})}{\partial \hat{y}_{j,\tau}} = \mathbb{I}[\hat{y}_{i,\tau} > y_i] - \tau.$$
(25)

We are interested in the derivative for the censored portion of Portnoy's loss in Eq. 4,

$$\frac{\partial w_j \rho_\tau(y_j, \hat{y}_{j,\tau}) + (1 - w_j) \rho_\tau(y^*, \hat{y}_{j,\tau})}{\partial \hat{y}_{j,\tau}}.$$
(26)

Note that we always choose, $y^* > y_j$. Hence $\hat{y}_{j,\tau} < y_j \implies \hat{y}_{j,\tau} < y^*$, so there are three cases to consider. Case 1, $\hat{y}_{j,\tau} < y_j$, case 2, $y_j \le \hat{y}_{j,\tau} < y^*$, case 3 $y^* \le \hat{y}_{j,\tau}$.

For case 1,

$$\frac{\partial w_j \rho_\tau(y_j, \hat{y}_{j,\tau}) + (1 - w_j) \rho_\tau(y^*, \hat{y}_{j,\tau})}{\partial \hat{y}_{j,\tau}} = w_j(-\tau) + (1 - w_j)(-\tau) = -\tau.$$
(27)

For case 2,

$$\frac{\partial w_j \rho_\tau(y_j, \hat{y}_{j,\tau}) + (1 - w_j) \rho_\tau(y^*, \hat{y}_{j,\tau})}{\partial \hat{y}_{j,\tau}} = w_j (1 - \tau) + (1 - w_j) (-\tau) = w_j - \tau.$$
(28)

For case 3,

$$\frac{\partial w_j \rho_\tau(y_j, \hat{y}_{j,\tau}) + (1 - w_j) \rho_\tau(y^*, \hat{y}_{j,\tau})}{\partial \hat{y}_{j,\tau}} = w_j (1 - \tau) + (1 - w_j) (1 - \tau) = 1 - \tau.$$
(29)

A.2 First Iteration of the Sequential Grid Algorithm

In this section we compare the procedure proposed by Portnoy [2003] to find the first quantile predicted at, $\tau_0 \coloneqq \operatorname{grid}_{\tau}[0]$, with the procedure we propose in the sequential grid algorithm for NNs (Algorithm []). We show that these two procedures produce equivalent gradients.

Portnoy's procedure. Portnoy [2003] require that no censored datapoints lie below the first quantile, and propose deleting these from the dataset when this does occur, as follows.

- 1. Set w = 1 for all censored datapoints in dataset.
- 2. Optimise $\mathcal{L}_{Port.}$ (Eq. 4) for τ_0 .
- 3. Find all censored datapoints below $\tau_0, B \leftarrow \{j \in S_{\text{censored}} : y_j < \hat{y}_{j,\tau_0}\}$.
- 4. If *B* is empty then exit.
- 5. Exclude all elements of B from the dataset and repeat.

This optimisation could be repeated many times. We'd like to avoid this since training NNs on potentially large datasets can be costly.

Sequential grid for NNs procedure. Algorithm 1 instead simply sets q = 0, and optimises the first quantile once only.

- 1. Set q = 0 for all censored datapoints in dataset.
- 2. Optimise $\mathcal{L}_{Port.}$ (Eq. 4) for τ_0 .

Justification. We now justify why this is a reasonable approximation. First note that when $\hat{q}_j = 0$ we have, $\hat{w}_i = \frac{\tau - \hat{q}_i}{1 - \hat{q}_i} = \tau$. Using lemma 2.3 we can compare the gradients for each procedure. For Portoy's procedure, when $\hat{w}_j = 1$,

$$\frac{\partial \mathcal{L}_{\text{Port.}}(\theta, \mathcal{D}, \tau, \hat{\mathbf{w}}, y^*)}{\partial \hat{y}_{j,\tau}} = \begin{cases} -\tau & \text{if, } \hat{y}_{j,\tau} < y_j \\ 1 - \tau & \text{if, } y_j \le \hat{y}_{j,\tau} < y^* \implies \text{set to 0 in next iteration }. \end{cases}$$
(30)

For Algorithm 1, when $\hat{q}_j = 0$,

$$\frac{\partial \mathcal{L}_{\text{Port.}}(\theta, \mathcal{D}, \tau, \hat{\mathbf{w}}, y^*)}{\partial \hat{y}_{j,\tau}} = \begin{cases} -\tau & \text{if, } \hat{y}_{j,\tau} < y_j \\ 0 & \text{if, } y_j \le \hat{y}_{j,\tau} < y^* \\ 1 - \tau & \text{if, } y^* \le \hat{y}_{j,\tau} \end{cases}$$
(31)

At first look, the gradients appear to differ in the case $y_j \leq \hat{y}_{j,\tau} < y^*$. But when a datapoint triggers this criteria in Portnoy's procedure, it will be excluded and the model retrained, in which case its gradient becomes 0. As such the gradients for a censored datapoint in both procedures are equivalent.

B Experimental Details

This section provides further details about all experiments run. Our code base uses the PyTorch framework. Hyperparameters in Appendix B.1. Metrics in Appendix B.2. Baselines in Appendix B.3. Datasets in Appendix B.4.

Hardware. We used an internal cluster for experiments, utilising machines with four GPUs and 14 CPU cores. Most of our datasets used fully-connected NNs, which were trained on CPU, while GPUs were used for the SurvMNIST experiments.

B.1 Full Hyperparameter Details

Below we list hyperparameter settings used and where applicable the tuning protocols followed.

B.1.1 Qualitative 1D Analysis

Section 6.1 experiment. All methods used the same optimisation procedure and NN architecture, without tuning.

- Training dataset size: 500, where, $\mathbf{x} \sim \mathcal{U}(0, 2)$
- Epochs: 100
- Optimiser: Adam
- Learning rate: 0.01 (decreased 70% and 90% of the way through training)
- Batch size: 128
- Weight decay: 0.0001
- NN architecture: Fully-connected, two hidden layers of 100 hidden nodes, GeLU activations
- $y^* = 1.2 \times \max_i y_i$
- $\operatorname{grid}_{\tau} \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$

B.1.2 Benchmarking

Section 6.2 experiment. Experiments were repeated over 10 random seeds. Hyperparameter settings.

- Training dataset size: various see Table 2
- Test dataset size: various see Table 2
- Epochs: $\in \{10, 20, 50, 100\}$
- Optimiser: Adam
- Learning rate: 0.01 for fc NN, 0.001 for CNN (decreased 70% and 90% of the way through training)
- Batch size: 128
- Weight decay: 0.0001
- Default NN architecture: Fully-connected, two hidden layers of 100 hidden nodes, ReLU activations
- CNN architecture for SurvMNIST following Goldstein et al. [2020]: Conv2D[64, (5×5)] → ReLU → Dropout(0.2) → AveragePool(2×2) → Conv2D[128, (5×5)] → ReLU → Dropout(0.2) → AveragePool(2×2) → Conv2D[256, (2×2)] → ReLU → Linear
- $y^* = 1.2 \times \max_i y_i$
- Grid size $M \in \{6, 10, 20\}$
- Dropout \in {True, False}

Tuning process for epochs and dropout:

- For the real type 2 and type 3 datasets, we tuned number of epochs ∈ {10, 20, 50, 100} and dropout ∈ {True, False} for each dataset for each method. We used three random splits as a validation (but not overlapping with the random seeds used in the final test run).
- Epochs was fixed to 100 and dropout disabled for: Norm linear, Norm non-linear, Exponential, Weibull, LogNorm, Norm uniform.
- Epochs was fixed to 20 and dropout disabled for: Norm heavy, Norm medium, Norm light, Norm same.

Table 3: Availability of metrics for each dataset type.

Dataset type	Target distribution	Censoring distribution	TQMSE	UQL	UnDCal	CensDCal	C-Index
Type 1	Synthetic	Synthetic	1	1	1	1	1
Type 2	Real	Synthetic	×	1	1	1	1
Type 3	Real	Real	X	×	×	✓	1

• Epochs was fixed to 10 and dropout disabled for: LogNorm heavy, LogNorm medium, LogNorm light, LogNorm same.

We fixed the grid size according to an estimate of how densely the datapoints covered the input space (a rough consideration of dataset size and number of features):

- Grid size M = 5 for smaller datasets with more features: WHAS, SUPPORT, GBSG, TMBImmuno, BreastMSK, LGGGBM, METABRIC.
- Grid size M = 9 for medium datasets or smaller datasets with less features: Norm linear, Norm non-linear, Exponential, Weibull, LogNorm, Norm uniform.
- Grid size M = 19 for larger datasets or those with less features: Norm heavy, Norm medium, Norm light, Norm same, LogNorm heavy, LogNorm medium, LogNorm light, LogNorm same, Housing, Protein, Wine, PHM, SurvMNIST.

B.1.3 Comparison of Sequential Grid and CQRNN

Section 6.3 experiment. This was carried out under the same protocol as for the main benchmarking, but repeated over a larger number of seeds (200 for type 1 datasets, 50 for type 3 datasets). To obtain 95% confidence intervals, we compute the standard error of the difference between means, and multiply it by a two-sided t-statistic, with (number of seeds-1) degrees of freedom at the $\alpha = 0.05$ significance level. If zero falls within this confidence interval, the difference is deemed not significant.

B.1.4 Hyperparameter Investigation

Section 6.4 experiment. Hyperparameters are as for the main benchmarking except M and y^* were varied as stated in the text. Epochs were set via the formula epochs $= 500 \times 200/N$ ensuring the same number of gradient updates were made on each run. Experiments were repeated over 100 random seeds for the grid investigation, and ten random seeds for the y^* investigation.

B.2 Metrics

This section briefly expands upon the metrics introduced in Section 6 Table 3 summarises the availability on each metric for each dataset type. The computation of each is also detailed below.

True quantile MSE (TQMSE) :=
$$\frac{1}{N} \sum_{\tau \in [0.1, 0.5, 0.9]} \sum_{i=1}^{N} (\hat{y}_{i,\tau} - y_{i,\tau})^2$$
 (32)

Uncensored quantile loss (UQL) :=
$$\frac{1}{N} \sum_{\tau \in [0.1, 0.5, 0.9]} \sum_{i=1}^{N} \rho_{\tau}(y_i, \hat{y}_{i,\tau})$$
 (33)

Uncensored D-Calibration (UnDCal) :=
$$100 \times \sum_{j=1}^{M-1} \left((\tau_{j+1} - \tau_j) - \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[\hat{y}_{i,\tau_j} < y_i \le \hat{y}_{i,\tau_{j+1}}] \right)^2$$
(34)

Censored D-Calibration (CensDCal) :=
$$100 \times \sum_{j=1}^{M-1} \left((\tau_{j+1} - \tau_j) - \frac{1}{N} \xi \right)^2$$
 (35)

where, Goldstein et al. [2020] defines,

$$\xi = \sum_{i \in \mathcal{S}_{\text{observed}}} \mathbb{I}[\hat{y}_{i,\tau_{j}} < y_{i} \le \hat{y}_{i,\tau_{j+1}}] + \sum_{i \in \mathcal{S}_{\text{censored}}} \frac{(\tau_{j+1} - q_{i})\mathbb{I}[\hat{y}_{i,\tau_{j}} < y_{i} \le \hat{y}_{i,\tau_{j+1}}]}{1 - q_{i}} + \frac{(\tau_{j+1} - \tau_{j})\mathbb{I}[q_{i} < \tau_{j}]}{1 - q_{i}}.$$
(36)

We increase the magnitude of DCal metrics by $100 \times$ to make the numbers of similar order to TQMSE and UQL.

B.3 Baselines

This section provides some extra detail about the LogNorm MLE baseline. For this method, we use a NN with two outputs, representing the mean, μ , and standard deviation, σ , of a Log Normal distribution, i.e. $\log y \sim \mathcal{N}(\hat{\mu}, \hat{\sigma}^2)$. We pass the output representing the standard deviation prediction through a SoftPlus to ensure it is always positive and differentiable.

The maximum likelihood estimation loss is then,

$$-\mathcal{L}_{\text{MLE}}(\theta, \mathcal{D}) \coloneqq \sum_{i \in \mathcal{S}_{\text{observed}}} \log p(y_i | \mathbf{x}_i, \theta) + \sum_{j \in \mathcal{S}_{\text{censored}}} \log(1 - \text{CDF}(y_j | \mathbf{x}_j, \theta)),$$
(37)

where the likelihood and CDF follow the analytical expressions for the Log Normal distribution. At evaluation time, we use the SciPy package to compute the quantiles from the predicted Log Normal distribution that correspond to those in $\operatorname{grid}_{\tau}$. This allows a like-for-like comparison with our other baselines.

B.4 Dataset Details

This section provides further detail about the source of each dataset used. All real-world datasets were taken from open-access repositories, and had already been anonymised. For real-world datasets, we do not follow any previous test/train splits, rather we randomly shuffle the data for each run, selecting 80% for training and 20% for testing.

B.4.1 Type 1 Datasets

Table 2 details the generating target and censoring distributions used, as well as numbers of test and train datapoints. Inputs were always generated uniformly via, $\mathbf{x} \sim \mathcal{U}(0, 2)^D$ for D features.

B.4.2 Type 2 Datasets

Table 2 details dataset sizes and number of features. All datasets used a uniform censoring distribution, $c_i \sim \mathcal{U}(0,c)$, where c was selected to be equal to the 90th percentile of the target distribution for SurvMNIST, and $c = 1.5 \max_i y_i$ for the other type 2 datasets. Housing was sourced from Scikit Learn datasets, while Protein, Wine and PHM were sourced through OpenML https://www.openml.org/

- Housing Target is median house prices. Retrieved from https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset.
- Protein Target is RMSD. OpenML lookup ID is physicochemical-protein.
- Wine Target is quality of wine. OpenML lookup ID is wine quality.
- **PHM** (prognostics health management) target is breakdown time of simulated machines. OpenML lookup ID is NASA PHM2008.

Our final type 2 dataset is slightly different, since we don't use the provided labels directly.

[2020],• SurvMNIST appeared in Goldstein al. who adapted et it blog: https://k-d-w.org/blog/2019/07/ from Sebastian Pölsterl's survival-analysis-for-deep-learning/. It uses the standard MNIST dataset http://yann.lecun.com/exdb/mnist/, but targets are drawn from a Gamma distribution, with different parameters per class. Goldstein et al. [2020] used a small variance fixed across classes, with means $\in [11.25, 2.25, 5.25, 5.0, 4.75, 8.0, 2.0, 11.0, 1.75, 10.75]$. For our purposes, we are most interested in how well methods capture variance, so we vary it, variance $\in [0.1, 0.5, 0.1, 0.2, 0.2, 0.2, 0.3, 0.1, 0.4, 0.6]$.

B.4.3 Type 3 Datasets

We provide a brief overview of each dataset. Four datasets – GBSG, METABRIC, SUPPORT, WHAS – were all retrieved from https://github.com/jaredleekatzman/DeepSurv/tree/master/ experiments/data Katzman et al. [2018] provides a detailed introduction to these datasets. The other three datasets – TMBImmnuo, BreastMSK, LGGGBM – were all sourced from the cBioPortal, https://www.cbioportal.org/, for cancer genomics.

- **GBSG** (Rotterdam & German Breast Cancer Study Group) requires prediction of survival time for breast cancer patients.
- **METABRIC** (Molecular Taxonomy of Breast Cancer International Consortium) requires prediction of survival time for breast cancer patients. Covariates include expressions for four genes as well as clinical data.
- **SUPPORT** (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) requires prediction of survival time in seriously ill hospitalised patients. Covariates include demographic and basic diagnosis information.
- WHAS (Worcester Heart Attack Study) requires prediction of acute myocardial infraction survival.
- **TMBImmuno** (Tumor Mutational Burden and Immunotherapy) requires prediction of survival time for patients with various cancer types using clinical data. Covariates include age, sex, and number of mutations. Retrieved from https://www.cbioportal.org/study/clinicalData?id=tmb_mskcc_2018
- **BreakMSK** requires prediction of survival time for patients with breast cancer using tumour information. Covariates include ER, HER, HR, mutation count, TMB. Retrieved from https://www.cbioportal.org/study/clinicalData?id=breast_msk_2018.
- LGGGBM. requires prediction of survival time for cancer patient from clinical data. Covariates include age, sex, purity, mutation count, TMB. Retrieved from https://www.cbioportal.org/study/clinicalData?id=lgggbm_tcga_pub

C Further Results

Figure 3: This figure shows estimated quantiles (blue through pink) compared to ground truth quantiles (dashed black lines). It shows 1D synthetic datasets of varying functions and noise distributions (rows), fitted by various methods (columns).

Dataset	Method	MSE to true quantile (lower better)	Uncensored quantile loss (lower better)	Uncensored D-Calibration (lower better)	Concordance-Index (higher better)	Censored D-Calibratio (lower better)
XY 11	CODUDI	0.000 1 0.000		data, synthetic censoring	0 ((2 + 0 000	0.011 1.0.024
Norm linear	CQRNN	0.088 ± 0.009	1.517 ±0.01	0.327 ±0.057	0.663 ±0.002	0.211 ±0.034
Norm linear Norm linear	Sequential grid	2.779 ± 0.506	1.623 ± 0.02	0.303 ±0.06 3.078 ±0.244	$\begin{array}{c} 0.662 \pm 0.002 \\ 0.662 \pm 0.002 \end{array}$	0.224 ± 0.024 2.349 ± 0.102
Norm linear	Excl. censor DeepQuantReg	0.566 ± 0.039 1.172 ± 0.133	1.62 ± 0.016 1.695 ± 0.026	1.94 ± 0.192	0.662 ±0.002 0.663 ±0.002	1.241 ± 0.138
Norm linear	LogNorm MLE	0.184 ± 0.021	1.522 ± 0.008	0.315 ± 0.023	0.662 ± 0.002	0.232 ± 0.04
Norm non-lin	CORNN	0.028 ± 0.004	0.759 ±0.005	0.262 ±0.044	0.674 ±0.004	0.186 ±0.023
Norm non-lin	Sequential grid	0.020 ± 0.004 0.027 ± 0.003	0.759 ±0.005	0.283 ± 0.034	0.673 ± 0.004	0.194 ± 0.03
Norm non-lin	Excl. censor	0.053 ± 0.004	0.768 ±0.006	0.579 ± 0.088	0.673 ± 0.004	0.449 ± 0.054
Norm non-lin	DeepQuantReg	0.818 ± 0.093	0.998 ± 0.019	4.263 ±0.234	0.609 ±0.023	2.593 ±0.206
Norm non-lin	LogNorm MLE	0.323 ± 0.035	0.824 ± 0.009	1.651 ± 0.118	0.653 ± 0.005	0.971 ± 0.077
Exponential	CORNN	1.298 ± 0.201	4.057 ±0.04	0.404 ±0.035	0.559 ±0.003	0.248 ±0.031
Exponential	Sequential grid	1.702 ± 0.397	4.061 ±0.039	0.391 ±0.057	0.558 ± 0.004	0.226 ±0.025
Exponential	Excl. censor	11.03 ± 0.772	4.456 ±0.039	2.537 ± 0.18	0.535 ± 0.007	1.513 ± 0.14
Exponential	DeepQuantReg	20.046 ± 5.844	4.675 ± 0.09	2.294 ± 0.252	0.544 ± 0.004	1.276 ± 0.158
Exponential	LogNorm MLE	17.825 ± 2.831	4.342 ± 0.058	1.056 ± 0.071	0.552 ± 0.003	0.401 ±0.045
Weibull	CORNN	$\textbf{0.255} \pm \textbf{0.025}$	1.879 ±0.018	0.33 ±0.037	0.772 ±0.002	0.211 ±0.023
Weibull	Sequential grid	0.255 ± 0.025 0.261 ± 0.018	1.879 ±0.018 1.877 ±0.017	0.35 ± 0.037 0.352 ± 0.037	0.772 ± 0.002 0.772 ±0.002	0.211 ±0.023 0.209 ±0.023
Weibull	Excl. censor	2.468 ± 0.118	2.18 ± 0.021	1.942 ± 0.152	0.769 ± 0.002	0.209 ± 0.023 0.834 ± 0.069
Weibull	DeepQuantReg	1.116 ± 0.16	2.005 ±0.037	1.042 ± 0.152 1.057 ± 0.159	0.769 ± 0.002 0.769 ± 0.002	0.556 ± 0.126
Weibull	LogNorm MLE	1.586 ± 0.081	2.003 ±0.037 2.048 ±0.02	0.603 ± 0.036	0.709 ± 0.002 0.771 ± 0.002	0.330 ± 0.120 0.478 ± 0.072
	-					
LogNorm	CQRNN	0.411 ± 0.057	1.716 ± 0.04	0.253 ±0.025	0.59 ± 0.004	0.161 ±0.015
LogNorm	Sequential grid	0.328 ± 0.036	1.716 ± 0.041	0.28 ± 0.033	0.591 ±0.003	0.193 ± 0.024
LogNorm	Excl. censor	1.757 ± 0.114	1.818 ±0.051	1.46 ± 0.129	0.588 ±0.004	1.119 ± 0.062
LogNorm LogNorm	DeepQuantReg LogNorm MLE	$\begin{array}{c} 1.279 \pm 0.168 \\ \textbf{0.247} \pm \textbf{0.032} \end{array}$	1.843 ±0.04 1.713 ±0.041	1.924 ±0.131 0.115 ±0.014	0.58 ± 0.004 0.589 ± 0.004	1.279 ±0.106 0.151 ±0.018
-	•					
Norm uniform	CQRNN	0.388 ± 0.054	1.442 ± 0.022	2.219 ± 0.212	0.789 ± 0.003	0.094 ± 0.008
Norm uniform	Sequential grid	$\textbf{0.188} \pm \textbf{0.016}$	1.409 ± 0.017	1.347 ± 0.136	0.788 ± 0.003	0.462 ± 0.02
Norm uniform	Excl. censor	1.088 ± 0.112	1.501 ± 0.018	1.557 ± 0.19	0.79 ±0.003	0.721 ± 0.066
Norm uniform	DeepQuantReg	2.591 ± 0.56	1.809 ± 0.084	4.397 ±0.687	0.598 ±0.064	0.418 ± 0.074
Norm uniform	LogNorm MLE	939.992 ± 144.76	7.727 ± 0.502	32.486 ± 1.405	0.77 ± 0.006	4.259 ± 0.144
Norm heavy	CQRNN	$\textbf{0.579} \pm \textbf{0.089}$	0.999 ± 0.041	6.491 ± 1.094	0.922 ± 0.002	0.301 ± 0.067
Norm heavy	Sequential grid	0.597 ± 0.081	0.996 ± 0.037	6.595 ± 1.406	0.923 ± 0.002	0.198 ± 0.014
Norm heavy	Excl. censor	1.285 ± 0.205	1.223 ± 0.069	8.206 ± 1.895	0.923 ± 0.002	0.261 ± 0.021
Norm heavy	DeepQuantReg	1.099 ± 0.175	1.166 ± 0.06	6.681 ± 1.365	0.923 ± 0.002	0.191 ± 0.016
Norm heavy	LogNorm MLE	5568.886 ± 1737.861	17.077 ±2.442	21.283 ± 1.057	0.852 ± 0.008	1.113 ± 0.102
Norm med.	CORNN	$\textbf{0.11} \pm \textbf{0.007}$	0.789 ±0.006	0.633 ±0.138	0.896 ±0.001	0.157 ±0.054
Norm med.	Sequential grid	0.16 ± 0.009	0.799 ± 0.005	0.474 ± 0.046	0.895 ± 0.001	0.159 ± 0.011
Norm med.	Excl. censor	0.117 ± 0.008	0.792 ± 0.005	0.247 ± 0.02	0.896 ± 0.001	0.136 ± 0.015
Norm med.	DeepQuantReg	0.255 ± 0.016	0.847 ± 0.008	0.944 ± 0.098	0.892 ± 0.001	0.232 ± 0.029
Norm med.	LogNorm MLE	276.276 ± 41.622	3.974 ± 0.228	17.969 ±0.548	0.865 ± 0.004	4.612 ± 0.134
Norm light	CORNN	$\textbf{0.079} \pm \textbf{0.005}$	0.778 ±0.005	0.173 ±0.021	0.882 ± 0.001	0.084 ±0.008
Norm light	Sequential grid	0.117 ± 0.005	0.784 ± 0.004	0.352 ± 0.027	0.882 ± 0.001	0.19 ± 0.018
Norm light	Excl. censor	0.083 ± 0.005	0.779 ± 0.005	0.159 ± 0.017	0.882 ± 0.001	0.112 ±0.013
Norm light	DeepQuantReg	0.277 ± 0.013	0.854 ± 0.008	1.205 ± 0.081	0.878 ± 0.001	0.588 ±0.046
Norm light	LogNorm MLE	58.503 ± 6.922	2.475 ± 0.093	13.713 ± 0.465	0.861 ± 0.003	7.74 ± 0.286
Norm same						1.14 ±0.280
	CODNN	0.004 ± 0.005	0.785 ±0.003	0.10 ± 0.022		
Vorm same	CQRNN Sequential grid	0.094 ± 0.005 0.779 ± 0.16	0.785 ±0.003	0.19 ± 0.022 0.45 ± 0.054	0.893 ±0.001	0.052 ± 0.007
	Sequential grid	0.779 ± 0.16	0.847 ± 0.009	0.45 ± 0.054	$\begin{array}{c} 0.893 \pm \! 0.001 \\ 0.891 \pm \! 0.001 \end{array}$	0.052 ± 0.007 0.102 ±0.012
Norm same	Sequential grid Excl. censor	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \end{array}$		0.893 ±0.001	$\textbf{0.052} \pm \textbf{0.007}$
lorm same lorm same	Sequential grid Excl. censor DeepQuantReg	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \end{array}$	$\begin{array}{c} 0.847 \pm \! 0.009 \\ 0.927 \pm \! 0.007 \\ 0.893 \pm \! 0.009 \end{array}$	$\begin{array}{c} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \end{array}$	$\begin{array}{c} 0.893 \pm \! 0.001 \\ 0.891 \pm \! 0.001 \\ \textbf{0.894} \pm \! \textbf{0.001} \\ 0.891 \pm \! 0.001 \end{array}$	0.052 ±0.007 0.102 ±0.012 1.398 ±0.07 0.983 ±0.091
Norm same Norm same Norm same	Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$	$\begin{array}{c} 0.847 \pm \! 0.009 \\ 0.927 \pm \! 0.007 \\ 0.893 \pm \! 0.009 \\ 0.787 \pm \! 0.004 \end{array}$	$\begin{array}{l} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \\ \textbf{0.187} \pm \textbf{0.024} \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ \textbf{0.894} \pm \textbf{0.001} \\ 0.891 \pm 0.001 \\ \textbf{0.894} \pm \textbf{0.001} \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \end{array}$
Norm same Norm same Norm same LogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$	0.847 ±0.009 0.927 ±0.007 0.893 ±0.009 0.787 ±0.004 1.123 ±0.021	$\begin{array}{c} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \\ \textbf{0.187} \pm \textbf{0.024} \\ \end{array}$	0.893 ±0.001 0.891 ±0.001 0.894 ±0.001 0.891 ±0.001 0.894 ±0.001 0.782 ±0.005	0.052 ±0.007 0.102 ±0.012 1.398 ±0.07 0.983 ±0.091 0.059 ±0.006 0.036 ±0.004
Norm same Norm same Norm same LogNorm heavy LogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$ $\begin{array}{c} 2.424 \pm 0.055 \\ 2.42 \pm 0.055 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.121 \pm 0.021 \end{array}$	$\begin{array}{c} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \\ 0.187 \pm 0.024 \\ \hline \\ 22.493 \pm 0.36 \\ 21.938 \pm 0.299 \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.782 \pm 0.005 \\ 0.781 \pm 0.005 \end{array}$	0.052 ±0.007 0.102 ±0.012 1.398 ±0.07 0.983 ±0.091 0.059 ±0.006 0.036 ±0.004 0.044 ±0.002
Norm same Norm same LogNorm heavy LogNorm heavy LogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$ $\begin{array}{c} 2.424 \pm 0.055 \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.121 \pm 0.021 \\ 1.247 \pm 0.021 \\ \end{array}$	$\begin{array}{c} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \\ \textbf{0.187} \pm \textbf{0.024} \\ \hline 22.493 \pm 0.36 \\ 21.938 \pm 0.299 \\ 35.43 \pm 0.629 \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.782 \pm 0.005 \\ 0.781 \pm 0.005 \\ 0.772 \pm 0.005 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \end{array}$ $\begin{array}{c} \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \end{array}$
Norm same Norm same LogNorm heavy LogNorm heavy LogNorm heavy LogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline \\ 1.123 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ \end{array}$	$\begin{array}{c} 0.45 \pm 0.054 \\ 4.096 \pm 0.251 \\ 3.334 \pm 0.325 \\ 0.187 \pm 0.024 \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ \hline 0.894 \pm 0.001 \\ \hline 0.782 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ \hline \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \end{array}$ $\begin{array}{c} \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \end{array}$
Norm same Norm same LogNorm heavy LogNorm heavy LogNorm heavy LogNorm heavy LogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$ $\begin{array}{c} 2.424 \pm 0.055 \\ 2.424 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.639 \pm 0.06 \\ \textbf{1.17} \pm \textbf{0.052} \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.21 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.246 \pm 0.022 \\ 0.868 \pm 0.018 \\ \end{array}$	$\begin{array}{c} 0.45\pm 0.054\\ 4.096\pm 0.251\\ 3.334\pm 0.325\\ 0.187\pm 0.024\\ \hline \\ 22.493\pm 0.36\\ 21.938\pm 0.299\\ 35.43\pm 0.629\\ 34.132\pm 0.719\\ 0.135\pm 0.014\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ \hline 0.894 \pm 0.001 \\ \hline 0.782 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.776 \pm 0.005 \\ 0.776 \pm 0.005 \\ \hline \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \end{array}$
Norm same Norm same ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN	$\begin{array}{l} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ 2.424\pm 0.055\\ 2.42\pm 0.055\\ 2.654\pm 0.061\\ 2.639\pm 0.06\\ \mathbf{1.17\pm 0.062}\\ \mathbf{1.713\pm 0.049} \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ 1.123 \pm 0.021 \\ 1.21 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ 0.923 \pm 0.02 \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ 5.054\pm0.174\\ \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.761 \pm 0.005 \\ 0.764 \pm 0.005 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \end{array}$
Vorm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med.	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \end{array}$ $\begin{array}{c} 2.424 \pm 0.055 \\ 2.424 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.659 \pm 0.061 \\ \textbf{1.17} \pm 0.052 \end{array}$ $\begin{array}{c} 1.713 \pm 0.049 \\ 1.699 \pm 0.047 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline\\ 22.499\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline\\ 5.054\pm0.174\\ 4.968\pm0.181\\ \hline\end{array}$	0.893 ±0.001 0.891 ±0.001 0.894 ±0.001 0.894 ±0.001 0.894 ±0.001 0.782 ±0.005 0.772 ±0.005 0.771 ±0.005 0.772 ±0.005 0.774 ±0.004 0.754 ±0.004	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.026 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ \hline \end{array}$
Norm same Norm same ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm med. .ogNorm med.	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor	$\begin{array}{c} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ \hline\\ 2.42\pm 0.055\\ 2.42\pm 0.055\\ 2.634\pm 0.061\\ 2.639\pm 0.06\\ \textbf{1.17}\pm 0.052\\ \hline\\ 1.713\pm 0.049\\ 1.699\pm 0.047\\ 2.168\pm 0.053\\ \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ 1.121 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.067 \pm 0.021 \\ \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ \hline \end{array}$	0.893 ±0.001 0.891 ±0.001 0.894 ±0.001 0.891 ±0.001 0.891 ±0.001 0.782 ±0.005 0.771 ±0.005 0.771 ±0.005 0.765 ±0.004 0.754 ±0.004 0.749 ±0.004	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ \hline \end{array}$
Norm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med. JogNorm med. JogNorm med.	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg CQRNN Sequential grid Excl. censor DeepQuantReg	$\begin{array}{l} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ \hline\\ 2.42\pm 0.055\\ 2.42\pm 0.055\\ 2.654\pm 0.061\\ 1.639\pm 0.06\\ \hline\\ 1.17\pm 0.052\\ \hline\\ 1.713\pm 0.049\\ 1.699\pm 0.047\\ 2.168\pm 0.053\\ 2.087\pm 0.056\\ \hline\end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.121 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ \hline 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.037 \pm 0.021 \\ 1.033 \pm 0.02 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline \\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline \\ 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.761 \pm 0.005 \\ 0.764 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.748 \pm 0.004 \\ 0.748 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm \textbf{0.008} \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.988 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ \hline \end{array}$
Norm same Norm same ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm med. ogNorm med. ogNorm med. ogNorm med.	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{l} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.424 \pm 0.055 \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.052 \\ \hline \\ 1.713 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.212 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.776 \pm 0.005 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.748 \pm 0.004 \\ 0.748 \pm 0.003 \\ 0.754 \pm 0.003 \\ 0.75 \pm 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \end{array}$
Norm same Norm same ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm med. ogNorm med. ogNorm med. ogNorm med. ogNorm med.	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.424 \pm 0.055 \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.639 \pm 0.061 \\ \hline \\ 1.17 \pm 0.052 \\ \hline \\ 1.71 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.506 \pm 0.028 \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.121 \pm 0.021 \\ 1.236 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.067 \pm 0.021 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.019 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm 0.054\\ 4.096\pm 0.251\\ 3.334\pm 0.325\\ \textbf{0.187}\pm \textbf{0.024}\\ \hline \\ 22.493\pm 0.36\\ 21.938\pm 0.299\\ 35.43\pm 0.629\\ 34.132\pm 0.719\\ \textbf{0.135}\pm \textbf{0.014}\\ \hline \\ 5.054\pm 0.174\\ 4.968\pm 0.181\\ 12.124\pm 0.34\\ 10.081\pm 0.255\\ \textbf{0.103}\pm \textbf{0.016}\\ \hline \\ 0.331\pm 0.026\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.782 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.774 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.75 \pm 0.003 \\ 0.75 \pm 0.003 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.004 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.01 \end{array}$
Norm same Norm same ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm heavy ogNorm med. ogNorm med. ogNorm med. ogNorm med. ogNorm med. ogNorm med. ogNorm ight	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{c} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ 2.42\pm 0.055\\ 2.42\pm 0.055\\ 2.654\pm 0.061\\ 2.639\pm 0.06\\ \textbf{1.17}\pm 0.062\\ \textbf{1.17}\pm 0.049\\ 1.699\pm 0.047\\ 2.168\pm 0.053\\ 2.087\pm 0.056\\ \textbf{0.907}\pm 0.05\\ \textbf{0.506}\pm 0.028\\ 0.532\pm 0.029\\ \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ 1.123 \pm 0.021 \\ 1.212 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.067 \pm 0.021 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ 0.331\pm0.026\\ 0.517\pm0.04\\ \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.748 \pm 0.003 \\ 0.729 \\$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.01 \\ 0.21 \pm 0.014 \\ \hline \end{array}$
Norm same Norm same SogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm heavy .ogNorm med. .ogNorm med. .ogNorm med. .ogNorm light .ogNorm light .ogNorm light	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.654 \pm 0.061 \\ \hline \\ 2.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.052 \\ \hline \\ 1.713 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.506 \pm 0.028 \\ 0.532 \pm 0.029 \\ 1.185 \pm 0.037 \\ \hline \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.212 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.018 \\ 0.764 \pm 0.018 \\ 0.767 \pm 0.021 \\ 0.852 \pm 0.02 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ \hline 0.331\pm0.026\\ 0.151\pm0.04\\ 1.518\pm0.124\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.748 \pm 0.003 \\ 0.754 \pm 0.003 \\ 0.729 \\$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.01 \\ 0.21 \pm 0.014 \\ 0.655 \pm 0.047 \\ \hline \end{array}$
Norm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm light JogNorm light JogNorm light JogNorm light	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg	$\begin{array}{c} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ 2.42\pm 0.055\\ 2.42\pm 0.055\\ 2.654\pm 0.061\\ 2.639\pm 0.06\\ 1.17\pm 0.052\\ 1.713\pm 0.049\\ 1.699\pm 0.047\\ 2.168\pm 0.053\\ 2.087\pm 0.056\\ 0.907\pm 0.05\\ 0.506\pm 0.028\\ 0.532\pm 0.029\\ 1.185\pm 0.037\\ 0.831\pm 0.036\\ \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ 1.121 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.067 \pm 0.021 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.019 \\ 0.767 \pm 0.018 \\ 0.852 \pm 0.02 \\ 0.804 \pm 0.019 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ 0.331\pm0.026\\ 0.517\pm0.04\\ 1.518\pm0.124\\ 0.912\pm0.061\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.75 \pm 0.003 \\ 0.729 \pm 0.003 \\ 0.726 \pm $	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.36} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ 0.135 \pm 0.01 \\ 0.21 \pm 0.014 \\ 0.655 \pm 0.047 \\ 0.438 \pm 0.028 \\ \hline \end{array}$
Norm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm light JogNorm light JogNorm light JogNorm light	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.654 \pm 0.061 \\ \hline \\ 2.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.052 \\ \hline \\ 1.713 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.506 \pm 0.028 \\ 0.532 \pm 0.029 \\ 1.185 \pm 0.037 \\ \hline \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.212 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.921 \pm 0.02 \\ 1.033 \pm 0.02 \\ 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.018 \\ 0.764 \pm 0.018 \\ 0.767 \pm 0.021 \\ 0.852 \pm 0.02 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ \hline 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ \hline 0.331\pm0.026\\ 0.151\pm0.04\\ 1.518\pm0.124\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.748 \pm 0.003 \\ 0.754 \pm 0.003 \\ 0.729 \\$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.011 \\ 0.21 \pm 0.014 \\ 0.655 \pm 0.047 \\ \hline \end{array}$
Norm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm light JogNorm light JogNorm light JogNorm light JogNorm light JogNorm light	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.157 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 2.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.062 \\ \hline \\ 1.713 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.502 \pm 0.028 \\ 0.332 \pm 0.029 \\ 1.185 \pm 0.037 \\ 0.331 \pm 0.036 \\ \hline \\ 0.432 \pm 0.034 \\ \hline \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ 1.123 \pm 0.021 \\ 1.212 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.022 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.923 \pm 0.02 \\ 1.067 \pm 0.021 \\ 1.067 \pm 0.018 \\ \hline 0.764 \pm 0.018 \\ 0.854 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ 0.854 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ 0.854 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854 \pm 0.019 \\ 0.767 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854 \pm 0.019 \\ \hline 0.854 \pm 0.018 \\ \hline 0.854$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ \hline 0.331\pm0.026\\ 0.331\pm0.026\\ 0.912\pm0.061\\ \textbf{0.095}\pm0.015\\ \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.729 \\$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.01 \\ 0.21 \pm 0.014 \\ 0.635 \pm 0.047 \\ 0.438 \pm 0.028 \\ \textbf{0.079} \pm \textbf{0.004} \\ \hline \end{array}$
Norm same Norm same Norm same JogNorm heavy JogNorm heavy JogNorm heavy JogNorm heavy JogNorm med. JogNorm med. JogNorm med. JogNorm med. JogNorm light JogNorm light JogNorm light JogNorm light JogNorm light JogNorm same	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.42 \pm 0.055 \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 1.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.506 \pm 0.028 \\ 0.532 \pm 0.029 \\ 1.185 \pm 0.037 \\ 0.831 \pm 0.036 \\ \hline \\ 0.432 \pm 0.034 \\ \hline \\ 0.137 \pm 0.021 \\ \hline \end{array}$	$\begin{array}{c} 0.847 \pm 0.009\\ 0.927 \pm 0.007\\ 0.927 \pm 0.007\\ 0.893 \pm 0.009\\ 0.787 \pm 0.004\\ 1.123 \pm 0.021\\ 1.121 \pm 0.021\\ 1.236 \pm 0.022\\ 0.868 \pm 0.018\\ 0.923 \pm 0.02\\ 0.921 \pm 0.02\\ 1.067 \pm 0.021\\ 1.033 \pm 0.02\\ 0.824 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.019\\ 0.767 \pm 0.018\\ 0.767 \pm 0.019\\ 0.767 \pm 0.018\\ 0.755 \pm 0.015\\ \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ 0.311\pm0.026\\ 0.517\pm0.04\\ 1.518\pm0.124\\ 0.912\pm0.061\\ \textbf{0.095}\pm0.015\\ 0.236\pm0.011\end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.764 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.729 \pm 0.002 \\ 0.751 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.21} \pm 0.014 \\ 0.655 \pm 0.004 \\ \hline \textbf{0.079} \\ \hline \textbf{0.034} \\ \hline \textbf{0.055} \pm 0.007 \\ \hline \end{array}$
Norm same Norm same Norm same LogNorm heavy LogNorm heavy LogNorm heavy LogNorm heavy LogNorm med. LogNorm med. LogNorm med. LogNorm light LogNorm light LogNorm light LogNorm light LogNorm light LogNorm same	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid	$\begin{array}{c} 0.779\pm 0.16\\ 0.435\pm 0.01\\ 0.357\pm 0.013\\ 0.114\pm 0.008\\ 2.42\pm 0.055\\ 2.42\pm 0.055\\ 2.654\pm 0.061\\ 2.639\pm 0.06\\ 1.17\pm 0.052\\ 1.713\pm 0.049\\ 1.699\pm 0.047\\ 2.168\pm 0.053\\ 2.087\pm 0.056\\ 0.907\pm 0.05\\ 0.907\pm 0.05\\ 0.302\pm 0.029\\ 1.185\pm 0.037\\ 0.331\pm 0.036\\ 0.432\pm 0.034\\ 0.137\pm 0.021\\ 0.422\pm 0.054\\ \end{array}$	$\begin{array}{c} 0.847 \pm 0.009 \\ 0.927 \pm 0.007 \\ 0.893 \pm 0.009 \\ 0.787 \pm 0.004 \\ \hline 1.123 \pm 0.021 \\ 1.121 \pm 0.021 \\ 1.247 \pm 0.021 \\ 1.236 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 0.868 \pm 0.018 \\ \hline 0.923 \pm 0.02 \\ 1.067 \pm 0.021 \\ 1.067 \pm 0.021 \\ 1.033 \pm 0.02 \\ \hline 0.824 \pm 0.018 \\ \hline 0.764 \pm 0.019 \\ 0.767 \pm 0.018 \\ 0.852 \pm 0.02 \\ 0.804 \pm 0.019 \\ 0.765 \pm 0.015 \\ 0.753 \pm 0.015 \\ 0.753 \pm 0.015 \\ \hline 0.753 \pm 0.016 \\ \hline \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ 0.187\pm0.024\\ \hline 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ 0.135\pm0.014\\ \hline 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ 0.103\pm0.016\\ 0.331\pm0.026\\ 0.517\pm0.04\\ 1.518\pm0.124\\ 0.912\pm0.061\\ 0.992\pm0.015\\ \hline 0.236\pm0.021\\ 0.463\pm0.046\\ \hline \end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.894 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.774 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.729 \pm 0.003 \\ 0.752 \pm$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.036} \pm \textbf{0.004} \\ 0.004 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.135} \pm 0.01 \\ 0.21 \pm 0.014 \\ 0.655 \pm 0.047 \\ 0.438 \pm 0.028 \\ \textbf{0.079} \pm \textbf{0.004} \\ \hline \textbf{0.075} \pm 0.007 \\ 0.101 \pm 0.018 \\ \hline \end{array}$
Norm same Norm same Norm same Sorm same LogNorm heavy LogNorm heavy LogNorm heavy LogNorm heavy LogNorm med. LogNorm med. LogNorm med. LogNorm light LogNorm light LogNorm light LogNorm light LogNorm light LogNorm same LogNorm same LogNorm same LogNorm same	Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE CQRNN	$\begin{array}{c} 0.779 \pm 0.16 \\ 0.435 \pm 0.01 \\ 0.357 \pm 0.013 \\ 0.357 \pm 0.013 \\ 0.114 \pm 0.008 \\ \hline \\ 2.42 \pm 0.055 \\ 2.42 \pm 0.055 \\ 2.654 \pm 0.061 \\ 1.639 \pm 0.06 \\ \hline \\ 1.17 \pm 0.049 \\ 1.699 \pm 0.047 \\ 2.168 \pm 0.053 \\ 2.087 \pm 0.056 \\ \hline \\ 0.907 \pm 0.05 \\ \hline \\ 0.506 \pm 0.028 \\ 0.532 \pm 0.029 \\ 1.185 \pm 0.037 \\ 0.831 \pm 0.036 \\ \hline \\ 0.432 \pm 0.034 \\ \hline \\ 0.137 \pm 0.021 \\ \hline \end{array}$	$\begin{array}{c} 0.847 \pm 0.009\\ 0.927 \pm 0.007\\ 0.927 \pm 0.007\\ 0.893 \pm 0.009\\ 0.787 \pm 0.004\\ 1.123 \pm 0.021\\ 1.121 \pm 0.021\\ 1.236 \pm 0.022\\ 0.868 \pm 0.018\\ 0.923 \pm 0.02\\ 0.921 \pm 0.02\\ 1.067 \pm 0.021\\ 1.033 \pm 0.02\\ 0.824 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.018\\ 0.767 \pm 0.019\\ 0.767 \pm 0.018\\ 0.767 \pm 0.019\\ 0.767 \pm 0.018\\ 0.755 \pm 0.015\\ \end{array}$	$\begin{array}{c} 0.45\pm0.054\\ 4.096\pm0.251\\ 3.334\pm0.325\\ \textbf{0.187}\pm0.024\\ 22.493\pm0.36\\ 21.938\pm0.299\\ 35.43\pm0.629\\ 34.132\pm0.719\\ \textbf{0.135}\pm0.014\\ 5.054\pm0.174\\ 4.968\pm0.181\\ 12.124\pm0.34\\ 10.081\pm0.255\\ \textbf{0.103}\pm0.016\\ 0.311\pm0.026\\ 0.517\pm0.04\\ 1.518\pm0.124\\ 0.912\pm0.061\\ \textbf{0.095}\pm0.015\\ 0.236\pm0.011\end{array}$	$\begin{array}{c} 0.893 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.891 \pm 0.001 \\ 0.781 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.772 \pm 0.005 \\ 0.771 \pm 0.005 \\ 0.774 \pm 0.004 \\ 0.764 \pm 0.004 \\ 0.754 \pm 0.004 \\ 0.749 \pm 0.004 \\ 0.749 \pm 0.003 \\ 0.729 \pm 0.002 \\ 0.751 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{0.052} \pm \textbf{0.007} \\ 0.102 \pm 0.012 \\ 1.398 \pm 0.07 \\ 0.983 \pm 0.091 \\ 0.059 \pm 0.006 \\ \hline \textbf{0.059} \pm 0.004 \\ 0.044 \pm 0.002 \\ 4.806 \pm 0.226 \\ 3.884 \pm 0.201 \\ 0.074 \pm 0.008 \\ \hline \textbf{0.074} \pm 0.008 \\ \hline \textbf{0.064} \pm \textbf{0.005} \\ 0.098 \pm 0.014 \\ 2.586 \pm 0.071 \\ 1.373 \pm 0.055 \\ 0.07 \pm 0.009 \\ \hline \textbf{0.315} \pm 0.014 \\ 0.655 \pm 0.014 \\ 0.655 \pm 0.004 \\ \hline \textbf{0.075} \pm 0.004 \\ \hline \textbf{0.055} \pm 0.007 \\ \hline \end{array}$

Table 4: Full results table for all datasets, methods and metrics. Mean \pm 1 standard error for test set over 10 runs.

Dataset	Method	MSE to true quantile (lower better)	Uncensored quantile loss (lower better)	Uncensored D-Calibration (lower better)	Concordance-Index (higher better)	Censored D-Calibration (lower better)
			Type 2 – real da	ata, synthetic censoring		
Housing	CQRNN	-	0.34 ±0.002	0.793 ±0.03	0.897 ± 0.0	$\textbf{0.02} \pm \textbf{0.004}$
Housing	Excl. censor	-	0.443 ± 0.005	2.176 ± 0.057	0.895 ± 0.001	0.311 ± 0.011
Housing	DeepQuantReg	-	0.399 ±0.004	2.474 ± 0.066	0.902 ± 0.001	0.196 ±0.031
Housing	LogNorm MLE	-	0.6 ± 0.002	2.794 ± 0.022	0.881 ± 0.001	1.035 ± 0.015
Protein	CQRNN	-	0.435 ±0.001	0.275 ±0.008	0.847 ±0.001	0.027 ± 0.001
Protein	Excl. censor	-	0.631 ± 0.002	3.45 ±0.053	0.838 ± 0.001	1.075 ± 0.02
Protein	DeepQuantReg	-	0.568 ± 0.002	2.809 ± 0.059	0.831 ± 0.001	0.495 ±0.011
Protein	LogNorm MLE	-	0.579 ± 0.002	0.694 ± 0.018	0.817 ± 0.002	0.298 ± 0.007
Wine	CQRNN	-	0.6 ± 0.005	0.908 ±0.069	0.815 ± 0.002	0.046 ±0.005
Wine	Excl. censor	-	0.791 ±0.005	6.606 ±0.209	0.799 ±0.003	0.722 ± 0.038
Wine	DeepQuantReg	-	0.717 ±0.005	3.211 ±0.159	0.792 ± 0.003	0.212 ± 0.021
Wine	LogNorm MLE	-	1.454 ± 0.022	5.736 ± 0.163	0.747 ± 0.004	0.784 ± 0.022
PHM	CQRNN	-	0.408 ± 0.001	0.243 ± 0.012	0.902 ± 0.001	0.008 ± 0.001
PHM	Excl. censor	-	0.519 ± 0.002	3.852 ± 0.037	0.901 ± 0.001	0.481 ± 0.006
PHM	DeepQuantReg	-	0.479 ± 0.002	1.589 ± 0.057	0.897 ± 0.001	0.154 ± 0.011
PHM	LogNorm MLE	-	0.599 ± 0.002	2.26 ± 0.018	0.9 ± 0.001	0.538 ± 0.007
SurvMNIST	CORNN	-	0.076 ±0.0	0.308 ±0.023	0.899 ±0.001	0.224 ±0.005
SurvMNIST	Excl. censor	-	0.133 ± 0.002	2.115 ± 0.086	0.896 ± 0.001	0.512 ± 0.014
SurvMNIST	DeepQuantReg	-	0.1 ± 0.001	1.021 ± 0.051	0.9 ± 0.001	0.264 ± 0.013
SurvMNIST	LogNorm MLE	-	0.209 ± 0.001	4.348 ± 0.049	0.894 ± 0.001	0.806 ± 0.015
METABRIC	CORNN		Type 3 – real	data, real censoring	0.644 ±0.006	0.189 ± 0.057
METABRIC	Excl. censor	-	-	-	0.615 ± 0.005	7.54 ± 0.478
METABRIC	DeepQuantReg	-	-	-	0.601 ± 0.003 0.601 ± 0.006	2.393 ± 0.211
METABRIC	LogNorm MLE	-	-	-	0.636 ± 0.006	0.72 ± 0.106
WHAS	CORNN				0.85 ±0.005	1.089 ±0.431
WHAS	Excl. censor	-	-	-	0.785 ±0.005	9.391 ± 0.709
WHAS	DeepQuantReg		-	-	0.774 ± 0.008	6.71 ± 0.448
WHAS	LogNorm MLE	-	-	-	0.81 ± 0.005	0.817 ±0.139
SUPPORT	CORNN	-			0.615 ±0.002	0.179 ±0.022
SUPPORT	Excl. censor		-		0.552 ± 0.002	9.606 ±0.231
SUPPORT	DeepQuantReg				0.552 ± 0.002 0.564 ± 0.002	6.747 ± 0.176
SUPPORT	LogNorm MLE	-	-	-	0.617 ± 0.002	2.384 ± 0.143
GBSG	CORNN	-	-		0.683 ±0.005	0.339 ±0.033
GBSG	Excl. censor	-	-	-	0.673 ± 0.005	11.732 ± 0.512
GBSG	DeepQuantReg	-	-	-	0.673 ± 0.005 0.673 ± 0.005	8.998 ± 0.479
GBSG	LogNorm MLE	-	-	-	0.677 ± 0.004	0.793 ± 0.08
	CORNN					
TMBImmuno TMBImmuno	Excl. censor	-	-	-	$\begin{array}{c} 0.579 \pm 0.008 \\ 0.52 \pm 0.008 \end{array}$	0.201 ±0.04 9.479 ±0.386
TMBImmuno	DeepQuantReg	-	-	-	0.52 ± 0.008 0.539 ± 0.011	4.827 ± 0.306
TMBImmuno	LogNorm MLE	-	-	-	0.581 ±0.007	0.634 ± 0.067
	CORNN					
BreastMSK BreastMSK	Excl. censor	-	-	-	0.619 ±0.01 0.646 ±0.008	0.08 ±0.012 4.546 ±0.235
BreastMSK	DeepQuantReg	-	-	-		
BreastMSK	LogNorm MLE	-	-	-	$\begin{array}{c} 0.638 \pm 0.008 \\ 0.631 \pm 0.01 \end{array}$	3.0 ± 0.17 0.521 ± 0.058
LGGGBM	CQRNN	-	-	-	0.792 ± 0.008	0.372 ± 0.074
LGGGBM	Excl. censor	-	-	-	0.782 ± 0.01	2.166 ± 0.303
LGGGBM	DeepQuantReg	-	-	-	0.781 ± 0.011	1.275 ± 0.184
LGGGBM	LogNorm MLE	-	-	-	0.793 ± 0.008	0.367 ± 0.083

Table 5: Results comparing CQRNN and sequential grid algorithm on the type 3 datasets, real target data with real censoring. Experiments were repeated over 50 random seeds.

Raw Results, mean \pm one standard error									
Dataset	Method	TQMSE	UQL	UnDCal	Concordance-Index (higher better)	Censored D-Calibration (lower better)			
METABRIC	CQRNN	-	-	-	0.643 ± 0.003	0.218 ±0.026			
METABRIC	Sequential grid	-	-	-	0.648 ± 0.002	0.399 ±0.04			
WHAS	CQRNN	-	-	-	0.86 ± 0.002	0.721 ±0.091			
WHAS	Sequential grid	-	-	-	0.852 ± 0.002	5.038 ± 0.74			
SUPPORT	CQRNN	-	-	-	0.614 ± 0.001	0.159 ± 0.01			
SUPPORT	Sequential grid	-	-	-	0.613 ± 0.001	0.723 ± 0.024			
GBSG	CQRNN	-	-	-	0.678 ± 0.002	0.361 ± 0.024			
GBSG	Sequential grid	-	-	-	0.678 ± 0.002	0.789 ± 0.042			
TMBImmuno	CQRNN	-	-	-	0.571 ± 0.003	0.207 ± 0.021			
TMBImmuno	Sequential grid	-	-	-	0.572 ± 0.003	0.375 ± 0.028			
BreastMSK	CQRNN	-	-	-	0.618 ± 0.005	0.085 ± 0.01			
BreastMSK	Sequential grid	-	-	-	0.597 ± 0.006	0.227 ± 0.016			
LGGGBM	CQRNN	-	-	-	0.784 ± 0.004	0.397 ± 0.039			
LGGGBM	Sequential grid	-	-	-	0.781 ± 0.004	0.491 ± 0.041			

Raw Results, mean \pm one standard error

Difference in means, alongside 95% confidence interval

Dataset	Number quantiles	Training time speed up	Test time speed up	Parameter saving	C-Index difference Seq. grid - CQRNN (>0 favours CQRNN)	CQRNN is sig. better?	CensDCal difference Seq. grid - CQRNN (<0 favours CQRNN)	CQRNN is sig. better?
METABRIC	5	5.3×	$2.5 \times$	4.6×	-0.005 ± 0.001	×	-0.181 ± 0.032	1
WHAS	5	5.1×	$3.9 \times$	$4.6 \times$	0.008 ± 0.001	1	-4.317 ± 0.745	1
SUPPORT	5	5.1×	$2.7 \times$	$4.6 \times$	0.001 ± 0.000	1	-0.564 ± 0.022	1
GBSG	5	$5.3 \times$	$5.1 \times$	$4.6 \times$	-0.001 ± 0.000	X	-0.428 ± 0.026	1
TMBImmuno	5	5.1×	$4.3 \times$	$4.6 \times$	-0.000 ± 0.001	-	-0.168 ± 0.025	1
BreastMSK	5	5.1×	$5.0 \times$	$4.6 \times$	0.021 ± 0.004	1	-0.141 ± 0.018	1
LGGGBM	5	$5.4 \times$	$5.1 \times$	$4.6 \times$	0.003 ± 0.001	1	-0.094 ± 0.038	1
CORNN better:						4/7		7/7
Seq grid better:						2/7		0/7
No sig. difference:						1/7		0/7

Figure 4: Ablations over grid size and number of datapoints for various synthetic datasets using our CQRNN method.

C.1 Hyperparameter ablations

The requirements for CQRNN in Algorithm 2 include two hyperparameters unique to CQRNN (the rest determine the NN and its optimisation) – the grid of quantiles, $\operatorname{grid}_{\tau}$, and the large pseudo y value, y^* . This section investigates the role of these. It also discusses two modifications which were tested in initial experiments but which were not deemed essential for good performance, and excluded from the proposed method – mitigating crossing quantiles and interpolating between quantiles.

Grid size. For evenly spaced grids, as considered in this work, the number of quantiles estimated, M, fully determines the grid. One might expect that a larger grid size, with finer increments between quantiles, would lead to a better fit, since censored weights can be estimated more accurately. Indeed, the convergence rate of Portnoy's estimator was found to depend on grid size, O(1/(MN)) [Neocleous et al.] [2006].

We hypothesised that a larger grid might only deliver benefit when the dataset was sufficiently large for these fine-grained quantiles to be distinguished. Hence, Figure 4 shows an ablation investigating the interaction between grid size and number of datapoints for each of our type 1 synthetic 1D functions. Experiments were repeated with 100 random seeds, which was required to reduce the error bars sufficiently for comparison. Grid size was varied, $M \in \{9, 19, 39\}$, and number of datapoints, $N \in \{100, 200, 400, 800, 1600, 3200, 6400, 12800\}$.

For all datasets and grid sizes, TQMSE decreases with dataset size. In general a larger grid size does produce lower TQMSE, and in three datasets the benefit is significant (Norm uniform, Exponential, Weibull), with the advantage indeed more pronounced with a larger dataset size. In two datasets (Norm non-linear, LogNorm), this benefit is slight, and a larger grid is even seen to be slightly harmful on very small datasets. One dataset (Norm linear) does not follow this trend, where the widest grid proves slightly harmful across all dataset sizes.

Pseudo y value. Portnoy [2003] proposed that y^* could be set to any large value approximating ∞ , with the R package 'quantreg' setting $y^* = 1e6$. Since the sequential grid algorithm learns quantiles sequentially, it can simply halt if it attempts to estimate a quantile for which only censored datapoints remain, and hence is undefined.

The CQRNN algorithm changes this situation in two ways. Firstly, since the algorithm is no longer sequential and learns all quantiles simultaneously, it does not have the option of halting. Secondly, since a non-linear function is learnt, it is possible that higher quantiles might be undefined in one region of the input space, whilst being learnable in the rest of the space. Regressing towards an arbitrarily large y^* value for a portion of the input space could adversely impact the quantile estimate elsewhere. When all quantiles in grid_{τ} are fully defined, the effect is no different to using ∞ .

To accommodate these differences, we recommend setting y^* to a more modest value. We define it in terms of the maximum y value in the training set, $y^* = c_{y^*} \max_i y_i$, for a hyperparemeter, $c_{y^*} > 1$. In real-world problems, a practitioner might use an estimate for this based on their knowledge about the maximum feasible value for the target. In lieu of that, we set $c_{y^*} = 1.2$ for all our experiments (except the below ablation!), which provided reasonable results across datasets.

Table 6 presents an ablation on four of our (multidimensional) type 1 synthetic datasets, using $c_{y^*} \in \{1.0, 1.2, 1.5, 2.0, 10, 9, 100.0\}$. For dataset Norm light, y^* has no impact since the target distribution is fully defined under censoring. However, other datasets have input regions where the higher quantiles are *not* defined due to censoring, and hence higher quantiles are impacted by the magnitude of y^* . The optimal value varies by dataset (e.g. 1.2 is best for Norm heavy, while 10.0 is best for LogNorm heavy).

Table 6: Ablation over psuedo y value, y^* . Mean over ten runs, all hyperparameters fixed.

	— Target value for pseudo-datapoints, y* ——							
Dataset	$1.0 \max_i y_i$	$1.2 \max_i y_i$	$1.5 \max_i y_i$	$2.0 \max_i y_i$	$10.0 \max_i y_i$	$100.0 \max_i y_i$		
	TOMSE (lower better)							
Norm heavy	1.452	0.579	1.237	6.196	591.257	57421.824		
Norm light	0.081	0.079	0.081	0.081	0.081	0.081		
LogNorm heavy	2.502	2.424	2.321	2.173	1.026	19.827		
LogNorm light	0.614	0.506	0.385	0.252	0.147	0.147		

Crossing quantiles. One issue often discussed in quantile regression is 'crossing quantiles'. Higher quantiles should *always* produce higher predictions, i.e. $\hat{y}_{i,\tau_1} > \hat{y}_{i,\tau_2} \forall \tau_1 > \tau_2$. The crossing quantile

issue arises when this condition does not hold. We anticipated that the flexibility of NNs might exacerbate this issue, and we tested two methods to remedy this. 1) Adding a crossing penalty to the loss [Bondell et al., 2010], $\mathcal{L}_{cross} = \sum_{i=1}^{N} \sum_{j=1}^{N_{\tau}-1} \max[0, c - (\hat{y}_{i,grid_{\tau}}[j+1] - \hat{y}_{i,grid_{\tau}}[j])]$, where c is the smallest acceptable distance between neighbouring quantiles. 2) Modifying the NN architecture to enforce monotonicity between quantiles, by constraining each consecutive quantile prediction to add on to the previous one, after passing through a SoftPlus. In our experiments, neither method significantly impacted performance. Favouring simplicity, we propose the CQRNN algorithm without these. It's possible that other methods might have more effect, e.g. [Zhou et al.] 2020], Brando et al., 2022]. We leave further exploration to future work.

Interpolating quantiles. The CQRNN algorithm sets the estimated censored quantiles, \mathbf{q} , by choosing the prediction closest to the censored datapoint, $\hat{q}_j \leftarrow \arg \min_{\tau} |\hat{y}_{j,\tau} - y_j|$. In early experiments, we considered an alternative approach that took a linear interpolation between the two nearest quantiles. In initial experiments this wasn't found to significantly improve performance, so we propose the CQRNN algorithm using the simpler $\arg \min$ approach.

Partial vs. full optimisation. Figure 5 explores the effect of optimising the NNs partially, as is proposed in CQRNN in Algorithm 2, compared to fully, as might be done more typically in EM procedures. The figure shows that convergence is fastest when using partial maximisation, when the most up-to-date estimates of \hat{q}_i are used. This ends up being more efficient than freezing \hat{q}_i and only updating after a longer period of optimisation.

Figure 5: This figure explores the effect of optimising the NNs partially compared to fully. It shows training loss and TQMSE over training epochs. The Normal Linear dataset was used.