
Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] We don’t

foresee direct negative societal impacts from our algorithm.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code is available
at https://github.com/TeaPearce/Censored_Quantile_Regression_NN.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Standard errors over ten random seeds are included in
main results in Figure 2 and Table 4.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Data details are given

in Appendix B.4.
(b) Did you mention the license of the assets? [Yes] All datasets used are opensourced.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We don’t create new assets. Links to datasets used are provided in Appendix B.4.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] Data details are given in Appendix B.4.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

https://github.com/TeaPearce/Censored_Quantile_Regression_NN

A Analytical Results

A.1 Proofs

Theorem 1. Let the likelihood for each datapoint at each quantile be an asymmetric Laplace

distribution with scale, � =
p
⌧ � ⌧2, and asymmetry, k = ⌧/

p
⌧ � ⌧2. The negative log likelihood

is,

� log p(y|x, ✓,w, y
⇤) =

X

⌧2grid⌧

LPort.(✓, y,x, ⌧,w, y
⇤) + constant . (11)

Proof. Define the likelihood over all quantiles of interest, and split censored datapoints into two
pseudo datapoints, one at the censoring location and one at the large pseudo value y

⇤, to give a
weighted likelihood,

p(y|x, ✓,w, y
⇤) =

Y

⌧2grid⌧

p(y|x, ✓,w, y
⇤
, ⌧), (12)

p(y|x, ✓,w, y
⇤
, ⌧) =

Y

i2Sobserved

p(yi|xi, ✓)
Y

j2Scensored

p(yj |xj , ✓)
wjp(y⇤|xj , ✓)

1�wj . (13)

We write the asymmetric Laplace density with ŷj,⌧ as the location parameter and scale � and
asymmetry k,

f(yj ; ŷj,⌧ ,�, k) =
�

k + 1/k

⇢
exp((�/k)(yj � ŷj,⌧)) if ŷj,⌧ > yj

exp(��k(yj � ŷj,⌧)) else
. (14)

Setting � =
p
⌧ � ⌧2 and k = ⌧/

p
⌧ � ⌧2 and rearranging,

f(yj ; ŷj,⌧ ,�, k) = (⌧ � ⌧
2) exp(yj � ŷj,⌧)(�⌧ + I[ŷj,⌧ > yj]) (15)

log f(yj ; ŷj,⌧ ,�, k) = �⇢⌧ (yj , ŷj,⌧) + constant (16)

Taking the logarithm of Eq. 13 we have,

log p(y|x, ✓,w, y
⇤) =

X

⌧2grid⌧

X

i2Sobserved

log p(yi|xi, ✓) +
X

j2Scensored

log p(yj |xj , ✓)
wj + log p(y⇤|xj , ✓)

1�wj .

(17)

Eq. 16 may be substituted into this if all likelihoods of observed and censored pseudo datapoints are
chosen to follow asymmetric Laplace distributions. Taking the negative then recovers the theorem’s
result.

Theorem 2. If q̂j is underestimated, one iteration of the algorithm acts to increase the quantile

predictions, ŷj,⌧ , by the same amount, or even higher, than if the weight had been correct. If q̂j is

overestimated, ŷj,⌧ , is decreased by the same amount, or even lower, than with the correct weight.

Remark. Note that if a quantile q̂j is underestimated, it’s desirable to increase the quantiles relating

to that datapoint, for input xj and predictions ŷj,⌧ . If a quantile q̂j is instead overestimated, it’s

desirable to decrease the quantiles for input xj and predictions ŷj,⌧ . We refer to this desired

behaviour as ‘self-correcting’.

Proof. Denote qj the true quantile that censored datapoint j is censored in, and wj = (⌧�qj)/(1�qj)
the corresponding true weight. We now consider one iteration of the algorithm in the case that the
estimated quantile is underestimated.

1. Model underpredicts the censored quantile, q̂j = qj � ✏, for some ✏ > 0.

2. The corresponding weight is also underestimated, q̂j < qj =) ŵj < wj , shown in lemma
2.1.

14

3. Lemma 2.3 shows that, for censored datapoint j, the gradient of Eq. 4 wrt the quantile
prediction ŷj,⌧ is,

@LPort.(✓,D, ⌧,w, y
⇤)

@ŷj,⌧
=

8
<

:

�⌧ if, ŷj,⌧ < yj

wj � ⌧ if, yj  ŷj,⌧ < y
⇤

1� ⌧ if, y⇤  ŷj,⌧

. (18)

Hence, if ŵj is underestimated it holds that, @LPort.(✓,D,⌧,ŵ,y
⇤)

@ŷj,⌧


@LPort.(✓,D,⌧,w,y
⇤)

@ŷj,⌧
.

4. When this gradient is used for optimisation, this has the effect of increasing the quantile
prediction, ŷj,⌧ , by either the same amount, or even higher, than if the weight had been
correct.

Similar (reversed) logic applies if the quantile is initially overestimated, q̂j = qj + ✏, (e.g. lemma
2.2) which encourages decreasing the quantile predictions, ŷj,⌧ , by the same amount or lower than
with correct weights. Hence, weight estimates will be improved in future iterations of the algorithm.
Note that this applies to all quantiles, ⌧ 2 grid

⌧
.

Lemma 2.1. Let, q̂j = qj � ✏, and ✏ > 0. It holds that, q̂j < qj =) ŵj < wj , for, ⌧ 2 (0, 1), and,

q̂j , qj 2 (0, 1).

Proof. From the definition of the weights, ŵj < wj =) (⌧�qj�✏)/(1�qj�✏) < (⌧�qj)/(1�qj).

Let a := ⌧ � qj and b := 1� qj . Note that, a < b, since by assumption, ⌧ < 1. We must show that,

a� ✏

b� ✏
<

a

b
(19)

a� ✏

b� ✏

b

a
< 1 (20)

ab� b✏

ab� a✏
< 1, which holds since, a < b. (21)

Lemma 2.2. Let, q̂j = qj + ✏, and ✏ > 0. It holds that, q̂j > qj =) ŵj > wj , for, ⌧ 2 (0, 1), and,

q̂j , qj 2 (0, 1).

Proof. This proof follows lemma 2.1. We now have,

ab + b✏

ab + a✏
> 1, which holds since, a < b. (22)

Lemma 2.3. The partial derivative of Portnoy’s loss wrt the predicted quantile, for censored data-

point j, is given by,

@LPort.(✓,D, ⌧,w, y
⇤)

@ŷj,⌧
=

8
<

:

�⌧ if, ŷj,⌧ < yj

wj � ⌧ if, yj  ŷj,⌧ < y
⇤

1� ⌧ if, y
⇤
 ŷj,⌧

. (23)

Proof. Recalling that,

⇢⌧ (yi, ŷi,⌧) = (yi � ŷi,⌧) (⌧ � I[ŷi,⌧ > yi]) , (24)

we have,

@⇢⌧ (yi, ŷi,⌧)

@ŷj,⌧
= I[ŷi,⌧ > yi]� ⌧. (25)

15

We are interested in the derivative for the censored portion of Portnoy’s loss in Eq. 4,
@wj⇢⌧ (yj , ŷj,⌧) + (1� wj)⇢⌧ (y⇤, ŷj,⌧)

@ŷj,⌧
. (26)

Note that we always choose, y⇤ > yj . Hence ŷj,⌧ < yj =) ŷj,⌧ < y
⇤, so there are three cases to

consider. Case 1, ŷj,⌧ < yj , case 2, yj  ŷj,⌧ < y
⇤, case 3 y

⇤
 ŷj,⌧ .

For case 1,
@wj⇢⌧ (yj , ŷj,⌧) + (1� wj)⇢⌧ (y⇤, ŷj,⌧)

@ŷj,⌧
= wj(�⌧) + (1� wj)(�⌧) = �⌧. (27)

For case 2,
@wj⇢⌧ (yj , ŷj,⌧) + (1� wj)⇢⌧ (y⇤, ŷj,⌧)

@ŷj,⌧
= wj(1� ⌧) + (1� wj)(�⌧) = wj � ⌧. (28)

For case 3,
@wj⇢⌧ (yj , ŷj,⌧) + (1� wj)⇢⌧ (y⇤, ŷj,⌧)

@ŷj,⌧
= wj(1� ⌧) + (1� wj)(1� ⌧) = 1� ⌧. (29)

A.2 First Iteration of the Sequential Grid Algorithm

In this section we compare the procedure proposed by Portnoy [2003] to find the first quantile
predicted at, ⌧0 := grid

⌧
[0], with the procedure we propose in the sequential grid algorithm for NNs

(Algorithm 1). We show that these two procedures produce equivalent gradients.

Portnoy’s procedure. Portnoy [2003] require that no censored datapoints lie below the first quantile,
and propose deleting these from the dataset when this does occur, as follows.

1. Set w = 1 for all censored datapoints in dataset.
2. Optimise LPort. (Eq. 4) for ⌧0.
3. Find all censored datapoints below ⌧0, B {j 2 Scensored : yj < ŷj,⌧0}.
4. If B is empty then exit.
5. Exclude all elements of B from the dataset and repeat.

This optimisation could be repeated many times. We’d like to avoid this since training NNs on
potentially large datasets can be costly.

Sequential grid for NNs procedure. Algorithm 1 instead simply sets q = 0, and optimises the first
quantile once only.

1. Set q = 0 for all censored datapoints in dataset.
2. Optimise LPort. (Eq. 4) for ⌧0.

Justification. We now justify why this is a reasonable approximation. First note that when q̂j = 0
we have, ŵi = ⌧�q̂i

1�q̂i
= ⌧ . Using lemma 2.3 we can compare the gradients for each procedure.

For Portoy’s procedure, when ŵj = 1,

@LPort.(✓,D, ⌧, ŵ, y
⇤)

@ŷj,⌧
=

8
<

:

�⌧ if, ŷj,⌧ < yj

1� ⌧ if, yj  ŷj,⌧ < y
⇤ =) set to 0 in next iteration

1� ⌧ if, y⇤  ŷj,⌧

. (30)

For Algorithm 1, when q̂j = 0,

@LPort.(✓,D, ⌧, ŵ, y
⇤)

@ŷj,⌧
=

8
<

:

�⌧ if, ŷj,⌧ < yj

0 if, yj  ŷj,⌧ < y
⇤

1� ⌧ if, y⇤  ŷj,⌧

. (31)

At first look, the gradients appear to differ in the case yj  ŷj,⌧ < y
⇤. But when a datapoint triggers

this criteria in Portnoy’s procedure, it will be excluded and the model retrained, in which case its
gradient becomes 0. As such the gradients for a censored datapoint in both procedures are equivalent.

16

B Experimental Details

This section provides further details about all experiments run. Our code base uses the PyTorch
framework. Hyperparameters in Appendix B.1. Metrics in Appendix B.2. Baselines in Appendix B.3.
Datasets in Appendix B.4.

Hardware. We used an internal cluster for experiments, utilising machines with four GPUs and 14
CPU cores. Most of our datasets used fully-connected NNs, which were trained on CPU, while GPUs
were used for the SurvMNIST experiments.

B.1 Full Hyperparameter Details

Below we list hyperparameter settings used and where applicable the tuning protocols followed.

B.1.1 Qualitative 1D Analysis

Section 6.1 experiment. All methods used the same optimisation procedure and NN architecture,
without tuning.

• Training dataset size: 500, where, x ⇠ U(0, 2)
• Epochs: 100
• Optimiser: Adam
• Learning rate: 0.01 (decreased 70% and 90% of the way through training)
• Batch size: 128
• Weight decay: 0.0001
• NN architecture: Fully-connected, two hidden layers of 100 hidden nodes, GeLU activations
• y

⇤ = 1.2⇥maxi yi

• grid
⌧
2 {0.1, 0.3, 0.5, 0.7, 0.9}

B.1.2 Benchmarking

Section 6.2 experiment. Experiments were repeated over 10 random seeds. Hyperparameter settings.

• Training dataset size: various – see Table 2
• Test dataset size: various – see Table 2
• Epochs: 2 {10, 20, 50, 100}

• Optimiser: Adam
• Learning rate: 0.01 for fc NN, 0.001 for CNN (decreased 70% and 90% of the way through

training)
• Batch size: 128
• Weight decay: 0.0001
• Default NN architecture: Fully-connected, two hidden layers of 100 hidden nodes, ReLU

activations
• CNN architecture for SurvMNIST following Goldstein et al. [2020]: Conv2D[64, (5⇥5)]
! ReLU ! Dropout(0.2) ! AveragePool(2⇥2) ! Conv2D[128, (5⇥5)] ! ReLU !
Dropout(0.2)! AveragePool(2⇥2)! Conv2D[256, (2⇥2)]! ReLU! Linear

• y
⇤ = 1.2⇥maxi yi

• Grid size M 2 {6, 10, 20}

• Dropout 2 {True,False}

Tuning process for epochs and dropout:

• For the real type 2 and type 3 datasets, we tuned number of epochs 2 {10, 20, 50, 100} and
dropout 2 {True,False} for each dataset for each method. We used three random splits as
a validation (but not overlapping with the random seeds used in the final test run).

• Epochs was fixed to 100 and dropout disabled for: Norm linear, Norm non-linear, Exponen-
tial, Weibull, LogNorm, Norm uniform.

• Epochs was fixed to 20 and dropout disabled for: Norm heavy, Norm medium, Norm light,
Norm same.

17

Table 3: Availability of metrics for each dataset type.

Dataset type Target distribution Censoring distribution TQMSE UQL UnDCal CensDCal C-Index

Type 1 Synthetic Synthetic 3 3 3 3 3
Type 2 Real Synthetic 7 3 3 3 3
Type 3 Real Real 7 7 7 3 3

• Epochs was fixed to 10 and dropout disabled for: LogNorm heavy, LogNorm medium,
LogNorm light, LogNorm same.

We fixed the grid size according to an estimate of how densely the datapoints covered the input space
(a rough consideration of dataset size and number of features):

• Grid size M = 5 for smaller datasets with more features: WHAS, SUPPORT, GBSG,
TMBImmuno, BreastMSK, LGGGBM, METABRIC.

• Grid size M = 9 for medium datasets or smaller datasets with less features: Norm linear,
Norm non-linear, Exponential, Weibull, LogNorm, Norm uniform.

• Grid size M = 19 for larger datasets or those with less features: Norm heavy, Norm medium,
Norm light, Norm same, LogNorm heavy, LogNorm medium, LogNorm light, LogNorm
same, Housing, Protein, Wine, PHM, SurvMNIST.

B.1.3 Comparison of Sequential Grid and CQRNN

Section 6.3 experiment. This was carried out under the same protocol as for the main benchmarking,
but repeated over a larger number of seeds (200 for type 1 datasets, 50 for type 3 datasets). To
obtain 95% confidence intervals, we compute the standard error of the difference between means, and
multiply it by a two-sided t-statistic, with (number of seeds�1) degrees of freedom at the ↵ = 0.05
significance level. If zero falls within this confidence interval, the difference is deemed not significant.

B.1.4 Hyperparameter Investigation

Section 6.4 experiment. Hyperparameters are as for the main benchmarking except M and y
⇤ were

varied as stated in the text. Epochs were set via the formula epochs = 500 ⇥ 200/N ensuring the
same number of gradient updates were made on each run. Experiments were repeated over 100
random seeds for the grid investigation, and ten random seeds for the y

⇤ investigation.

B.2 Metrics

This section briefly expands upon the metrics introduced in Section 6. Table 3 summarises the
availability on each metric for each dataset type. The computation of each is also detailed below.

True quantile MSE (TQMSE) :=
1

N

X

⌧2[0.1,0.5,0.9]

NX

i=1

(ŷi,⌧ � yi,⌧)
2 (32)

Uncensored quantile loss (UQL) :=
1

N

X

⌧2[0.1,0.5,0.9]

NX

i=1

⇢⌧ (yi, ŷi,⌧) (33)

Uncensored D-Calibration (UnDCal) := 100⇥
M�1X

j=1

(⌧j+1 � ⌧j)�

1

N

NX

i=1

I[ŷi,⌧j < yi  ŷi,⌧j+1]

!2

(34)

Censored D-Calibration (CensDCal) := 100⇥
M�1X

j=1

✓
(⌧j+1 � ⌧j)�

1

N
⇠

◆2

(35)

18

where, Goldstein et al. [2020] defines,

⇠ =
X

i2Sobserved

I[ŷi,⌧j < yi  ŷi,⌧j+1]+
X

i2Scensored

(⌧j+1 � qi)I[ŷi,⌧j < yi  ŷi,⌧j+1]

1� qi
+

(⌧j+1 � ⌧j)I[qi < ⌧j]

1� qi
.

(36)
We increase the magnitude of DCal metrics by 100⇥ to make the numbers of similar order to TQMSE
and UQL.

B.3 Baselines

This section provides some extra detail about the LogNorm MLE baseline. For this method, we
use a NN with two outputs, representing the mean, µ, and standard deviation, �, of a Log Normal
distribution, i.e. log y ⇠ N (µ̂, �̂2). We pass the output representing the standard deviation prediction
through a SoftPlus to ensure it is always positive and differentiable.

The maximum likelihood estimation loss is then,
�LMLE(✓,D) :=

X

i2Sobserved

log p(yi|xi, ✓) +
X

j2Scensored

log(1� CDF(yj |xj , ✓)), (37)

where the likelihood and CDF follow the analytical expressions for the Log Normal distribution. At
evaluation time, we use the SciPy package to compute the quantiles from the predicted Log Normal
distribution that correspond to those in grid

⌧
. This allows a like-for-like comparison with our other

baselines.

B.4 Dataset Details

This section provides further detail about the source of each dataset used. All real-world datasets
were taken from open-access repositories, and had already been anonymised. For real-world datasets,
we do not follow any previous test/train splits, rather we randomly shuffle the data for each run,
selecting 80% for training and 20% for testing.

B.4.1 Type 1 Datasets

Table 2 details the generating target and censoring distributions used, as well as numbers of test and
train datapoints. Inputs were always generated uniformly via, x ⇠ U(0, 2)D for D features.

B.4.2 Type 2 Datasets

Table 2 details dataset sizes and number of features. All datasets used a uniform censoring distribution,
ci ⇠ U(0, c), where c was selected to be equal to the 90th percentile of the target distribution
for SurvMNIST, and c = 1.5 maxi yi for the other type 2 datasets. Housing was sourced from
Scikit Learn datasets, while Protein, Wine and PHM were sourced through OpenML https:
//www.openml.org/.

• Housing Target is median house prices. Retrieved from https://scikit-learn.org/
stable/datasets/real_world.html#california-housing-dataset.

• Protein Target is RMSD. OpenML lookup ID is physicochemical-protein.
• Wine Target is quality of wine. OpenML lookup ID is wine quality.
• PHM (prognostics health management) target is breakdown time of simulated machines.

OpenML lookup ID is NASA PHM2008.

Our final type 2 dataset is slightly different, since we don’t use the provided labels directly.

• SurvMNIST appeared in Goldstein et al. [2020], who adapted it
from Sebastian Pölsterl’s blog: https://k-d-w.org/blog/2019/07/
survival-analysis-for-deep-learning/. It uses the standard MNIST dataset
http://yann.lecun.com/exdb/mnist/, but targets are drawn from a Gamma distribu-
tion, with different parameters per class. Goldstein et al. [2020] used a small variance fixed
across classes, with means 2 [11.25, 2.25, 5.25, 5.0, 4.75, 8.0, 2.0, 11.0, 1.75, 10.75]. For
our purposes, we are most interested in how well methods capture variance, so we vary it,
variance 2 [0.1, 0.5, 0.1, 0.2, 0.2, 0.2, 0.3, 0.1, 0.4, 0.6].

19

https://www.openml.org/
https://www.openml.org/
https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset
https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset
https://k-d-w.org/blog/2019/07/%20survival-analysis-for-deep-learning/
https://k-d-w.org/blog/2019/07/%20survival-analysis-for-deep-learning/
http://yann.lecun.com/exdb/mnist/

B.4.3 Type 3 Datasets

We provide a brief overview of each dataset. Four datasets – GBSG, METABRIC, SUPPORT, WHAS
– were all retrieved from https://github.com/jaredleekatzman/DeepSurv/tree/master/
experiments/data. Katzman et al. [2018] provides a detailed introduction to these datasets. The
other three datasets – TMBImmnuo, BreastMSK, LGGGBM – were all sourced from the cBioPortal,
https://www.cbioportal.org/, for cancer genomics.

• GBSG (Rotterdam & German Breast Cancer Study Group) requires prediction of survival
time for breast cancer patients.

• METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) requires
prediction of survival time for breast cancer patients. Covariates include expressions for
four genes as well as clinical data.

• SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment)
requires prediction of survival time in seriously ill hospitalised patients. Covariates include
demographic and basic diagnosis information.

• WHAS (Worcester Heart Attack Study) requires prediction of acute myocardial infraction
survival.

• TMBImmuno (Tumor Mutational Burden and Immunotherapy) requires prediction of
survival time for patients with various cancer types using clinical data. Covariates include
age, sex, and number of mutations. Retrieved from https://www.cbioportal.org/
study/clinicalData?id=tmb_mskcc_2018.

• BreakMSK requires prediction of survival time for patients with breast cancer using tumour
information. Covariates include ER, HER, HR, mutation count, TMB. Retrieved from
https://www.cbioportal.org/study/clinicalData?id=breast_msk_2018.

• LGGGBM. requires prediction of survival time for cancer patient from clinical data. Co-
variates include age, sex, purity, mutation count, TMB. Retrieved from https://www.
cbioportal.org/study/clinicalData?id=lgggbm_tcga_pub

20

https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/data
https://github.com/jaredleekatzman/DeepSurv/tree/master/experiments/data
https://www.cbioportal.org/
https://www.cbioportal.org/study/clinicalData?id=tmb_mskcc_2018
https://www.cbioportal.org/study/clinicalData?id=tmb_mskcc_2018
https://www.cbioportal.org/study/clinicalData?id=breast_msk_2018
https://www.cbioportal.org/study/clinicalData?id=lgggbm_tcga_pub
https://www.cbioportal.org/study/clinicalData?id=lgggbm_tcga_pub

C Further Results

CQRNN Sequential grid Excl. censor DeepQuantReg LogNorm MLE
N

or
m

un
ifo

rm
Observed

Censored

True quantiles

Est. quantile 0.1

Est. quantile 0.3

Est. quantile 0.5

Est. quantile 0.7

Est. quantile 0.9

N
or

m
lin

ea
r

N
or

m
no

n-
lin

.
Ex

po
ne

nt
ia

l
W

ei
bu

ll
Lo

gN
or

m

Figure 3: This figure shows estimated quantiles (blue through pink) compared to ground truth quantiles
(dashed black lines). It shows 1D synthetic datasets of varying functions and noise distributions
(rows), fitted by various methods (columns).

21

Table 4: Full results table for all datasets, methods and metrics. Mean ± 1 standard error for test set
over 10 runs.

Dataset Method MSE to true quantile Uncensored quantile loss Uncensored D-Calibration Concordance-Index Censored D-Calibration
(lower better) (lower better) (lower better) (higher better) (lower better)

Type 1 – synthetic data, synthetic censoring
Norm linear CQRNN 0.088 ± 0.009 1.517 ±0.01 0.327 ±0.057 0.663 ±0.002 0.211 ±0.034
Norm linear Sequential grid 2.779 ± 0.506 1.623 ±0.02 0.303 ±0.06 0.662 ±0.002 0.224 ±0.024
Norm linear Excl. censor 0.566 ± 0.039 1.62 ±0.016 3.078 ±0.244 0.662 ±0.002 2.349 ±0.102
Norm linear DeepQuantReg 1.172 ± 0.133 1.695 ±0.026 1.94 ±0.192 0.663 ±0.002 1.241 ±0.138
Norm linear LogNorm MLE 0.184 ± 0.021 1.522 ±0.008 0.315 ±0.023 0.662 ±0.002 0.232 ±0.04

Norm non-lin CQRNN 0.028 ± 0.004 0.759 ±0.005 0.262 ±0.044 0.674 ±0.004 0.186 ±0.023
Norm non-lin Sequential grid 0.027 ± 0.003 0.759 ±0.005 0.283 ±0.034 0.673 ±0.004 0.194 ±0.03
Norm non-lin Excl. censor 0.053 ± 0.004 0.768 ±0.006 0.579 ±0.088 0.673 ±0.004 0.449 ±0.054
Norm non-lin DeepQuantReg 0.818 ± 0.093 0.998 ±0.019 4.263 ±0.234 0.609 ±0.023 2.593 ±0.206
Norm non-lin LogNorm MLE 0.323 ± 0.035 0.824 ±0.009 1.651 ±0.118 0.653 ±0.005 0.971 ±0.077

Exponential CQRNN 1.298 ± 0.201 4.057 ±0.04 0.404 ±0.035 0.559 ±0.003 0.248 ±0.031
Exponential Sequential grid 1.702 ± 0.397 4.061 ±0.039 0.391 ±0.057 0.558 ±0.004 0.226 ±0.025
Exponential Excl. censor 11.03 ± 0.772 4.456 ±0.039 2.537 ±0.18 0.535 ±0.007 1.513 ±0.14
Exponential DeepQuantReg 20.046 ± 5.844 4.675 ±0.09 2.294 ±0.252 0.544 ±0.004 1.276 ±0.158
Exponential LogNorm MLE 17.825 ± 2.831 4.342 ±0.058 1.056 ±0.071 0.552 ±0.003 0.401 ±0.045

Weibull CQRNN 0.255 ± 0.025 1.879 ±0.018 0.33 ±0.037 0.772 ±0.002 0.211 ±0.023
Weibull Sequential grid 0.261 ± 0.018 1.877 ±0.017 0.352 ±0.037 0.772 ±0.002 0.209 ±0.023
Weibull Excl. censor 2.468 ± 0.118 2.18 ±0.021 1.942 ±0.152 0.769 ±0.002 0.834 ±0.069
Weibull DeepQuantReg 1.116 ± 0.16 2.005 ±0.037 1.057 ±0.159 0.769 ±0.002 0.556 ±0.126
Weibull LogNorm MLE 1.586 ± 0.081 2.048 ±0.02 0.603 ±0.036 0.771 ±0.002 0.478 ±0.072

LogNorm CQRNN 0.411 ± 0.057 1.716 ±0.04 0.253 ±0.025 0.59 ±0.004 0.161 ±0.015
LogNorm Sequential grid 0.328 ± 0.036 1.716 ±0.041 0.28 ±0.033 0.591 ±0.003 0.193 ±0.024
LogNorm Excl. censor 1.757 ± 0.114 1.818 ±0.051 1.46 ±0.129 0.588 ±0.004 1.119 ±0.062
LogNorm DeepQuantReg 1.279 ± 0.168 1.843 ±0.04 1.924 ±0.131 0.58 ±0.004 1.279 ±0.106
LogNorm LogNorm MLE 0.247 ± 0.032 1.713 ±0.041 0.115 ±0.014 0.589 ±0.004 0.151 ±0.018
Norm uniform CQRNN 0.388 ± 0.054 1.442 ±0.022 2.219 ±0.212 0.789 ±0.003 0.094 ±0.008
Norm uniform Sequential grid 0.188 ± 0.016 1.409 ±0.017 1.347 ±0.136 0.788 ±0.003 0.462 ±0.02
Norm uniform Excl. censor 1.088 ± 0.112 1.501 ±0.018 1.557 ±0.19 0.79 ±0.003 0.721 ±0.066
Norm uniform DeepQuantReg 2.591 ± 0.56 1.809 ±0.084 4.397 ±0.687 0.598 ±0.064 0.418 ±0.074
Norm uniform LogNorm MLE 939.992 ± 144.76 7.727 ±0.502 32.486 ±1.405 0.77 ±0.006 4.259 ±0.144

Norm heavy CQRNN 0.579 ± 0.089 0.999 ±0.041 6.491 ±1.094 0.922 ±0.002 0.301 ±0.067
Norm heavy Sequential grid 0.597 ± 0.081 0.996 ±0.037 6.595 ±1.406 0.923 ±0.002 0.198 ±0.014
Norm heavy Excl. censor 1.285 ± 0.205 1.223 ±0.069 8.206 ±1.895 0.923 ±0.002 0.261 ±0.021
Norm heavy DeepQuantReg 1.099 ± 0.175 1.166 ±0.06 6.681 ±1.365 0.923 ±0.002 0.191 ±0.016
Norm heavy LogNorm MLE 5568.886 ± 1737.861 17.077 ±2.442 21.283 ±1.057 0.852 ±0.008 1.113 ±0.102

Norm med. CQRNN 0.11 ± 0.007 0.789 ±0.006 0.633 ±0.138 0.896 ±0.001 0.157 ±0.054
Norm med. Sequential grid 0.16 ± 0.009 0.799 ±0.005 0.474 ±0.046 0.895 ±0.001 0.159 ±0.011
Norm med. Excl. censor 0.117 ± 0.008 0.792 ±0.005 0.247 ±0.02 0.896 ±0.001 0.136 ±0.015
Norm med. DeepQuantReg 0.255 ± 0.016 0.847 ±0.008 0.944 ±0.098 0.892 ±0.001 0.232 ±0.029
Norm med. LogNorm MLE 276.276 ± 41.622 3.974 ±0.228 17.969 ±0.548 0.865 ±0.004 4.612 ±0.134

Norm light CQRNN 0.079 ± 0.005 0.778 ±0.005 0.173 ±0.021 0.882 ±0.001 0.084 ±0.008
Norm light Sequential grid 0.117 ± 0.005 0.784 ±0.004 0.352 ±0.027 0.882 ±0.001 0.19 ±0.018
Norm light Excl. censor 0.083 ± 0.005 0.779 ±0.005 0.159 ±0.017 0.882 ±0.001 0.112 ±0.013
Norm light DeepQuantReg 0.277 ± 0.013 0.854 ±0.008 1.205 ±0.081 0.878 ±0.001 0.588 ±0.046
Norm light LogNorm MLE 58.503 ± 6.922 2.475 ±0.093 13.713 ±0.465 0.861 ±0.003 7.74 ±0.286

Norm same CQRNN 0.094 ± 0.005 0.785 ±0.003 0.19 ±0.022 0.893 ±0.001 0.052 ±0.007
Norm same Sequential grid 0.779 ± 0.16 0.847 ±0.009 0.45 ±0.054 0.891 ±0.001 0.102 ±0.012
Norm same Excl. censor 0.435 ± 0.01 0.927 ±0.007 4.096 ±0.251 0.894 ±0.001 1.398 ±0.07
Norm same DeepQuantReg 0.357 ± 0.013 0.893 ±0.009 3.334 ±0.325 0.891 ±0.001 0.983 ±0.091
Norm same LogNorm MLE 0.114 ± 0.008 0.787 ±0.004 0.187 ±0.024 0.894 ±0.001 0.059 ±0.006

LogNorm heavy CQRNN 2.424 ± 0.055 1.123 ±0.021 22.493 ±0.36 0.782 ±0.005 0.036 ±0.004
LogNorm heavy Sequential grid 2.42 ± 0.055 1.121 ±0.021 21.938 ±0.299 0.781 ±0.005 0.044 ±0.002
LogNorm heavy Excl. censor 2.654 ± 0.061 1.247 ±0.021 35.43 ±0.629 0.772 ±0.005 4.806 ±0.226
LogNorm heavy DeepQuantReg 2.639 ± 0.06 1.236 ±0.022 34.132 ±0.719 0.771 ±0.005 3.884 ±0.201
LogNorm heavy LogNorm MLE 1.17 ± 0.052 0.868 ±0.018 0.135 ±0.014 0.766 ±0.005 0.074 ±0.008

LogNorm med. CQRNN 1.713 ± 0.049 0.923 ±0.02 5.054 ±0.174 0.754 ±0.004 0.064 ±0.005
LogNorm med. Sequential grid 1.699 ± 0.047 0.921 ±0.02 4.968 ±0.181 0.754 ±0.004 0.098 ±0.014
LogNorm med. Excl. censor 2.168 ± 0.053 1.067 ±0.021 12.124 ±0.34 0.749 ±0.004 2.586 ±0.071
LogNorm med. DeepQuantReg 2.087 ± 0.056 1.033 ±0.02 10.081 ±0.255 0.748 ±0.003 1.373 ±0.055
LogNorm med. LogNorm MLE 0.907 ± 0.05 0.824 ±0.018 0.103 ±0.016 0.75 ±0.003 0.07 ±0.009

LogNorm light CQRNN 0.506 ± 0.028 0.764 ±0.019 0.331 ±0.026 0.729 ±0.003 0.135 ±0.01
LogNorm light Sequential grid 0.532 ± 0.029 0.767 ±0.018 0.517 ±0.04 0.729 ±0.003 0.21 ±0.014
LogNorm light Excl. censor 1.185 ± 0.037 0.852 ±0.02 1.518 ±0.124 0.729 ±0.003 0.655 ±0.047
LogNorm light DeepQuantReg 0.831 ± 0.036 0.804 ±0.019 0.912 ±0.061 0.726 ±0.003 0.438 ±0.028
LogNorm light LogNorm MLE 0.432 ± 0.034 0.767 ±0.018 0.095 ±0.015 0.729 ±0.002 0.079 ±0.004
LogNorm same CQRNN 0.137 ± 0.021 0.735 ±0.015 0.236 ±0.021 0.751 ±0.002 0.055 ±0.007
LogNorm same Sequential grid 0.422 ± 0.054 0.753 ±0.016 0.463 ±0.046 0.752 ±0.003 0.101 ±0.018
LogNorm same Excl. censor 1.068 ± 0.043 0.861 ±0.019 4.112 ±0.264 0.752 ±0.002 1.306 ±0.046
LogNorm same DeepQuantReg 0.394 ± 0.057 0.763 ±0.016 1.301 ±0.265 0.748 ±0.002 0.335 ±0.072
LogNorm same LogNorm MLE 0.067 ± 0.013 0.73 ±0.015 0.114 ±0.013 0.754 ±0.002 0.052 ±0.005

22

Dataset Method MSE to true quantile Uncensored quantile loss Uncensored D-Calibration Concordance-Index Censored D-Calibration
(lower better) (lower better) (lower better) (higher better) (lower better)

Type 2 – real data, synthetic censoring
Housing CQRNN - 0.34 ±0.002 0.793 ±0.03 0.897 ±0.0 0.02 ±0.004
Housing Excl. censor - 0.443 ±0.005 2.176 ±0.057 0.895 ±0.001 0.311 ±0.011
Housing DeepQuantReg - 0.399 ±0.004 2.474 ±0.066 0.902 ±0.001 0.196 ±0.031
Housing LogNorm MLE - 0.6 ±0.002 2.794 ±0.022 0.881 ±0.001 1.035 ±0.015

Protein CQRNN - 0.435 ±0.001 0.275 ±0.008 0.847 ±0.001 0.027 ±0.001
Protein Excl. censor - 0.631 ±0.002 3.45 ±0.053 0.838 ±0.001 1.075 ±0.02
Protein DeepQuantReg - 0.568 ±0.002 2.809 ±0.059 0.831 ±0.001 0.495 ±0.011
Protein LogNorm MLE - 0.579 ±0.002 0.694 ±0.018 0.817 ±0.002 0.298 ±0.007

Wine CQRNN - 0.6 ±0.005 0.908 ±0.069 0.815 ±0.002 0.046 ±0.005
Wine Excl. censor - 0.791 ±0.005 6.606 ±0.209 0.799 ±0.003 0.722 ±0.038
Wine DeepQuantReg - 0.717 ±0.005 3.211 ±0.159 0.792 ±0.003 0.212 ±0.021
Wine LogNorm MLE - 1.454 ±0.022 5.736 ±0.163 0.747 ±0.004 0.784 ±0.022

PHM CQRNN - 0.408 ±0.001 0.243 ±0.012 0.902 ±0.001 0.008 ±0.001
PHM Excl. censor - 0.519 ±0.002 3.852 ±0.037 0.901 ±0.001 0.481 ±0.006
PHM DeepQuantReg - 0.479 ±0.002 1.589 ±0.057 0.897 ±0.001 0.154 ±0.011
PHM LogNorm MLE - 0.599 ±0.002 2.26 ±0.018 0.9 ±0.001 0.538 ±0.007

SurvMNIST CQRNN - 0.076 ±0.0 0.308 ±0.023 0.899 ±0.001 0.224 ±0.005
SurvMNIST Excl. censor - 0.133 ±0.002 2.115 ±0.086 0.896 ±0.001 0.512 ±0.014
SurvMNIST DeepQuantReg - 0.1 ±0.001 1.021 ±0.051 0.9 ±0.001 0.264 ±0.013
SurvMNIST LogNorm MLE - 0.209 ±0.001 4.348 ±0.049 0.894 ±0.001 0.806 ±0.015

Type 3 – real data, real censoring
METABRIC CQRNN - - - 0.644 ±0.006 0.189 ±0.057
METABRIC Excl. censor - - - 0.615 ±0.005 7.54 ±0.478
METABRIC DeepQuantReg - - - 0.601 ±0.006 2.393 ±0.211
METABRIC LogNorm MLE - - - 0.636 ±0.006 0.72 ±0.106

WHAS CQRNN - - - 0.85 ±0.005 1.089 ±0.431
WHAS Excl. censor - - - 0.785 ±0.006 9.391 ±0.709
WHAS DeepQuantReg - - - 0.774 ±0.008 6.71 ±0.448
WHAS LogNorm MLE - - - 0.81 ±0.005 0.817 ±0.139
SUPPORT CQRNN - - - 0.615 ±0.002 0.179 ±0.022
SUPPORT Excl. censor - - - 0.552 ±0.002 9.606 ±0.231
SUPPORT DeepQuantReg - - - 0.564 ±0.002 6.747 ±0.176
SUPPORT LogNorm MLE - - - 0.617 ±0.002 2.384 ±0.143

GBSG CQRNN - - - 0.683 ±0.005 0.339 ±0.033
GBSG Excl. censor - - - 0.673 ±0.005 11.732 ±0.512
GBSG DeepQuantReg - - - 0.673 ±0.005 8.998 ±0.479
GBSG LogNorm MLE - - - 0.677 ±0.004 0.793 ±0.08

TMBImmuno CQRNN - - - 0.579 ±0.008 0.201 ±0.04
TMBImmuno Excl. censor - - - 0.52 ±0.008 9.479 ±0.386
TMBImmuno DeepQuantReg - - - 0.539 ±0.011 4.827 ±0.306
TMBImmuno LogNorm MLE - - - 0.581 ±0.007 0.634 ±0.067

BreastMSK CQRNN - - - 0.619 ±0.01 0.08 ±0.012
BreastMSK Excl. censor - - - 0.646 ±0.008 4.546 ±0.235
BreastMSK DeepQuantReg - - - 0.638 ±0.008 3.0 ±0.17
BreastMSK LogNorm MLE - - - 0.631 ±0.01 0.521 ±0.058

LGGGBM CQRNN - - - 0.792 ±0.008 0.372 ±0.074
LGGGBM Excl. censor - - - 0.782 ±0.01 2.166 ±0.303
LGGGBM DeepQuantReg - - - 0.781 ±0.011 1.275 ±0.184
LGGGBM LogNorm MLE - - - 0.793 ±0.008 0.367 ±0.083

23

Table 5: Results comparing CQRNN and sequential grid algorithm on the type 3 datasets, real target
data with real censoring. Experiments were repeated over 50 random seeds.

Raw Results, mean ± one standard error
Dataset Method TQMSE UQL UnDCal Concordance-Index (higher better) Censored D-Calibration (lower better)

METABRIC CQRNN - - - 0.643 ±0.003 0.218 ±0.026
METABRIC Sequential grid - - - 0.648 ±0.002 0.399 ±0.04
WHAS CQRNN - - - 0.86 ±0.002 0.721 ±0.091
WHAS Sequential grid - - - 0.852 ±0.002 5.038 ±0.74
SUPPORT CQRNN - - - 0.614 ±0.001 0.159 ±0.01
SUPPORT Sequential grid - - - 0.613 ±0.001 0.723 ±0.024
GBSG CQRNN - - - 0.678 ±0.002 0.361 ±0.024
GBSG Sequential grid - - - 0.678 ±0.002 0.789 ±0.042
TMBImmuno CQRNN - - - 0.571 ±0.003 0.207 ±0.021
TMBImmuno Sequential grid - - - 0.572 ±0.003 0.375 ±0.028
BreastMSK CQRNN - - - 0.618 ±0.005 0.085 ±0.01
BreastMSK Sequential grid - - - 0.597 ±0.006 0.227 ±0.016
LGGGBM CQRNN - - - 0.784 ±0.004 0.397 ±0.039
LGGGBM Sequential grid - - - 0.781 ±0.004 0.491 ±0.041

Difference in means, alongside 95% confidence interval
Dataset Number Training time Test time Parameter C-Index difference CQRNN is CensDCal difference CQRNN is

quantiles speed up speed up saving Seq. grid - CQRNN sig. better? Seq. grid - CQRNN sig. better?
(>0 favours CQRNN) (<0 favours CQRNN)

METABRIC 5 5.3⇥ 2.5⇥ 4.6⇥ -0.005 ± 0.001 7 -0.181 ± 0.032 3
WHAS 5 5.1⇥ 3.9⇥ 4.6⇥ 0.008 ± 0.001 3 -4.317 ± 0.745 3
SUPPORT 5 5.1⇥ 2.7⇥ 4.6⇥ 0.001 ± 0.000 3 -0.564 ± 0.022 3
GBSG 5 5.3⇥ 5.1⇥ 4.6⇥ -0.001 ± 0.000 7 -0.428 ± 0.026 3
TMBImmuno 5 5.1⇥ 4.3⇥ 4.6⇥ -0.000 ± 0.001 – -0.168 ± 0.025 3
BreastMSK 5 5.1⇥ 5.0⇥ 4.6⇥ 0.021 ± 0.004 3 -0.141 ± 0.018 3
LGGGBM 5 5.4⇥ 5.1⇥ 4.6⇥ 0.003 ± 0.001 3 -0.094 ± 0.038 3

CQRNN better: 4/7 7/7
Seq grid better: 2/7 0/7
No sig. difference: 1/7 0/7

Norm linear Norm uniform Norm non-linear

102 103 104

No. training datapoints

10�2

10�1

100

T
Q

M
S
E

(l
ow

er
be

tt
er

)

102 103 104

No. training datapoints

10�1

100

T
Q

M
S
E

(l
ow

er
be

tt
er

)

102 103 104

No. training datapoints

10�1

100

101

T
Q

M
S
E

(l
ow

er
be

tt
er

)

Grid size=9

Grid size=19

Grid size=39

Exponential Weibull LogNorm

102 103 104

No. training datapoints

10�2

10�1

T
Q

M
S
E

(l
ow

er
be

tt
er

)

102 103 104

No. training datapoints

10�1

100

T
Q

M
S
E

(l
ow

er
be

tt
er

)

102 103 104

No. training datapoints

10�1

100

T
Q

M
S
E

(l
ow

er
be

tt
er

)

Figure 4: Ablations over grid size and number of datapoints for various synthetic datasets using our
CQRNN method.

24

C.1 Hyperparameter ablations

The requirements for CQRNN in Algorithm 2 include two hyperparameters unique to CQRNN (the
rest determine the NN and its optimisation) – the grid of quantiles, grid

⌧
, and the large pseudo y

value, y⇤. This section investigates the role of these. It also discusses two modifications which were
tested in initial experiments but which were not deemed essential for good performance, and excluded
from the proposed method – mitigating crossing quantiles and interpolating between quantiles.

Grid size. For evenly spaced grids, as considered in this work, the number of quantiles estimated,
M , fully determines the grid. One might expect that a larger grid size, with finer increments between
quantiles, would lead to a better fit, since censored weights can be estimated more accurately.
Indeed, the convergence rate of Portnoy’s estimator was found to depend on grid size, O(1/(MN))
[Neocleous et al., 2006].

We hypothesised that a larger grid might only deliver benefit when the dataset was sufficiently large
for these fine-grained quantiles to be distinguished. Hence, Figure 4 shows an ablation investigating
the interaction between grid size and number of datapoints for each of our type 1 synthetic 1D
functions. Experiments were repeated with 100 random seeds, which was required to reduce the error
bars sufficiently for comparison. Grid size was varied, M 2 {9, 19, 39}, and number of datapoints,
N 2 {100, 200, 400, 800, 1600, 3200, 6400, 12800}.

For all datasets and grid sizes, TQMSE decreases with dataset size. In general a larger grid size does
produce lower TQMSE, and in three datasets the benefit is significant (Norm uniform, Exponential,
Weibull), with the advantage indeed more pronounced with a larger dataset size. In two datasets
(Norm non-linear, LogNorm), this benefit is slight, and a larger grid is even seen to be slightly harmful
on very small datasets. One dataset (Norm linear) does not follow this trend, where the widest grid
proves slightly harmful across all dataset sizes.

Pseudo y value. Portnoy [2003] proposed that y⇤ could be set to any large value approximating
1, with the R package ‘quantreg’ setting y

⇤ = 1e6. Since the sequential grid algorithm learns
quantiles sequentially, it can simply halt if it attempts to estimate a quantile for which only censored
datapoints remain, and hence is undefined.

The CQRNN algorithm changes this situation in two ways. Firstly, since the algorithm is no longer
sequential and learns all quantiles simultaneously, it does not have the option of halting. Secondly,
since a non-linear function is learnt, it is possible that higher quantiles might be undefined in one
region of the input space, whilst being learnable in the rest of the space. Regressing towards an
arbitrarily large y⇤ value for a portion of the input space could adversely impact the quantile estimate
elsewhere. When all quantiles in grid

⌧
are fully defined, the effect is no different to using1.

To accommodate these differences, we recommend setting y
⇤ to a more modest value. We define it in

terms of the maximum y value in the training set, y⇤ = cy⇤ maxi yi, for a hyperparemeter, cy⇤ > 1.
In real-world problems, a practitioner might use an estimate for this based on their knowledge about
the maximum feasible value for the target. In lieu of that, we set cy⇤ = 1.2 for all our experiments
(except the below ablation!), which provided reasonable results across datasets.

Table 6 presents an ablation on four of our (multidimensional) type 1 synthetic datasets, using
cy⇤ 2 {1.0, 1.2, 1.5, 2.0, 10, 9, 100.0}. For dataset Norm light, y⇤ has no impact since the target
distribution is fully defined under censoring. However, other datasets have input regions where the
higher quantiles are not defined due to censoring, and hence higher quantiles are impacted by the
magnitude of y⇤. The optimal value varies by dataset (e.g. 1.2 is best for Norm heavy, while 10.0 is
best for LogNorm heavy).

Table 6: Ablation over psuedo y value, y⇤. Mean over ten runs, all hyperparameters fixed.

—– Target value for pseudo-datapoints, y⇤ —–
Dataset 1.0maxi yi 1.2maxi yi 1.5maxi yi 2.0maxi yi 10.0maxi yi 100.0maxi yi

TQMSE (lower better)
Norm heavy 1.452 0.579 1.237 6.196 591.257 57421.824
Norm light 0.081 0.079 0.081 0.081 0.081 0.081
LogNorm heavy 2.502 2.424 2.321 2.173 1.026 19.827
LogNorm light 0.614 0.506 0.385 0.252 0.147 0.147

Crossing quantiles. One issue often discussed in quantile regression is ‘crossing quantiles’. Higher
quantiles should always produce higher predictions, i.e. ŷi,⌧1 > ŷi,⌧28⌧1 > ⌧2. The crossing quantile

25

issue arises when this condition does not hold. We anticipated that the flexibility of NNs might
exacerbate this issue, and we tested two methods to remedy this. 1) Adding a crossing penalty to the
loss [Bondell et al., 2010], Lcross =

P
N

i=1

P
N⌧�1
j=1 max[0, c� (ŷi,grid⌧ [j+1] � ŷi,grid⌧ [j])], where c is

the smallest acceptable distance between neighbouring quantiles. 2) Modifying the NN architecture
to enforce monotonicity between quantiles, by constraining each consecutive quantile prediction to
add on to the previous one, after passing through a SoftPlus. In our experiments, neither method
significantly impacted performance. Favouring simplicity, we propose the CQRNN algorithm without
these. It’s possible that other methods might have more effect, e.g. [Zhou et al., 2020, Brando et al.,
2022]. We leave further exploration to future work.

Interpolating quantiles. The CQRNN algorithm sets the estimated censored quantiles, q, by
choosing the prediction closest to the censored datapoint, q̂j arg min⌧ |ŷj,⌧ � yj |. In early
experiments, we considered an alternative approach that took a linear interpolation between the two
nearest quantiles. In initial experiments this wasn’t found to significantly improve performance, so
we propose the CQRNN algorithm using the simpler arg min approach.

Partial vs. full optimisation. Figure 5 explores the effect of optimising the NNs partially, as is
proposed in CQRNN in Algorithm 2, compared to fully, as might be done more typically in EM
procedures. The figure shows that convergence is fastest when using partial maximisation, when the
most up-to-date estimates of q̂i are used. This ends up being more efficient than freezing q̂i and only
updating after a longer period of optimisation.

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Partial max. of CQRNN, quantile est. update each batch

Portnoy’s Loss (log)

TQMSE (log)

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Full max. of CQRNN, quantile est. update every 1 epochs

Portnoy’s Loss (log)

TQMSE (log)

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Full max. of CQRNN, quantile est. update every 10 epochs

Portnoy’s Loss (log)

TQMSE (log)

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Full max. of CQRNN, quantile est. update every 25 epochs

Portnoy’s Loss (log)

TQMSE (log)

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Full max. of CQRNN, quantile est. update every 50 epochs

Portnoy’s Loss (log)

TQMSE (log)

0 25 50 75 100 125 150 175 200
Training epochs

10�2

10�1

100

101

Full max. of CQRNN, quantile est. update every 100 epochs

Portnoy’s Loss (log)

TQMSE (log)

Figure 5: This figure explores the effect of optimising the NNs partially compared to fully. It shows
training loss and TQMSE over training epochs. The Normal Linear dataset was used.

26

