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A Integer Linear Programming Formulation
The bilinear integer program of @) admits the following equivalent linear integer programming

formulation:

t—1
max bkum — )\k t_izkym-
s k%ﬂ tezm ; "

st ugy=1,  Vte[T),

ke[K]

Zhiti S Ukys 2kt < Ukyty Uk + Ukt — 1 < 244,

Ugt € {0,1}, ug,o = 0, Vk € [K],t € [T],

2k € {0, 1}, Vk € [K],t € [T],: € {0,...,t —1}.

Vk € [K],t € [T],i € {0,...,t — 1},
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B Proofs and Discussion of Section (4l
B.1 Proof of Lemma/l

Proof. When the expected rewards of all arms are the same, we know that the arm with the lowest
index will be chosen and thus the first K pulls willbe 71 = 1, ..., mx = K. We will complete the
proof through induction. Suppose that the greedy pull sequence is periodic with 7wy = 1,...,7x = K
and my4 g = m; until time b > K. We define &’ to be h mod K and n to be (h — k')/ K. We will
show that 7,11 = 1 if 7, = K and 75,41 = 7, + 1 otherwise. When k' = 0 (i.e., 7, = K), all
arms have been pulled exactly n times as of time h. By the induction assumption, we know that
UL 1:h—K = U2,2:h—K+1 = - .. = UK, K:h, Which implies that last time when each arm is pulled, all
of them have the same expected rewards, i.e.,

,Ltl,h,—K+1(U1,o:h,—K) = M2,h—K+2(U2,o:h—K+1) == NK,h(UK,O:h—l)-
Moreover, u1 p—g+1:n = (1,0,---0), u2n—g41:n = (1,0,---0), -+, wugpn = (1).
N—— N——
K times K-1 times

Therefore, by (3), at time 4 + 1, arm 1 has the highest expected reward and will be chosen. In the
case where &' > 0 (i.e., mp, = k'), we let b := h — k’. We have that p1 /g 11(U1,00—K) = ... =

K .
pr (U0 —1) and s = 81 p— g1 (U000 —K) = ... = Sk (UK 0 —1) < llj Then, at time
h + 1, the satiation level for the arms will be s j, 1 (up0.1) = 7 ~F11 (1+~%s) forall k < &
and sg 1 (Up,0:n) = YK ¥ 415 for all k > k'. Thus, the arm with the lowest satiation level will

be mp11 = k' +1=mp, + 1, since g1, pt1 (U +1,0:0) < S1,h+1(u1,0:1). Consequently, the greedy
policy will select arm 7, + 1 at time h + 1. O

B.2 Proof of Theorem/[]

Proof. First, when T' < K, greedy policy is optimal since its cumulative expected reward is 7.
So, we consider the case of 7' > K. Assume for contradiction that there exists another policy 7{,,-
that is optimal and is not greedy, i.e., 3t € [T],7{ ¢ argmax; () b — s} , where s}, , denotes the
satiation level of arm k at time ¢ under the policy 7{.,.. We will construct a new policy 7., that
obtains a higher cumulative expected reward than 77, .. Throughout the proof, we use s} , to denote
the satiation levels for the new policy.

We first note two illustrative facts to give the intuition of the proof.

Fact 1: Any policy 7{.; that does not pick the arm with the lowest satiation level (i.e., highest
expected reward) at the last time step 7’ is not optimal.
Proof of Fact 1: In this case, the policy 7'y = (7{,...,7%_y, 7r) where 7 € arg max,cx) b —
Asy,  will obtain a higher cumulative expected reward.

Fact 2: If a policy 7{.- picks the lowest satiation level for the final pull % but does not pick the arm
with the lowest satiation level at time T — 1, we claim that 7}, = (77, ..., 7%_o, ®9, 75_1) # 7.1
obtains a higher cumulative expected reward.

Proof of Fact 2: First, note that 7$._; # w5 because otherwise m9._; is the arm with the lowest
satiation level at T' — 1. Moreover, at time T' — 1, 7% € argmin,, SZ,T—1 has the smallest satiation,
since if not, then there exists another arm k # 7% and k # w%_, that has a smaller satiation level
than 7%, at time 7" — 1. In that case, % will not be the arm with the lowest satiation at time 7', which
is a contradiction. Then, we deduce sfr%_l,T_l > S;)r%,T—l' Combining this with 7%._; # 75, we

arrive at
Gr(rir) = Gr(mlr) = M1=17) (s3y 11— s2%.7-1) > 0.

For the general case, given any policy 7{., that is not a greedy policy, we construct the new policy
w1 that has a higher cumulative expected reward through the following procedure:

1. Find t* € [T] such that for all t > ¢, 77 € argmax;cgb — Asp, and 7. ¢
arg maxyc ) b—Asy, ;.. Further, we know that mj. | ; € argmaxycx) b—Asj ;. using the
same reasoning as the above example, i.e., otherwise 7. | ¢ arg maxyerg] b — ASE 4oy
To ease the notation, we use k1 to denote 7g. and k3 to denote 7. ;.
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2. For the new policy, we choose 7. = (77, ..., 7§ _1, k2, k1). Let A7 , denote the set
{t' " +2 <t <ty,m) =77, }. Af, ,, contains a set of time indices in between t* + 2
and t2 when arm 7f, is played under policy 7f,7-. We construct the following three sets
Ta={t: t"+2<t <T,|AY 4| <|APjq 4|}, Tp = {t " +2 <t < T, AL 4| >
|A?. 1} and T = {t : t* +2 <t < T,|Ap. 4| = |A2. 1|} For time t > t* + 2, we
consider the following three cases:

Case I. Tp = &, which means that at any time ¢ in between t* 42 and 7', arm k; is played more
than arm ky from ¢* + 2 to ¢. In this case, the new policy follows 7% | 5.7 = T{. 9.

Case II. T4 = @, which means that at any time ¢ in between t* +2 and 7', arm k is played more
than arm k4 from ¢* + 2 to ¢. In this case, the new policy satisfies: for all ¢ > t* 42, 1)
mp =7 if w) # ky and w) # ko 2) mft = ko if w) = kq; and 3) w) = ky if m) = ko.

Case lll. T4 # @ and Ts # @. Then, starting from t* + 2, if t € T4, 7" follows the new policy
construction in Case I, i.e., 7 = ny. If t € Tz, 77 follows the new policy construction
in Case II. Finally, for all ¢ € Tc, define t/y , = maxy ¢, t' and tp , = maxy e, t'.
t'<t t'<t
Ift)y , >t 4, then 7} follows the new policy construction as Case L If ¢/ , <t ,
mjt follows the new policy construction as Case II. We note that t/, , # t/5, since
TaNTs = @. ’ ’

When T4 = & and Tp = &, we know that k; and k3 are not played in 77, 5.1 In this case, the new
policy construction can follow either Case I or Case II. To complete the proof, we state some facts
first:

» From t*, the expected rewards collected by the policies 7{.; and 7. only differ at times
when arm k; or arm k5 is played.

* 7.1 obtains a higher cumulative expected reward than 77, , ;.

* Attime ¢* + 2, the new policy follows that s ,.., = 7 + 72521,t* and s}, 4o =
v* + ~s7, 4+~ On the other hand, the old policy has s .., = 7> + 7°sp, .. and
322,1‘,*4-2 =7+ 725z2,t*-

Let N, :={t:t*+2<t<T,7m0 =ki}and N, := {t : t* +2 < ¢t < T,wY = ko} denote the
sets of time steps when k; and ks are played in 7§.-. For a given satiation level x at time ¢’ together
with the time steps the arm is pulled Ny, we have that at time ¢ > ¢/, the arm has satiation level

gn, (@, t,t) =4tz + YN, <tV NEi where Ny ; is the i-th smallest element in Ny

In Case I, the difference of the cumulative expected rewards between the two policies satisfies:

[Ny |
Gr(miy) = Gr(mly) > D =Agn, (k12 Nkais ™+ 2) + Mgy, (58, 10195 Niy.in £+ 2)
i=1
|N’€1|
+ Z _)\gNkl (Szl,t*+2’ Niey g t+2)+ )\gNkl (82171&*-{-2’ Niy g t+ 2)
j=1
‘Nkzl |Nk1‘
Niy,i—(t" Ny, i—(t*
= A (%012 = Sy ie12) Z N D) X (8, g2 — Shy e g2) Z YN =(42) 5 0,
i=1 j=1
where we have used the fact that s7, ;. o — S}, 10 = — (szl,t*—ﬂ — 8217”_’_2) >0, | Nk, | > | N, |
and for all j € [|N, ||, Ng,.; < N, ;. In Case II, similarly, we have that
|Nk1|
Gr(mip) = Gr(mly) > D =Agn,, (8%, 1195 Nkw jn 6 +2) + Mg, (52, o120 Niyjo £+ 2)
j=1
|Nk2|
+ Z —)\g]\rk2 (Szl’t*+2, Nk27i7t* + 2) + )‘gNkz (SZQ,t*+27 Nk%i,t* + 2)
i=1
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[Ngq | [N |

_ o n Np, i—(t*+2 o n Npo i—(t"+2
= A (87, 42 = Sky e 42) E : yMa =42 4 ) (Shate2 = Sy to42) E : Nkt =(742) >,
j=1 =1

SINCE 57 1o — S} oy = — (sgz,t*+2 - sght%) > 0, [Ni,| < |Ni,| and for all i € [| Ny, |,
Nkl,i < ng,i-

Finally, for Case III, the new policy construction is a mix of Case I and Case II. We represent the time
interval [t* + 2, T to be [t* + 2,T] = [ti; 515 biv,eq] U [tin,s0s tinea) U+ U [tins sars Ling,enr) Where
U+2=1t,5 <... <tiysu =1, ﬂ%:ﬂtim,sma i .em) = @ and M — 1 is the number of new
policy construction switches happen in between t* + 2 and T'. We say that a new policy construction
switch happens at time ¢ if the policy construction follows Case I at time ¢t — 1 but follows Case II at
time ¢ or vice versa. Each i,, # i,,_1 can take values I or II, representing which policy construction
rule is used between the time period ¢;,, 5, and ¢ For any time index set V', we use the notation
Vit tivem] ={t €Vt <t<t

We notice that at any switching time ¢;,, s, , the number of previous pulls of arm k; and k2 from
time ¢;,, |, , tot;, .. , are equivalent, which is denoted by l,,, = [Ny, [ti,. s0sbipeml] =
| Ny [tir 505 i e )| TOr all m < M. From our analysis of Case I and Case II, we know that to show
that 7', obtains a higher cumulative expected reward, it suffices to prove: for all m < M such that

Im,€m*

tm Sm> TmSm 7/77;76771}'

o n _ o _on
Sk27tim,sm Sk27tim,sm - (Sklatim,sm skhtim,sm) >0,
o n — o _gn
Skl,tim‘sm styti»,n,,S»,n, - <Sk2,t7‘,m‘sm sklytim,,sm,> >0,
we have
o n o n
So 4. — Sy 4 = — (5%, 4, — Sp 4. >0
k2ot 1 sy k2ot 1 ismyn < kit 1 sy k17t’m+l>sm+l) ’
o n o n
Spt, — Skt = — sk, ¢ — Sk . > 0.
k17t17n+175'm,+1 k27t17n+175'm,+1 < k27t'lm+1=5m+1 k17t17n+175'm,+1)

We will establish these facts in Lemma([3] Finally, we note that the above required conditions are held
attime t;, 5, =t* + 2. O

Lemma 3. Let Ny [ts, t.] denote the set of time steps when arm k is pulled in between (and including)
time ts and te under policy 7{.r. Let s}, , and sy , represent the satiation level of arm k at time
when following the policy n{.. and w7, respectively. For two different arms ki and ko, suppose
that at time ts we have

o n _ (0 _un

Ska,ts Sko,ts = (Sklyts Skl,ts) >0,
o n _ ) n

Skits — Skoyts — (Skmts - Skl,ts) > 0.

Further, suppose that from time ts to t., w{' 1 follows either Case I (or Case II) of new policy
construction (see proof of Theorem|l|for their definitions); and at time t', = t, + 1, the new policy
construction for w7\ has switched to Case Il (or Case I if Case Il is used from t4 to t.). Then at time
t., we have that

o n . o n
Skoyt!, — Skoyt!, = T <5k1,t’s - Skl,t’s) >0,

) n o o n
Sktl,t; - Skg,t; - (8162713'5 - Skl,t;) > O'

Proof of Lemma 3] Following the definition in the proof of Theorem[I] given that at time ¢,, arm k
has satiation s, let g, ¢, +.](5, s, L) denote the satiation level of arm & at time ¢/, after being pulled
at the time steps in the set Ny [ts, t.]. Let Ny, ;[ts, te] be the i-th smallest element in the set Ny [ts, te].
From the definition of the new policy construction given in the proof of Theorem|[I] we also know
that (1) N := | N, [ts, te]| = | Nk, [ts, te]|; (2) if Case Iis applied in between ¢, and ¢., we have that
forall i € [N], Nk, ilts, te] < Ni, ilts,te]; and (3) if Case II is applied in between ¢ and t., we
have that for all ¢ € [N], N, i[ts, te] > Ni, .i[ts, tel-

17



We first consider the setting when Case I new policy construction is applied, then at time ¢/, we can
show that

o n _ o n
Skhtg - skZ;t; _gNkl[ts7t€] (Skhts’ts’t ) - gNkz [ts’te] (8k27ts7t5’t )
l
_ti—ts (.0 n ! —Ng, i[ts,t t! — N, i[ts,t
R A T ) T

l
=nyte—ts (st 0 — 5%, 4) +§:7 6Ny iltaste] _ o= Ny iltste]
1sts 25ls

_.n )
=Skt ~ Skat, > 0

where the last inequality has used the fact that when we use Case I construction, we have
Ni,.ilts, te] < N, ilts,te]. Meanwhile, we also have that

o n _ o ! n !
Sk}z,t; - Sk27tl _gNkZ [ts’te] (8k2;ts ? ts’ ts) - gNkz [t57t5] (Sk2;ts ? tS’ ts)
__ Attt o n _ t's—t5 o n
’Y ‘ (Skz,ts - Sk27ts> =7 (Sklyts - skl,ts)

— o n
=— (Skl,t; - Skl,t;) > 0.

When Case Il new policy construction is applied, then at time ¢, we get

o n _ o ! n /
Skl;t‘/S - 81927t'S _gNk1 [tsvtE] (Sklats’ts7 t‘s) - gNkl [tbvt ] (Skz,ts’ts’ t‘s)
_ tﬁ—ts o n _ st o n
=7 (Skl,ts - Sk2~,ts) _'7 : (Skz,ts - Skl,ts)
_ o n
= — (sk‘g,t; 78]61,25;) > 0,

since szl L= 52‘2 ¢. > 0. On the other hand, we have that
o n _ n /
Sk?Zyt; - Sk2;t/s _gNk2 [ts 7tc] (Sk27t 7t3’ t ) - gNkl [ts »tC] (Skz’ts ’ ts’ t‘s)
tl

l
_Ate—ts (40 n =Ny, ilts,te to—Niyiltste
e G A A ) S A
=1

l
A thi—ts (on o ' =Ny, ilts,te tl— Ny ,ilts,te
I A A S

=Skyt, ~ Skyt, > 0
where the last inequality is true because when Case II new policy construction is applied, we have
Nkl,i[tsyte] < ng,i[tsate}- O
B.3  Proof of Proposition 2]

Proof. If T < K, a Max K-Cut of K is Vk € [T, P, = {k}, which is the same as an optimal
solution to (@). Let 1{-} denote the indicator function. When T' > K, the integer program in (d) is
equivalent to

K K T t—1
max Z buy,1 + Z Z bug, — )\Z vt_iuk’ium

Weﬁ]tgo Ak k=1 k=1 t=2 i=1

K Uk,t
K T t—1 4
= max Zbl{l EPY+Y D> (b1{te P} - 2D ~y'1{i € B}t € P}
PU PPKEF[]T k=1 t=2 i=1
kL k

Vk#k' \PyN\Pp=2

= . miXC[T Tb—z Z Myt

Uk Pr=[TY, k=1 Bich:
Vk#k/,Pk NPy =2

18



T t—1

:beZZ)\vt*iJr n}DaIm{XC T] Z Z Z My

—9 i— r—
t=2 i=1 UkPk (T] k=1 k'=k+1 1t€611;k/7
Vk#k) Pkﬂpk/ %} 1<’;

where the second equality uses the fact Zszl 1{t € P} = 1forall t € [T] and the third equality is
true because for any P, ... Pk such that Vk # k', P, N Py = & and Uy, P, = [T], we have

T t—1
Total Edge Weights of K = Z Z e(t,i) = Z e(t,i) + Z e(t, ).
t=2 i=1 tie[T]H<t, t,ie[T]:i<t,

Jke[K],i,tE Py Vke[K],i,t¢ Py

B.4 Proof of Theorem[2l
z !

Proof. leen 7t and 7, define a set of new policies {7? ,}:_] such that for all i, 7, =
(7405 Thwi1.7)- Based on this, we have the following decomposmon

Gr(ri.r)=Gr (i) = Gr(nir) — Go(7i.r) ZGT #l.p) — Gr(7F) | +Gr(®7) — Gr(nir).

To distinguish the past pull sequences of each arm under different policies, we use the following
notations: fug ¢ (Uk 0:t—1; ") gives the expected reward of arm k at time ¢ by following pull sequence
Th._1- By the definition of %7, we have that

Ay = Zﬂﬂr;,t(un;@:t—l; 77*) - Nw;”,t(uwg“,O:tflﬂTw) + Z Mﬂ'{,t(uwt*,O:tfl; 77*) - Nwtf,t(u'n',f,O:tfﬂ 7~T1)
_ t=w+1

Z Pt (Urr 0:6—15 ) = prr o (Urr 0815 i),
t=w-+1

where the inequality follows from the fact that 7}, is optimal for (@) when 7' = w. Similarly, we
obtain that for all 7 € [ — 2],

iw (i+1)w
Ai:Zﬂﬂi‘”,t(uwf,o:tfl;ﬂw)_Mw;",t(uﬂ'ﬁ‘”,o:tfl; Z firr e (Unr 013 7)) — fmw ¢ (Umw 0ip— 15T
t=1 -0 t=iw+1 20
T
+ Z o> ¢ (th,Ot 157 ) Mt (uwt,Ot 157 erl)
= (it 1)w1

T
< Z frs 4 (U 0:0—15 ) = fry 4 (U 0015 7).
t=(i+1)w+1

Finally, we have A;_; = EtT:(lfl)erl uﬂ;7t(uﬂf70:t_1;frl_1) — frw ¢ (Ugw 0:4—1;7) < 0. To
complete the proof, it suffices to use the fact that forall ¢ € {1,...,l — 1},

T—iw—1 T— G
(1 —7t
~max > it (U, 0013 T) = fhory 1 (i, 00— 13 7 Z /\7 — < ( — )
, Ty LT t=iw+1 -7 (1 - ’Y)
Tiw4+1:T—Tiw+1:T
A1 =7"")
B O e L

where the first inequality holds because for any arm, the maximum satiation level discrepancy under
two pull sequences (after iw time steps) is 7/(1 — ) and from time iw + 1 till time 7', the objective
will be maximized when the arm with the maximum satiation discrepancy is played all the time. [
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C More Discussion on Learning with Unknown Dynamics

As we have noted in Section E], when the learner makes a decision on which arm to pull, the learner
does not observe the hidden satiation level the user has for the arms. The POMDP the learner faces can
be cast as a fully observable MDP (Appendix [C.T) where the estimated reward model (Appendix [C.2))
can be used for planning (Appendix [C.3). In addition to policies that are time-dependent (actions
taken by time-dependent policies only depend on the time steps at which they are taken) considered
in Section [6] we also consider state-dependent policies where the states are continuous.

C.1 MDP Setup

We begin with describing the full MDP setup of rebounding bandits, including the state representation
and reward function defined in Section Following [32]], at any time ¢ € [T'], we define our state
vector to be z; = (1,4, 71,4, Ta,e, N2, - - - Ti 1, MK ,¢), Where 1y, € N is the number of steps since
arm k is last selected and x, ; is the satiation influenceas of the most recent pull of arm k. Since the
most recent pull happens at ¢ — ny ¢, we have &y ¢ = by — pikt—n; , = AkSk,t—n, - We note that by
can be obtained when arm k is pulled for the first time since the satiation effect is 0 if an arm has not
been pulled before. The initial state is i = (0, . .., 0). Transitions between two states x; and x;1
are defined as follows: If arm k is chosen at time ¢, i.e., m; = k, and reward p, ; is obtained, then the
next state ;1 will be:

A.1 For the pulled arm k, ny 11 = 1 and 411 = by — ik +.

A.2 For other arms k' # k, ng/ 441 = g + Lif ngry # 0and ny 441 = 0if ngr , = 0. The
satiation influence remains the same, i.e., T/ 141 = Tp/ ¢-

For all 7, € X and k € [K], we have that E[z} ;] < Ay/(1 — %) and Var[zy ;] < No2/(1— 7).
Hence, for any ¢ € (0, 1), P (maxy ; |zx¢| > B(d)) < 0, where

_ Q—I-Xaz 210g(2KT/6) (10)
1-% 172

The MDP the learner faces can be described as a tuple M := (Zini, [K], { V&, M, b}, T) of the

initial state ziyi;, actions (arms) [K], the horizon T and parameters {7, A, bx }2_,. Let A(+) denote

the probability simplex. Given {7x, Ak, by }~-_,, the expected reward 7 : X’ x [K] — R and transition

functions p : X x [K] x [T] — A(X) are defined as follows:

r: X x [K] — R gives the expected reward of pulling arm k conditioned on x4, i.e.,
r(xe, k) = E[Hk,t|$t]ﬂ If ng, = 0, then 7(x, k) = by. fng, > 1, r(x, k) = by —
’YZk’txk,t - /\k’YZk’t

2. When pulling arm k at time ¢ and state x¢, p (z¢41|2¢, k,t) = 0 if 2,41 does not satisfy

or[A.2] When ;. fulfills both and we consider two cases of z;. If ny; # 0,
t

then the transition function p (a:tﬂ Ty, k, 's given by the Gaussian density with mean

YRt (24 + Ag) and variance A202 S0 421, as illustrated in (TT). If ng, = 0, then
p(xiq1]2e, k,t) = 1 since for the ﬁrst pull of arm k, the obtained reward iz, ¢+ = by.

At time ¢, the learner follows an action 7; : X — [K] that depends on the state. We use V,", : &' —
R to denote the value function of policy 7.7 at time ¢ under MDP M: V7 () = r(z¢, 7 (1)) +

EayprmpClaem @), Vi1 m(@er1)] and VL 4 (z) = 0 for all 2 € X'. To restate our goal (2) in
terms of the value function: for an MDP M, we would like to find a policy 7.7 that maximizes

E xtﬂTt xt

Vi M ﬂfmn =

€Tl = xinit‘| .

To simplify the notation, we use 7 to refer to a policy m1.7. Given an MDP M, we denote its
optimal policy by 77 and the value function for the optimal policy by V", i.e., V; wm(z) =

Vi (@).

By conditioning on x;, we mean conditioning on the o-algebra generated by past actions and observed
rewards.

20



C.2 Exploration and Estimation of the Reward Model

As we have discussed in § based on our satiation and reward models, the satiation influence xy, ;
of arm k forms a dynamical system where we only observe the value of the system when arm k is
pulled. When arm & is pulled at time ¢ and n, ; # 0, we observe the satiation influence Ay sy ; which
becomes the next state xy 111, 1.€.,

nk1t71
Tl = Mokt = AeVe Shytonp + MY+ Ak Z Vi 2k t—1—i
i=0
ng,¢—1
Nkt MNk,t 7
=Y Thtalong, T AV, Ak Z Vi 2k t—1—i- (11)
i=0

We note that the current state xy ; equals to Ty ¢11_n,, , SINCE Tp 111 n, , is the last observed satiation
influence for arm % and ny, ; is the number of steps since arm £ is last pulled.

Exploration Settings Depending on the nature of the recommendation domain, we consider two
types of exploration settings: one where the users only interact with the recommendation systems for
a short time after they log in to the service (Appendix and the other where the users tend to
interact with the system for a much longer time, e.g., automated music playlisting (Appendix [C.2.2).
In the first case, the learner collects multiple (n) short trajectories of user utilities, while in the second
case, similar to §[6.2} the learner obtains a single trajectory of user utilities that has length n. In both
settings, we obtain that under some mild conditions, the estimation errors of our estimators for

and A are O(1/4/n).

Exploration Strategies Generalizing from the case where arms are pulled repeatedly, we explore
by pulling the same arm at a fixed interval m. In particular, when m = 1, the exploration strategy
is the same as repeatedly pulling the same arm for multiple times, which is the exploration strategy
used in §[6.1] When m = K, the exploration strategy is to pull the arms in a cyclic order. We present
the estimator for v, A\x using the dataset collected by this exploration strategy in both the multiple
trajectory and single trajectory settings.

C.2.1 Estimation using Multiple Trajectories

For each arm k € [K], we use D;"" to denote a dataset containing n trajectories of evenly spaced
observed satiation influences that are collected by our exploration phase. The time interval between
two pulls of an arm is denoted by m. Each trajectory is of length at least T}, + 1 for Ti,, > 1. For
trajectory i € [n], the observed satiation influences are denoted by x,(ell, e :7:;€ )Tmm 415+ Where

:E,g)l = 0 is the initial satiation influence and the rest of the satiation influences Z xk (j > 1) is the

difference between the first received reward, i.e., the base reward by, and the reward from the j-th
pull of arm k. In other words, for xS)J, J;,(;)Hl € D™, it follows that

B = ad) +dy + 2 (12)

where ar, = 7", d, = Ay and 2,(;3 are the independent samples from A (0, 05’ k) with ai B =

AR (1=2™)/(1 =)

To estimate dj,, we use the estimator dj, = Ly ~(Z =dp+ 130 2)1 By the standard
Gaussian tail bound, we obtain that for § € (0, 1), 1th probablhty 1-46,

~ 202 log(2/6
= di| < %kTM:: ea(n, 5, k). (13)

When estimating ay, we first take the difference between the first 71, + 1 entries of two trajectories
; ; : : ; ~(4) ~(4) ~(1) () ~(29)
iand 2 for i € |n/2] and obtain a new trajectory g3, - - -, Yy 7, 11 Where g, = % — & for
J € [Tmin + 1]. We note that the new trajectory forms a linear dynamlcal system without the bias term
dk, i.e.,

Thye1 = okl + 04,
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where “71(;)] are samples from N(0, 202 , ). We use the ordinary least squares estimator to estimate

Q.

/2] ‘ ' 9
ak = arg min Z (g](;,?rmin"‘l - agl(;;?rmin)
@ i=1

/2] ~(@) - ~(3)
ZZI.Z]- J yk;Tminyvamin+1

2] (i 2
S ()

Theorem 6. [24, Theorem I1.4] Fix 6 € (0,1). Given n > 641log(2/4), with probability 1 — §, we
have that

(14)

N 2log(4/0
Gr — ax] < 4 % = €a(n, 8, k). (15)
t=0 %

We notice that as the minimum length of the trajectory gets greater, the upper bound of the estimation
error of ay gets smaller. Using our estimators for ax and di, we estimate v and \g through

/'V\k = |ak|1/m and /\k = |dk/ak|

Corollary 7. Fix§ € (0,1). Suppose that for all k € [K], we are given D, where n > 641og(2/6)
and Gy, > 0 where Gy, is defined in (14). Then, with probability 1 — 8, we have that for all k € [K],

~ €a(n, 0/ K, k) 1 - 1
'Yk_7k|§%7€n_120<\/ﬁ> and |/\k_>\k|SO<\/ﬁ>

The proof of Corollary [7]can be found in Appendix [F1I] In the case where we are have collected n
trajectories of evenly spaced user utilities for each arm, when the sample size n is sufficient large, the

estimation errors of 9 and \j, are O(1/y/n).

C.2.2 Estimation using a Single Trajectory

In the case where the learner gets to interact with the user for a long period of time (which is the
setting considered in § [5] and § [6)), we collect a single trajectory of evenly spaced arm pulls for
each arm: for each arm k € [K], we use P, to denote a dataset containing a single trajectory of
n + 1 observed satiation influences Ty, 1, . . ., Zx,n+1, Where similar to the multiple trajectories case,
ZTr,1 = 0,y ; (7 > 1) is the difference between the first received reward and the j-th received reward
and the time interval between two consecutive pulls is m. Thus, for Z, ;, Zx j+1 € P, it follows
that

Tk jr1 = OkThj + di + Zr 4, (16)

where ay, dj, and Zj, ; are defined the same as the ones in (I2). For all & € [K], given P,""™, we use
the following estimators to estimate A, = (ag, dk)T

s

o~
~

a — Te— 4= T
Ay = (JZ) =Xk Xik) "Xk Yk )

where Yy € R"™ is an n-dimensional vector whose j-th entry is &, j41 and Xk € R™*? has its j-th
row to be the vector Ty, ; = (%1;,1) . Finally, we take 7 = |ax|'/™ and Ay = |d/dx|. We note

that A;, = argminy, cpe | Yk — Xk A |3, i.c., it is the ordinary least squares estimator for Ay, given
the dataset that treats Zy, ;11 to be the response of the covariates Ty, ;.

As we have noted earlier (§ [6.2), unlike the multiple trajectories setting, in the single trajectory
case, the difficulty in analyzing the ordinary least squares estimator comes from the fact that
the samples are not independent. Asymptotic guarantees of the ordinary least squares estimators in
this case have been studied previously in control theory and time series community [13}22]. The
recent work on system identifications for linear dynamical systems focuses on studying the sample
complexity of the problem [40,[38]. Adapting the proof of [40, Theorem 2.4], we derive the following
theorem for identifying our affine dynamical system (T6).
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Theorem 8. Fix ¢ € (0,1). For all k € [K|, there exists a constant ny(0, k) such that if the dataset
P satisfies n > ng (6, k), then

P (|1 Ax = Acls 2 V1/(n)) <3,

o2 (l—ag)? o2
— 3 z,k z,k
where 1 = \/mln { 162 (1—a2)F(1—an)202 .’ 4A(1—a2) }

As shown in Theorem |8, when d;, = Ap~v;" gets larger, the rates of convergence for //l\k gets
slower. Given that we have a single trajectory of sufficient length, [ax — ax| < O(1/+/n) and
|di, — di| < O(1/4/n). Similar to the multiple trajectories case, as shown in Corollary |9} the
estimators of ~y, and Ay, also achieve O(1/1/n) estimation error.

Corollary 9. Fix § € (0,1). Suppose that for all k € [K), we have P(|| A, — Aglls > 1/y/n) <&
and Gy, > 0 where Ay, and Gy, are defined in (I7). Then, with probability 1 — ¢, we have that for all
ke [K],

~ 1 ~ 1
'Yk_’7k§0<\/ﬁ) and |/\k_)\k|§0<\/ﬁ>'

In the next section, we assume that the satiation and reward models are estimated using the dataset
collected by the proposed exploration strategies and estimators for multiple trajectories or a single
trajectory of user utilities. We will show that performing planning based on these estimated models
will give us policies that perform well for the true MDP.

C.3 Planning

For a continuous-state MDP, planning can be done through either dynamic programming with a
discretized state space or approximate dynamic programming that uses function approximations. In
Appendix [C.3.2] we consider the case where we are given a continuous-state MDP planning oracle
and provide guarantees of the optimal state-dependent policy planned under the estimated satiation
dynamics and reward model. Within the state-dependent policies, we also consider a set of policies
that only depend on time (Appendix [C.3.1)), i.e., the time-dependent competitor class defined in
§[5.2] In addition to not requiring discretization of the state space to solve the planning problem,
such policies can be deployed to settings where user utilities are hard to attain after the exploration
stage. We will show that using the dataset (collected by our exploration strategy in Appendix [C.2))
with sufficient trajectories (or a sufficient long trajectory) to estimate {4, )\k}le, the optimal policy

w;? for M = (x1, [K], {7k, Xk, bi}5_,, T) also performs well in the original MDP M. We note
that by, is known exactly since it is the same as the first observed reward for arm k, as discussed in
Appendix[C.2]

C.3.1 Time-dependent Policy

We first show that finding the optimal time-dependent policy is equivalent to solving the bilinear
program (@).

Lemma 4. Consider a policy 7 that depends only on the time step t but not the state x4, i.e., T
satisfies mp = w(xy) = m(x}) for all t € [T and xy, ), € X. Then, we have

T
ij/\/[ (xinit) - Z Mﬂ't,t(u‘ﬂ't,OIt—l))
t=1

where U, o:4—1 1S the corresponding pull sequence of arm 7, under policy 7 and py, ; is defined
in
Remark 6. We denote the policy obtained by solving using model parameters in M by W/T/t-

Because solving (@) is equivalent to maximizing Zle P t(Ury 0:6—1)s Lemma suggests that, for
MDP M, the best policy 7 that depends only on the time step ¢ but not the exact state x; (which we
refer as time-dependent policies), is W/TM.

Proposition 5. Fix § € (0,1). Suppose that for all k € [K]|, we are given D, such that n >
641og(2/6) and @y, € (a,a) for some 0 < a < @ < 1 almost surely where @y, is defined in (14).
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Consider a policy 7 that depends on only the time step t but not the state xy. Then, with probability
1 — 6, we have that
T U T
VI (Tiie) — VL/\’;‘(iﬂmnﬂ <O <\/ﬁ) .
Remark 7. Proposition [5] applies to time-dependent policies. Such policies can be constructed
from an optimal solution to {@) or the w-lookahead policy (3). From these results, we deduce that

when the historical trajectory is of size n = O(T'), the v/T-lookahead policy ’/'I'.IAU//\[ obtained from

solving (3) with the parameters from the estimated MDP M will be O(V/T)-separated from the
optimal time-dependent policy W/TVI obtained by solving (@) with the true parameters of M. That is,

s T T T
0< ‘/1’%/1 (xinil) - Vl %A(-Tinit) = Vl j\\/[/l(xinit) - Vl M(mlnlt) + V (l‘lmt) Vl ﬁ\(xinil)

T

+ V (Ill’llt) ‘/1 M(zlmt) + V (l'lnlt) V1 j\q/[(xinit)

w

S |V17j//\\//1( (xinit) - Vl M(xlml” + |V (xmlt) Vl,x/l (xlmt)| + |V (xlml) - V:ﬁ (minit)‘
< O(VT),

T P
where the second inequality follows from the fact that V;%(xinit) — V1 %{(xmit) < 0 (since for the

MDP /T/l\, w/% is the optimal time-dependent policy), and the third (last) inequality is derived by
applying Proposition [5|twice and using Remark [4]

C.3.2 State-dependent Policy
In Proposition [6] we show that the difference between the value of the optimal state-dependent policy
74> and the value of the optimal state-dependent policy ’/T}A\ planned under the estimated M is of

order O(T?/\/n) where n is the number of historical trajectories if we use multiple trajectories to
estimate 7y and \g.

Proposition 6. Fix 6 € (0,1). Suppose that for all k € [K), we are given D} such that n >
64 log(2/6) and ay, € (a,a) for some 0 < g < @ < 1 almost surely where Gy, is defined in (14). Then,
with probability 1 — 6,

Vi st (i) — Vi ()| < O ( ﬁ) .

Remark 8. The assumptions in Proposition [5] and [6] correspond to the case where we use multiple

trajectories to estimate the satiation dynamics and reward model. They can be replaced by conditions
on single trajectory datasets when one uses a single trajectory to estimate the parameters.

In summary, as Proposition @ suggests, when given a continuous-state MDP plannmg oracle, our
algorithm obtain a policy 7r *_that is O(T?//n) away from the optimal policy 7, under the true
MDP M where the size of the exploration stage for our algorithm (EEP) is O(Kn) and the horizon
of the exploitation/planning stage is 7. We also note that the optimal state-dependent policy 7 , is
the optimal competitor policy when the competitor class (§[5.2) contains all measurable functions
from X to [K].
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D Proofs of Section [6.2] and Appendix [C.2.2]

D.1 Proof of Theorem[3 and Theorem [§]

We notice that Theorem [3]is a consequence of Theorem [§ when m = 1. More specifically, the dataset
P and the parameter A;, = (Vka )\mk) in Theorem [3|is a special case of the dataset P ™ and
parameter Ay = (v, )\kvm) considered in Theorem E by taking m = 1. Thus, below we directly
present the proof of Theorem [§] where we use the notation from Theorem [§] (and Appendix[C.2.2),
e, ar =y, and di, = Apyg'

We begin with presenting some key results from [40]]; we utilize these results in establishing the sample
complexity of our estimator for identifying an affine dynamical system in Appendix[C.2.2]

Definition 1. /40| Definition 2.1] Let {¢ }+>1 be an { F; }1>1-adapted random process taking values
inR. We say (¢1)1>1 satisfies the (k, v, p)-block martingale small-ball (BMSB) condition if, for any
Jj >0, one has Zle P(|¢j4i| > v|F;) > p almost surely. Given a process (X;);>1 taking values
in RY, we say that it satisfies the (k, T, p)-BMSB condition for Uy, = 0 if for any fixed w in the unit
sphere of RY, the process ¢ = (w, Xy) satisfies (k, /w ' I'gw, p)-BMSB.

Proposition 7. [40) Proposition 2.5] Fix a unit vector w € R?, define ¢, = w' X,. If the scalar
process {¢y }1>1 satisfies the (1, w T Tpw, p)-BMSB condition for some Ty, € R4%4 then

w Fsbwp |T/1]p*
(S ) o)

Theorem 10. [40, Theorem 2.4] Fix 6 € (0,1), T € Nand 0 < Ty, < T. Then if (X;,Y;)i>1 €

(Rd x R™)™ is a random sequence such that (a) Yy = AX; + 0y, where F; = o(m,...,n:) and
0| Fi_1 is o2-sub-Gaussian and mean zero, (b) X1, ..., Xr satisfies the (I,Ts, p)-BMSB condition,
and (c) P(Z:‘:l X X, A TT) > 6. Then if

T> %Ol (log (1/6) + 2d1og(10/p) + log det(TT,")) ,

we have that for A = arg min 4 egnxa ooy |V — AX¢13

900 |1+ dlog(10/p) + logdet (TT') +log(1/4)

< 30.
T/\min (Fsb) o

P HA AHUP

We note that in the proof of Theorem@]m [40], condition (b) is used through applying Proposition 7]
to ensure that for any unit vector w € R%,

T
P (Z(w,xtﬁ < WZLT/H) <exp (LT/SW> (18)

t=1

To apply Theorem [10|in our setting to obtain Theorem [8] we verify condition (a) and (c¢). For
condition (b), we show a result similar to (I8). The below technical lemmas are used in our proof of
Theorem 8]

Lemma 8. Let a,b be scalars with b > 0. Suppose that X ~ N (a,b). Then for any 6 € [0, 1],

(1-0)

P(X| > VO(a® + ) =

Proof. By the Paley-Zygmund inequality,

P(|X| > v/0E[X2]) = Pr(X? > 0E[X?]) > (1 — 0)?
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Using the mean and variance of non-central chi-squared distributions, we obtain that
E[X?] = a® + b,
E[X*] = a* + 6ab + 3b* = (a® + 3b)? — 6b°.

Plugging them back to the Paley-Zygmund inequality, we have that

1—0)?
P(|X| > v0(a? +b) > %,
where the last inequality uses the fact that E[X*4] < (a? + 3b)? < 9(a® + b)? = 9E[X?]2. O

Lemma 9. Let {¢.}i>1 be a scalar process satisfying that

1!
l

P(|pt1i| > | Ft) > p,
1

for vy depending on Fy. If P(ming vy > v) > 1 — 6 for v > 0 that depends on §, then

T
P (Z o7 < ”28p2lLT/1J> < exp <_3LT4/UP) iy

Proof. We begin with partitioning Z1, ..., Zp into S := |T'/1] blocks of size . Consider the random
variables

! vZpk
Bi=1(> ¢%, > ”2 L for0<j<S—1.

‘We observe that

(Zszst < lLT/lJ) = ({Zqﬁ < U
{Zqﬁ < V28p2lLT/lJ} N {mtinut < u})

1/2 p2
<P ({Z P2 < Wé“zs} N {minv; > y}> +P(miny, <v)

ZLT/ZJ} N {mtin vy > y})

Using Chernoff bound, we obtain that

T L/lle S—1 1 V2[p2 S—1 1 2lp2
) :
n»(m_ ’fS) St < 25| =B [ XY o< s
t=1 7=0 i=1 7=0 i=1
S—1
<P B; < 28| < inf e FE[} S5m0 By,
= 4 A<0

2
. . 2 pl
where the second to the last inequality uses the fact that Vjép B; <5 221 ¢§l ; Further, we have that

2 l
vz pl 1 D
E[B;|Fj] = <Z P 2 JQ ‘ﬂz) >P (l Zl L{[@jitil = v}y = 2’]'—3‘1)

>

NS

)
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2
Jl+i
the fact that for a random variable X supported on [0, 1] almost surely such that E[X] > p for some
p € (0,1), then for all ¢ € [0,p], P(X > ¢) > E=L. This is true because

where the first inequality uses the fact that é¢ > 1{¢j1+i| > vj;} and the last inequality uses

1 1 1 ¢
IP’(XZt):/t dIP’(x)Z/t de(m):/o xd}P’(x)—/O zdP(z) =p—t(1-P(X >1)).

In our case, E [% 22:1 1{|pji+i| > v} ’Fjl} = %Zi:l P (\¢jl+i| > z/jl’]-'jl) > p. Thus, we
obtain that for A < 0, i.e., e* < 1,

E[e*i|Fji] = P (Bj = 1‘55-1) +P(B; =0) = (e* — DE[B;|Fu] +1 < (e — 1)%) + 1.
By law of iterated expectation, we obtain that

1 _ —s s
B[ %0 Bi) = E [e)‘ 2720 Big [ Bs |f(5_1)k]] < ((eA - 1)% + 1) E [eAEf:oz BJ} < ((eA - 1)52’ + 1) .
Finally, we need to find

S
inf ¢PS/4 ((eA - 1)%7 + 1) .

A<0
We can see that A\* = —o0o, which gives that
inf e—PS/4 ((e)‘ kg 1)S — pS/4 (1 _ 1’3)5 < o—PS/4,-pS/2 _ ,~3pS/4
A<0 2 2 — )
where we have used the fact that 1 + x < e” for all real-valued x. O

To apply Theorem [T0] we first recall that the affine dynamical system we aim to identify is as
follows:

Thj41 = QpTr,j + di + Zk 5,

where Zj, 1 = 0, a;, € (0,1) and Z ; ~ N (0, az’k). We define the following quantities

j—1 j—1
2 2: 2i ,.,E : J
FkJ’ = Jz,k ag , ko = akdk,
1=0 =0

) 2
and Ty oo = 02, >0 afl = 1az’ak2 . We notice that for all t € [T, j > 1,
? - %%

~ ~ J ~
T 15| The ~ N (%xk,t + dk,j,l“k,j) :

Lemma 10. Fixt > 0 and j > 1. Recall that Ty, ; := (Z14, 1) € R2. Fix a unit vector w € R?. For
any € € (0, 1), we have

_ 1 . 1 P 1
P <<w7xk7t+j>| > 7 min {1 -6 — (e - 1) (a @ +dk,j)2}> > %

Proof. By Lemma we have that for any unit vector w € R?,

1 . 2
P{<w,$k,t+j>| > \/i\/(wl (aixk,t + dk,j) + wz) + wilk

For all € € (0,1), we have

_ 1
JTk,t} > %

. . 2 )
(w1 (al @t + di ;) + w2)2 + w%Fk,j = (w1 (a;@jkﬂf + dk,j)) + w% + 2wpwy (aif}f’t + dk’j) + w%Fk’j
1 X 2
> (1 —e)ws — < - 1) (U)1 (a?ﬁk,t + dk,j)) +wily,

€

1 .
> min {1 —e Ty, — <€ — 1> (al &g + dk,j)2} )
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Lemma 11. Fix § € (0,1). {Ty,}7, satisfy that for any unit vector w € R?,

t=1
withp = 1/72,
2Tk 00 1 1)
Jx = ’Vmax {— log,, (1 + (1 —ag) b 7 og(n/ )> , —log,, \/5}—‘ )
k
. Fk,oo 1_\If.oo
= |min Toa2 , 4

Tan? T Tkoo

Proof. Fix § € (0, 1). Recall that from Lemma@ we have shown that for all ¢ > 0 and k& > 1, given
a unit vector w € R?, for any € € (0, 1), we have

_ 1 . 1 - 1
P{|<w,xk’t+j>| > \/é\/mln{l -6 — (e - 1) (a] T +dk,j)2}} > %

Denote q;,; = ai:%k_’t +dy, ; where T,y ~ N (dj,¢,Tk¢). Fix 6 € (0, 1). Using the standard Gaussian
tail bound and the union bound, we have that with probability 1 — §,

; dy, dy,
< a) 2T o 1 B
g%qtu_%<1_ -+ og(n/ )>+1_
When j > ji, T j > Tk o0 /2, and with probability 1 — &, max;er) ¢i,j < 1. Thus, for j > j,,

and
4d3
(1—ay)?

(12%,)2 + Foo/47

1
Vij ::min{l —&, Ty — (E — 1) QtQ,j}

1 Ad?
>min{l—e,Tho/2— (- —1) —F_
>uin {1 - e T/2 (3 -1) ot |

Fk,()o Fk,oo _1/)2
16d? ) - ’
Toap ke

€ =

we have

> min

Putting it altogether, we have

2j 2%
1 u 1

D (Itw sl = vg VOIF) = 5 D Prll(w, B = v, /VAIF) 2

oF
= " =g

1
72"
Further, we have

P (min Vf’j* > w2> >1-0.

te(T)

Applying Lemma@ we have that for p = %2

P (Z <w’§k,t>2 < ¢fé)23* I_n/J*J> < exp <—W> + 4.

t=1
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Proof of Theorem[S} Based on our setup, condition (a) of Theorem[10]is satisfied. For any n, using
Lemma|[I1|with § = exp(—n), we have that

n 2 92 . .

2 e v 3[n/j]p 3[n/jx]p
Vu € R?, P(Z; (1,7 < mJ*Ln/J*J) <oxp (Y 15 < vy (P,
with p = 1/72,

2T oo (1
Jx = {max {— log,,, (1 + (1 —ag) V2L (dog(n) i n)) , —log,, \/ﬁ}—‘ )
k
1= |min XS k.00

16d2 ?
oae T Thoo

Thus, we have provided a similar result to (I8), which is what condition (b) of Theorem [T0]is used
for. In this case, we have I'y, = I where [ is a 2 x 2 identity matrix. Finally, to verify condition (c),
we notice that we have

b (1—al ")? n
(1—ax)? ]
(1—ai =" )b

l1—ag

= 0 0
= Fk,n + (O 1) + Fsby

which gives that 0 < 'y, < Tandforall j > 1,0 < fk,j < T. Then, we have that
—T=— 2n— - =T , = 2
P (X;Xk £ ;F) =P ()\max ((nf)fl/QX,:Xk(nF)*l/Q) > 5>

E [ (00 /2] X))

2j—2 i
ol x(1=a %) (1—a h)by

1—(112C l—ay

1

ka = E[fkvjf;cr’j] =

and we denote

=

E [tr ((nf)*l/QX,Iik(nf)*l/Z)} <4,

where the last inequality is true since E [K,:Yk} =351 Thy = nT (forall j € [n], trace(T —
Tk,;) > 0and det(T' — T ;) > 0). Following Theorem for 6 € (0,1), when the number of
samples satisfy that

n 10 =
Z23 (log (1/5) + 41og(10/p) + log det(TT31)) ,

J*

we have that

P | || A — Agll2 >

900 \/1 +21og(10/p) + log det (TT'y') + log(1/5) <35
, < 36.

ny

D.2  Proof of Corollary d and Corollary 9]

Similar to Appendix [D.I} Corollary [ is a special case of Corollary ] when m = 1. Hence, we
directly present the proof of Corollary [9|below.

Proof of Corollary[9) Fixd € (0,1). We have that with probability 1—4, €(n, 6, k) := ||/Tk—Ak||2 <

O(1/y/n). With probability at least 1 — £, €5, = [@), — ax| < | A, — Agllz = €(n,6/K, k)
O(1/y/n) and eq, = |dy — by| < || Ay — Agll2 = €(n,8/K, k) = O(1/y/n). When m = 1, then
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Ve — vkl = ||ag| — ax| < @k — ax| = €a, < €(n,0/K, k). When m > 2, since v # 0, we have
that
|ar| — ax

|lax, — ax|
|| (=DM 4 (@ (=2 ey 4y ! '

Ak — Y| =

m—1

Yk

On the other hand, we obtain that

-~

dy,
[

dk dp dp, dp,

ak ak ak ag

(lk

Ak = M| =

Edk Ak€ay 1
) <0O(—).
— ai t & ay (\/ﬁ)

The proof completes as follows:

K
P (k€ K], [k — 9l < 00 /v, [3 — Al < 0(1/vi)) = H(l—) >1-4

k=1

where the last inequality follows from Bernoulli’s inequality. O
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E Additional Proofs and Discussion of Section
E.1 Proof of Theorem 3

Lemma 12. Consider any episode i + 1 (from time t; + 1 to t;\1) where the initial state v° =
(,Ul,tiJrl('Ufl,O:ti)y N1,t41s - 7,UK,ti+1(UK,0:ti)7 nx;) and {Uk,O:ti}i(zl are the past pull sequences
of the proposed policy 1.y, For all 7y, 1.4,,, such that 7y = 7, (x) = Ty(2}), 7 € [K],Vt €
[ti + 1,ti11], zt, 2} € X, we have that

tir1 tit1
Z ]Efbt,i+2,m,l’ti [T(xtvﬁt(xt))l‘rti+1 = xz] = Z Mk:,t(uk,O:tfl)v
t=t;+1 t=t;+1

where {uy. 1, 41:t, ., Y1y is the arm pull sequence of Ty, 1 1:¢,,, -
Proof. Let k denote 7, where t € {t; + 1,...,t;+1}. Recall that we use uy, g.,—1 to denote the pull
sequence of arm k under policy 71.¢,,, = (1.1, Tyt 1litiss ). If k has not been pulled before time ¢ by
T1:t;4,» then Emtﬁzvmv%“ [r(xt,frt)p:tﬁl = xz} = by, = lr, t(Ur, 0:4—1). If k has been pulled
before, then let q1, . . . , g, denote the time steps that arm % has been pulled before time ¢ by 714, |,

ie.,ugqg = 1fori € [n)andugy =0fort’ & {qi1,...,¢,}. Wehavethatfort € {t;+1,...,ti11},

Batysome [ (4, 7)) 24,41 = 27

nk,t,;_H

:bk - (]Ezti+27---7<751,i+1—1 |:E-’L'f,i+l {’Yk Thotitq + )‘k”Y:krtHl} ‘mti—&-l = xl})

=br — (E$t7¢+27“-7$q” |:E93qn+1 |:,yl7:k,ti+] Th,gn+1 + )"f,y:kd“rl} |xti+1 = xl})

b (B [ G010 ) A 11 = ]
== b= g (T e )

:Mk,t(uk,o:t—1)7

where the second equality is true because when arm k is not pulled for example at time ;1 — 1, the
state for arm k at time ¢; 1 — 1 will satisfy that xp ¢, ., = Tk, 1 and np g, = Mg, -1 + 1
with probability 1. In this case, we have that

Nht; g —111

”k’,tv+1—1+1
k ' Tkt —1 T /\kryk

Tkytiqq Mkt -
]Ex‘i+1 [’Yk Tkt AR |xti+l_1:| =7

Nk, t; Nkt
_ it i1
=% Tha-1 T Ay,

The third equality is true since when arm k is pulled for example at time ¢,,, then we have that

Thestiqq Mheotiya
]EunrleM('lI%ukv‘Zn) |:’yk Tk,qn+1 + )\kfyk ]

Nkitipr (T, ng, Mhytiy
=k (05" gy + Ay, ) + My,

where paq is given in Appendix [C.T} The second to last last equality holds because 11 =
i t;+1 (U 0:¢; ) where iy, +(+) is defined in (3)). O

Lemma 13. For any episode i + 1 (from time t; + 1 to t;11), given the past arm pull sequences
{uk.0.t, 5| of the proposed policy 1.1, the optimal time-dependent competitor policy Tty 1:tig1s
where 1, = 7y(xy) = T (), 7 € [K|, YVt € [ti + 1, tiv1], e, ), € X, for this episode is given
by Lookahead({ Ak, V&, bk}, {uho:ti}f:l,t,;,ti_,_l) where { i, Yk, bk}le are the true reward
parameters for the rebounding bandits instance.

Proof. By Lemma@, we have that the optimal time-dependent competitor policy ¢, 41:¢,,, maxi-

i+1
mizes Zi";ﬂrl foke,t (U 0:¢—1), by choosing g ¢, 1 1:1,,, . Thus, by the definition of Lookahead (3),
given our proposed policy 7., the optimal time-dependent competitor policy is given by

LOOkahead({)\k’v Yk bk’}i(:la {uk,O:ti }gzla ti7 ti-l—l)-
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Proof of Theorem 9] Using Lemma [T3] we have that given our policy 71.7 and its correspond-
ing pull sequence uy o.¢—1 for k € [K],t € [T], the optimal competitor policy for episode
i+ 1 where i € {0,...,|T/w]} (episode i + 1 ranges from time ¢; + 1 = iw + 1 to
t;+1 = min{iw + w, T}) is given by Lookahead({ g, V&, bk}szl, {uk,O:ti}kK:p ti,tiv1). We use
M({ g, Vi, bk}ff:l, {Uk,o:tl}ille, ti,ti+1) to denote the (optimal) objective value of (3)) given by
Lookahead ({ Ak, Vi, bk}, {uk 0.4, 11|, ti, tit1). Denote b = maxy, by, and b = miny, by,.

Exploration Stage Recall that in Algorithm we have defined T = T2/3 + w — (T2/3 mod w)
which is a multiple of w. For the first T time steps, as defined in Algorithm our policy 7, 7 is a
time-dependent policy, i.e., it satisfies that m; = m(z¢) = m(2}), m € [K], V¢ € [L, T), 2y, 7, € X.
Using|12] we obtain that the regret for the first T' / w episodes is given by

T/w—1 w
; ﬁlr:{ljgéwE ];7' Tiw+j, T ‘le+J)) Tiwy1 = 2"
T/w—1
Y. E [T(Iiw+j’ﬁiu;+j(iﬂiw+g‘)) Tiwt1 = x’}
T/w _ bYT
Z ({0 s bt Fimts {u, 00 Hom s f0, w0 + w) — T(b_1_7>
=0

<b b+ il ><T<T2/3
1-7%

since T < T2/3 + w and by assumption, w < T2/3,
Estimation Stage By Theorem 3|and Corollary [4] we have that for any § € (0,1) and n > no(d, k)
where n(0, k) depends on § logarithmically, with probability 1 — ¢, for all k € [K] |3 — x| <

C., log(1/6 > Cx, log(1/0 ~
%wand|)\k—)\k|§%7f/)when%>0.

We define two numbers T}, := minT{T (8 no(k, T=1/3))3/2 = C K (log T)3/? < T} and
Tél = minT {T maxg Ve + \/TTW
be arbitrarily large. Take Top = max{T{,7}'}. Then for all T > Ty, with probability 1 — ¢
where § = T~Y/3, we have that Vk € [K], Ar — 7| < e, = OWVKTY31ogT), M\ — M| <

O(WKT~"31logT) and (6)\‘ ‘+€7’( ) < O(KT~31ogT) since 3, <

[
’Yk"‘iﬁ

For any pull sequence wy, 0.1, using our obtained estimated parameters {7y, //\\k,gk}f 1> we define
the estimated reward function: for ¢ > 2, iy ¢ (ug 0:4—1) = bi, — Xk (Zf 171@ Uy, 1), and fort = 1,

< 1 ;. These two numbers exist as 1" can be chosen to

A
1-Ak) (1—k)
<landvy <7 < 1.

Hk,1 (U 0:1) = b = k.1 (ug 0:1), where we note that Ek = by, since it is the reward of the first pull
of arm k. Given t > 2, we have that

‘,Uk.,t(uk,(]:tfl) - ﬁk,t(uk,o:tqﬂ
N t—1 . t—1 )
k (Z :V\Itfiuk,i> — Ak (Z 'V]iluk'L)‘
' i—1
-1 -1 -1
<Z Tt 1) — Ak (Z %_luk,z) + Ak (Z %_luk,z) — Ak (Z VZ_lUk,z) |
i=1 i=1 i=1

N gl | T Vi
<[k — el | ==+ X —~
<[Ae = Al |5 5|t '1_% T
Tk A
<e — |+ |- (19)
MU=A T A=A = )
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Planmng Stage Given our policy LT (along with its pull sequence {uy 0.7 }4_,), starting from
time 7 + 1, for any episode ¢t +1 > T / w, we denote the optimal competitor policy tobe 7 1., =
Lookahead ({ Ak, Vi, b}y, {uk 04, o 1), ti, tis1) where t; = iw and t;41 = min{iw + w, T}

The cumulative expected reward collected by 77 ;4. and ¢, 41.,,, has the difference

M({Ak» Yk bk}?:lv {uk,O:ti_l }521» tiv tiJrl) - M({)\kv ;y\kv bk}?:lv {uk,O:ti_l }?:17 tiv ti+1)

t7+1 t7,+1
E .U"ﬂ't, 71't 0:t— 1 E Moyt uﬂ'mOt 1)
t=t;+1 t=t;+1
tiy1 tit1
E pirz nt 0:1-1) E Hirs ;,O:t—l)
t=t;+1 t=t;+1
7,+1 L+1
+ E /’L‘ﬂ't, 7Tt,0t 1 E :u’TFt; u‘ﬂ't’Ot 1)
t=t;+1 t=t;+1
tit1 tit1
+ E Byt (Ur, 0:0—1) g Pt (U, 0:6—1)
t=t;+1 t=t;+1
tit1 tit1
< E Moy t(uﬂ—*Ot 1) E Fims ¢ th*Ot 1)
t=t;+1 t=t;+1
tit1 tita
+ Y At (Um00-1) = Y (U, 0:0-1)-
t=t;+1 t=t;+1

where u. ., is the corresponding pull sequence of arm 7} unAder policy Ty = (T, T4 1.4)» and
the last inequality holds because 7, 11.,,, = Lookahead({ Ak, Vi, bk } oy, {tk,0:t; Joer, tir ti1)

is the optimal solution under the estimated parameters {\y, 3k, b } i, and 7’s previous past pull
sequence {Uk,o:ti },Ile. Further, using @) and the fact that ¢; — ¢;,_1 < w, we obtain that

ti+1 t1,+1
E Myt Un;,o t—1) E Mm, ;,o:t—l)
t=t;+1 t=t;+1
tiy1 tiy1
+ E Py t(Ur, 0:0—1) E Py t(Ury 0:0—1)
t=t;+1 t=t;+1
<2w max (eA 7A tey |l >
k 1 — Ak (1 =3k =)

Finally, putting it altogether, we have obtained that for all 7' > T,
w T —1 min{w,T'—1% ~
Reg”(T) = X701 maxs, ,eco B [0 T r(@ins o 7 (i)

—-E [Z;—n:iri{wfiiw} T(Ziwtj> Tiwtj (Tiwtj))

LTiw+1 = xl:|

Tiwtl = ZC’}

[T/w]—1

<OT*P)+ (1 -T3) [ > 2wO0ETVlogT) | + T/ ( (b —b+ le
i=T/w -
<O(T*?) 4+ (T — T**)O(VKT ?1log T) + O(T*?)
<O(VKT?*?1ogT),
which we notice that with probability § = 7~'/3, the cumulative expected reward from time 7' to T

between the optimal competitor policy and our policy 7 is at most T’ (b —b+7 ) This completes
the proof.
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E.2 Exploration Strategies

In the exploration phase of Algorithm (from time 1 to T'), in addition to playing each arm repeatedly
for T/ K times, in general, we could explore by playing each arm at a fixed interval, i.e., the time
interval between two consecutive pulls of arm k should be a constant my. For example, this includes
playing the arms cyclically with the cylce being 1,2, ..., K or playing the first two arms in an
alternating fashion from time 1 to 2T /K, then the next two arms, etc. As shown in Theoreml and
Corollary @ us1ng the datasets (of size n) collected by these exploration strategies, we can obtain
estimators 3 and Ay, with the estimation error being on the order of O(1/,/n). Using these results
(in replacement of Theorem [3]and Corollary [ in the estimation stage of the proof of Theorem 3)), we
can obtain that there exists T such that for all 7' > Tj, the regret upper bound of EEP under these
exploration strategies are of order O(v/KT?/?logT).
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F Additional Proofs of Appendix|[C|

F.1 Proof of Corollary (7]

Proof. Fixé € (0,1). By Theorem@ for all k € [K], with probability 1 — %, we have the following:

When m = 1, then [, — V| = |[ax| — ax| < |ag — ax| < €q(n, %, k). When m > 2, we have that
A~ = ] — e
‘ak‘(m—l)/m + |ak|(m—2)/m,yk 4 ,yZLfl ry]ycn,:L .

On the other hand, given that |a;, — ai| < €,(n, 53, k), we have that with probability 1 — 55,

dy

=

A di i dy

~ ~ ~

ag agk ak ak

_

agk

|//\\k_)\k| = <

o~ =

< ed(nl\%zk) + Akea(na%ak) < O( 1

The proof completes as follows:

~ 5 S K 2
- N s 9K k A a\' 9F7>» k )
P Vk, Fk — v < @i —a] fllk| A = Ax| < ed(an ) + 2EC <Ti 2 M) > H 1-—
K ax ax P 2K
where the last inequality follows from Bernoulli’s inequality. O

F.2 Proof of Lemma]

Proof. Let m1.7 denote the sequence that policy 7 will take from time 1 to 7". By the definition of
the value function, we have that

t=2
where x; ~ pa(-|zi—1,m—1,t — 1) is a state vector drawn from the transition distribution defined
in Section Let k denote 7, and uy, o..—1 denote the past pull sequence for arm £ under policy .
If k has not been pulled before time ¢, then E,, ., [r(z¢, )] = br, = tr, ¢ (Ur, 0:¢—1). If k has
been pulled before, then let ¢4, . .., ¢,, denote the time steps that arm k has been pulled before time ¢.
We have that

Eos.,...oz, [r(xe, k)] = b — (]Ezz ,,,,, Ti_1 I:ExthM('lxr‘,fl,k,t—l) [’V}?k’txk,t + Ak’YZk’t]])
=br — (]Efﬂ'z ----- T, [Extn+1’\‘p/\4("xtnak7t7l) [VZkYt‘rkvtn“‘l + )\kvgkm”)

= bk = (Bas,ooa, [ (07" B + 269" ) + A7)
- = bk: _ )\k (,ka,t + ,y;lk,tJrnk,tn +.+ ,y:fk,t"l‘nk,tn"l"nnk,tl)
= /Lk,t(uk,o:t—l),
where we note that the second equality is true because when arm k is not pulled for example at time
t — 1, the state for arm k at time ¢ — 1 will satisfy that x4+ = 2 +—1 and ng s = np 1 + 1
with probability 1. In this case, we have that By, wp. (a1 k1) [Vh Ths + ey '] =
e g A T = ) 4+ Ay The third equality is true since when arm
. . n n
k is pulled for example at time ¢ — 1, then we have that B, <, (-jx,_1 k,t—1) [71@ MUk + Ay ’“’t] =

(e e+ A )+ Aeye™'. The proof completes by summing over
Ey, ..z, [r(xe, 7)) forall ¢ > 2. O

F.3  Proof of Proposition 5]

Proof. Fix § € (0,1). Let E; be the event that
~ 1 ~
Vk € [K], [Tk =l =€, <O (\/ﬁ) s M = Akl = ex, <O (1/Vn).
From Corollary we have that P(E;) > 1 — 4. Let 7.7 denote the sequence that policy 7 will take
from time 1 to 7. From Lemma[d] we have that

T
|‘/17:M($init) - Vlfﬁ(xinitﬂ - Z,Uﬂt,t(u‘n't,O:t—l) - ///Z‘n't,t(uﬂ't,o:t—l) )
t=1
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where ur, o.¢—1 is the past pull sequence for arm 7, under policy 7 before time ¢ and jix, ¢(uk,0:¢—1) =
by —)\k (El 1 vk g 1) fort > 2 and fig,1 (uk,0:1) = b = fie1(ug,0:1). Givent > 2, let k denote
7, we have that

\Mkt(ukOt 1 ukOt 1

BEeeEe)
B Ern) () (o)

<‘)\k_/\k|

+>\’
k

-7 1—%

< %Qk )\f'yk
1= (1=A)(1 =)

Since 4 < 1 (ax, € (a,a)) almost surely and with probability 1 —4, forall k € [K], e, < O (1/y/n)
and ey, < O (1/4/n). We have that with probability 1 — 6,

T
~ T
S Z ‘/’l’ﬂ't,t(u‘n’t702t—1) - /’(“ﬂ't,t(uﬂ't,o:t—lﬂ S (\/ﬁ) .

Z :U/Trt,t(uﬂ't,O:t—l) - //’Z‘n't,t ('U/Trt,O:t—l)
— t=1

O

F.4 Proof of Proposition[6]
Proof. Fix § € (0,1). Let E; be the event that

Vk € [K], Iw—wl—eykso(\}) Ak — Al = ex, <O (1/Vn).

From Corollary [9} we have that P(E1) > 1 — §/2. Let €5 := maxy, €. Let E; denote the event
that Vt € [T],k € [K], |z < B(6/2) (I0). We know that P(E5) > 1 — §/2. When E; and F»
happen, we first observe that for all positive integer n and k € [K

AN _ AN <R, — nmax ’nl < Ah/k_’yk' _ = 0(1 n),
A== P =l Croma 5 300) < e A (1 ()~ Y

whereand the second inequality uses the assumption that ay, 7, are bounded away from 0 and 1.

To continue, we first bound the distance between the transition function in M and M. At any any
time ¢ and state ©; = (z1,4, 714, ..., TKt, Nk t), When we pull arm 7, = k, the next state x4
is updated by: (i) for arm k, ng 41 = 1 and (ii) for all other arms k' # k, ng 41 = ng, + 1 if
ng # 0, ng 441 = 0if ng s = 0, and x4/ 111 = a2 4. Then, by [8, Theorem 1.3], we have that when
nﬂ'g,t 7é 07
||p/\7 (Te1]me, T, t) — P (Besa|2e, T, 1) o
1~ —1 ; n n ~n
( )3‘)‘2 an o 21 )‘2 z:znkot 7}%1‘ + |'Ykk’t-rk’,t + /\k%gk’t ’Ykk tﬂfk t— >\k7k |

- )\227k01’m Ak 2?2871%3’
3 (ST A - X T ) + (R - A T T R
- )\221%0171@
o B = BO/2) + D = Rt
Ak 2?2871%31

ng,t—1 ng,t—1 ng—1
(%) i

<3 ’):i Z 20 Z 7}%1’ )\2 Z 'Yki +|/\’ﬂkt nktl(B(6/2)+)\k)
1=0
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/\nk)t‘

+ I = A,

1 1 Ae — Ael(2A% + €2) e - 3

<3 AHeﬂ‘ — - + R = (B(8/2) + M) + Ak — Ak
e+ 6?32 =921 e = Ml (@A + 1) PO T ~
—3 2 S + 7.5 =3, (B(6/2) + Ak) + | Ak — A

o-o(k)

where () holds since paq (z441|2¢, T, t) is a Gaussian density with mean v, "2y ; + Ay, " and
variance A Z?:’“O_l ~2i and (#+) uses the fact that A2 37 " 420 > X2 > 1. When 1, ; = 0 and
condition (i) and (ii) are fulfilled, we have that ||p o7 (Z¢41]2¢, 76, 1) — pat (Teg1|@e, me, 1) |1 = 0.
Otherwise, that is, if condition (i) or (ii) is not satisfied, we also have that ||p o7 (T¢+1|2s, 7, 1) —
PM (Tepr|me, me,t) |1 = 0 since p g (we41]@e, T, t) = pa (Te41]Te, T, 1) = 0. Next, we examine
the difference of the expected reward obtained by pulling arm k at state x; at time ¢ in MDP M and

M; when ni¢ 7 0, this is given by

[F(e, k)] = (@, )] = e @ + M — A wae — Ny
< Jwnl - =T D™t = MR+ MR — A
S N 1
< (B(/2) +X) [3 = [+ e = Akl =t er = O (\/ﬁ) 7

where 7(x¢, k) is the expected reward of pulling arm ¥ at state ; in MDP M. Putting it altogether,
we have that for any deterministic policy 7,

VI it (@inie) — Vfﬁ(ﬂvimt) = 7(Tinit, 71 (Tinit)) — T(Tinit, T1(Tinit)) + Bagmp e (Jz,m1) Vo (72)]
- EI2NPQ('\$1,W71)[VQT)FM\(‘T?)]
<er+ Ez2~PM('|117W71)[V2TM (xZ)] - E1E2~p/q(-|11,7r,1)[‘/27j_/\/1 (552)]

+ Eszp,q(-\zl,Tr,l)[V27,rM($2)] - Exz~p/\7(-\zl,ﬂ,1)[V;ﬁ($2)]
T
< Ter+ Y Egg o { Bevrmmm oo Vi (@0s1)]
t=1

- E$t+1~p,\7(-\ztm,t) [V;:i-l,/vl (Te41)] }

<Tegr + T2€p mkaxbk,

where paq(-|xy, 7, t) denotes p(-|z¢, m¢(xt),t) in MDP M and the last inequality uses the fact
that <pM('|xt77T7t) —p/\’;l(-|xt77r,t)7 VE—LM> < HPM('|$t,7T,t) _pﬁ/l\('mtvWﬂt)||1||v;§7-r|-1,/\/l”00 <
epT maxy by. Finally, we have that

T * * * T
Vi (@init) = Vo N (init) = Vi x4 (init) — ‘q%(winn) + V:/%(l‘init) =V, (i)

+ V:%(winn) - V:ﬁ (zinit) < 2Ter + 2T ep max b,
where the equation follows from the fact that V}* (Tinit) = ij*‘\jl (Zinit) and rearranging the terms, and
the inequality follows from applying the bound of V{‘ M (Zinit) — foﬂ(xinit) < Tep+T?ecp maxy, by,
that was derived above for 7 = 7} and 7 = wh and using the fact that the policy wh is optimal for
MDP M. Let E5 denote the event that V7" (Zinit) — Vlﬂﬁ (winit) < O(T?/+/n). Putting it altogether,
we have that P(E3) > P(Ey, E1) =1 —-P(ESUEf) > 1 — 6. O
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G Additional Experimental Details and Results

We present additional experimental details and results.

w-lookahead Performance When evaluating the performance of w-lookahead policies, in addition
to the case where 7' = 30 (Figure [3a), we have also run the experiments with 7" = 100 (Figure 4a)).
When solving for the 100-lookahead policy, we have increased the number of threads to 50 to solve
for @) and stopped the program at a time limit of 24 hours. In such settings, we obtain an upper
bound on the absolute optimality gap of 64.0 (percentage optimality gap of 13.0%). When solved
for w-lookahead policies with w in between 1 and 15 using 10 threads, Gurobi ends up solving (5)
within 40s for all different w values. Thus, despite using significantly lower computational time,
w-lookahead policies achieve a similar expected cumulative reward to the T-lookahead policies (see

Figures [3a] and [fa)).

560 oo immmmembedembomimmdembmdeni . a2
540 )] o - w=5
e 1) 150 u X, m- w=8
© 520 o
B3 o w=10
2500 + 7 —— 4100 &
2480 ¢4t o9 T 7 £
= [ ] —
2460 s 20
2 ® —— T-lookahead (24h, 50 threads) s s
5440 ---- Upper Bound (24h, 50 threads) S
420 ® e w-lookahead < )
400 1 2 3 45 6 7 8 9101112131415 50 100 150 200 250 300 350 400
w
(a) T'= 100 (b) Approximate RegT vs. T

Figure 4: Figure {4a|shows the expected cumulative reward collected by w-lookahead policies (blue
dots) when 7" = 100. When solving for the T"-lookahead policy (solving @) with 7' = 100), after 24
hours, Gurobi 9.1 obtains an objective value of 491.3 (red solid line) with an upper bound 555.3 (red
dotted line) and an absolute optimality gap 64.0 (13.0%). The true expected cumulative reward for 7T'-
lookahead policy for this problem lies in between the solid and dotted red lines. Figure fb]shows the
approximate 7-step lookahead regret of w-lookahead EEP. The reason why it is an approximate 7'-step
lookahead regret is that the T-lookahead policy used to obtain the regret is set to be the one attained
by Gurobi using 25 threads for 24 hours. The percentage optimality gaps for these attained policies
are 6.8%,10.1%, 12.4%,14.2%, 15.1%, 33.5%, 39.8% when T = 60, 80, 100, 150, 200, 300, 400,
respectively. The results are averaged over 20 random runs.
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2 w =10, Slope = 0.71 2 w =10, Slope = 0.73
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4.5 ey 54 = #
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(a) logReg" v.s. log T (b) log Reg” v.s. log T

Figure 5: Figure [Sa shows the log-log plot of the w-step lookahead regret of w-lookahead EEP
(averaged over 20 random runs) under different 7" when there are 5 arms. Figure [5b|shows the log-log
plot of the w-step lookahead regret of w-lookahead EEP (averaged over 20 random runs) under
different 7' when there are 10 arms.

EEP Performance Figure|3b|is the log-log plot of the w-step lookahead regret of w-lookahead
EEP against the horizon 7" when T = 60, 80, 100, 150, 200, 300, 400 (averaged over 20 random runs)
and Figure [5a]is the log-log plot when 7" = 60, 80, 100, 150, 200, 300, 400, 600, 800 (averaged over
20 random runs), under the experimental setup provided in §[7}
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To compare the w-lookahead EEP under the same regret definition, we present the (approximate)
T-step lookahead regret for these policies (Figure [4b). We note that in order to obtain the 7'-
step lookahead regret (6)), we need to find the T-lookahead policy which requires us to solve )
when 7" = 60, 80, 100, 150, 200, 300, 400. As we have noted earlier and demonstrated empirically
(Figure [a)), solving (@) for large 7" can be computationally intractable. In contrast, w-lookahead
EEP only requires us to solve much smaller programs (3)). In Figure [#b] we use the policy attained
by Gurobi using 25 threads for 24 hours as the competitor policy against w-lookahead EEP to
obtain the approximate 7'-step lookahead regret. The percentage optimality gaps for these attained
approximate T-lookahead policies are 6.8%, 10.1%, 12.4%, 14.2%, 15.1%, 33.5%, 39.8% when T' =
60, 80, 100, 150, 200, 300, 400, respectively. Notably, there are cases when the w-lookahead EEP
outperforms the attained approximate 7-lookahead policies, resulting in negative approximate 7'-step
lookahead regret.

Finally, we present the result when we include 5 additional arms to the existing problem. The 5 new
arms have parameters v = .4,77 = .5,78 = .6,79 = 8,710 = .7, A6 = 2, A7 = 3, A\g = 2, A\g =
3, 0 =1,and bg = 10,b7; = 5,bg = 6,bg = 7,b19 = 8. Figureis the log-log plot of the w-step
lookahead regret of w-lookahead EEP against the horizon 7" when 1" = 200, 250, 300, 350, 450, 500
(averaged over 20 random runs).
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