
Contents (Appendix)

A Integer Linear Programming Formulation 14

B Proofs and Discussion of Section 4 15
B.1 Proof of Lemma 1 . 15
B.2 Proof of Theorem 1 . 15
B.3 Proof of Proposition 2 . 18
B.4 Proof of Theorem 2 . 19

C More Discussion on Learning with Unknown Dynamics 20
C.1 MDP Setup . 20
C.2 Exploration and Estimation of the Reward Model 21

C.2.1 Estimation using Multiple Trajectories . 21
C.2.2 Estimation using a Single Trajectory . 22

C.3 Planning . 23
C.3.1 Time-dependent Policy . 23
C.3.2 State-dependent Policy . 24

D Proofs of Section 6.2 and Appendix C.2.2 25
D.1 Proof of Theorem 3 and Theorem 8 . 25
D.2 Proof of Corollary 4 and Corollary 9 . 29

E Additional Proofs and Discussion of Section 6 31
E.1 Proof of Theorem 5 . 31
E.2 Exploration Strategies . 34

F Additional Proofs of Appendix C 35
F.1 Proof of Corollary 7 . 35
F.2 Proof of Lemma 4 . 35
F.3 Proof of Proposition 5 . 35
F.4 Proof of Proposition 6 . 36

G Additional Experimental Details and Results 38

13

A Integer Linear Programming Formulation
The bilinear integer program of (4) admits the following equivalent linear integer programming
formulation:

max
uk,t,zk,t,i

∑
k∈[K]

∑
t∈[T]

bkuk,t − λk
t−1∑
i=0

γt−ik zk,t,i

s.t.
∑
k∈[K]

uk,t = 1, ∀t ∈ [T],

zk,t,i ≤ uk,i, zk,t,i ≤ uk,t, uk,i + uk,t − 1 ≤ zk,t,i, ∀k ∈ [K], t ∈ [T], i ∈ {0, . . . , t− 1},
uk,t ∈ {0, 1}, uk,0 = 0, ∀k ∈ [K], t ∈ [T],

zk,t,i ∈ {0, 1}, ∀k ∈ [K], t ∈ [T], i ∈ {0, . . . , t− 1}.

14

B Proofs and Discussion of Section 4
B.1 Proof of Lemma 1

Proof. When the expected rewards of all arms are the same, we know that the arm with the lowest
index will be chosen and thus the first K pulls will be π1 = 1, . . . , πK = K. We will complete the
proof through induction. Suppose that the greedy pull sequence is periodic with π1 = 1, . . . , πK = K
and πt+K = πt until time h > K. We define k′ to be h mod K and n to be (h − k′)/K. We will
show that πh+1 = 1 if πh = K and πh+1 = πh + 1 otherwise. When k′ = 0 (i.e., πh = K), all
arms have been pulled exactly n times as of time h. By the induction assumption, we know that
u1,1:h−K = u2,2:h−K+1 = . . . = uK,K:h, which implies that last time when each arm is pulled, all
of them have the same expected rewards, i.e.,

µ1,h−K+1(u1,0:h−K) = µ2,h−K+2(u2,0:h−K+1) = · · · = µK,h(uK,0:h−1).

Moreover, u1,h−K+1:h = (1, 0, · · · 0︸ ︷︷ ︸
K times

), u2,h−K+1:h = (1, 0, · · · 0︸ ︷︷ ︸
K-1 times

), · · · , uK,h:h = (1).

Therefore, by (3), at time h+ 1, arm 1 has the highest expected reward and will be chosen. In the
case where k′ > 0 (i.e., πh = k′), we let h′ := h− k′. We have that µ1,h′−K+1(u1,0:h′−K) = . . . =

µK,h(uK,0:h′−1) and s = s1,h′−K+1(u1,0:h′−K) = . . . = sK,h′(uK,0:h′−1) ≤ γK

1−γK . Then, at time

h + 1, the satiation level for the arms will be sk,h+1(uk,0:h) = γk
′−k+1

(
1 + γKs

)
for all k ≤ k′

and sk,h+1(uk,0:h) = γK−k+k
′+1s for all k > k′. Thus, the arm with the lowest satiation level will

be πh+1 = k′+ 1 = πh + 1, since sk′+1,h+1(uk′+1,0:h) < s1,h+1(u1,0:h). Consequently, the greedy
policy will select arm πh + 1 at time h+ 1.

B.2 Proof of Theorem 1
Proof. First, when T ≤ K, greedy policy is optimal since its cumulative expected reward is Tb.
So, we consider the case of T > K. Assume for contradiction that there exists another policy πo1:T
that is optimal and is not greedy, i.e., ∃t ∈ [T], πot /∈ arg maxk∈[K] b− λsok,t where sok,t denotes the
satiation level of arm k at time t under the policy πo1:T . We will construct a new policy πn1:T that
obtains a higher cumulative expected reward than πo1:T . Throughout the proof, we use snk,t to denote
the satiation levels for the new policy.

We first note two illustrative facts to give the intuition of the proof.

Fact 1: Any policy πo1:T that does not pick the arm with the lowest satiation level (i.e., highest
expected reward) at the last time step T is not optimal.
Proof of Fact 1: In this case, the policy πn1:T = (πo1, . . . , π

o
T−1, πT) where πT ∈ arg maxk∈[K] b−

λsok,T will obtain a higher cumulative expected reward.

Fact 2: If a policy πo1:T picks the lowest satiation level for the final pull πoT but does not pick the arm
with the lowest satiation level at time T −1, we claim that πn1:T = (πo1, . . . , π

o
T−2, π

o
T , π

o
T−1) 6= πo1:T

obtains a higher cumulative expected reward.
Proof of Fact 2: First, note that πoT−1 6= πoT because otherwise πoT−1 is the arm with the lowest
satiation level at T − 1. Moreover, at time T − 1, πoT ∈ arg mink s

o
k,T−1 has the smallest satiation,

since if not, then there exists another arm k 6= πoT and k 6= πoT−1 that has a smaller satiation level
than πoT at time T − 1. In that case, πoT will not be the arm with the lowest satiation at time T , which
is a contradiction. Then, we deduce soπoT−1,T−1

> soπoT ,T−1
. Combining this with πoT−1 6= πoT , we

arrive at

GT (πn1:T)−GT (πo1:T) = λ(1− γ)
(
soπoT−1,T−1

− soπoT ,T−1
)
> 0.

For the general case, given any policy πo1:T that is not a greedy policy, we construct the new policy
πn1:T that has a higher cumulative expected reward through the following procedure:

1. Find t∗ ∈ [T] such that for all t > t∗, πot ∈ arg maxk∈[K] b − λsok,t and πot∗ /∈
arg maxk∈[K] b−λsok,t∗ . Further, we know that πot∗+1 ∈ arg maxk∈[K] b−λsok,t∗ , using the
same reasoning as the above example, i.e., otherwise πot∗+1 /∈ arg maxk∈[K] b− λsok,t∗+1.
To ease the notation, we use k1 to denote πot∗ and k2 to denote πot∗+1.

15

2. For the new policy, we choose πn1:t∗+1 = (πo1, . . . , π
o
t∗−1, k2, k1). Let Aot1,t2 denote the set

{t′ : t∗ + 2 ≤ t′ ≤ t2, π
o
t′ = πot1}. A

o
t1,t2 contains a set of time indices in between t∗ + 2

and t2 when arm πot1 is played under policy πo1:T . We construct the following three sets
TA := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| < |Aot∗+1,t|}, TB := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| >
|Aot∗+1,t|} and TC := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| = |Aot∗+1,t|}. For time t ≥ t∗ + 2, we
consider the following three cases:

Case I. TB = ∅, which means that at any time t in between t∗+2 and T , arm k1 is played more
than arm k2 from t∗ + 2 to t. In this case, the new policy follows πnt∗+2:T = πot∗+2:T .

Case II. TA = ∅, which means that at any time t in between t∗+2 and T , arm k2 is played more
than arm k1 from t∗+ 2 to t. In this case, the new policy satisfies: for all t ≥ t∗+ 2, 1)
πnt = πot if πot 6= k1 and πot 6= k2; 2) πnt = k2 if πot = k1; and 3) πnt = k1 if πot = k2.

Case III. TA 6= ∅ and TB 6= ∅. Then, starting from t∗+ 2, if t ∈ TA, πnt follows the new policy
construction in Case I, i.e., πnt = πot . If t ∈ TB , πnt follows the new policy construction
in Case II. Finally, for all t ∈ TC , define t′A,t = maxt′∈TA:

t′<t

t′ and t′B,t = maxt′∈TB :
t′<t

t′.

If t′A,t > t′B,t, then πnt follows the new policy construction as Case I. If t′A,t < t′B,t,
πnt follows the new policy construction as Case II. We note that t′A,t 6= t′B,t since
TA ∩ TB = ∅.

When TA = ∅ and TB = ∅, we know that k1 and k2 are not played in πot∗+2:T . In this case, the new
policy construction can follow either Case I or Case II. To complete the proof, we state some facts
first:

• From t∗, the expected rewards collected by the policies πo1:T and πn1:T only differ at times
when arm k1 or arm k2 is played.

• πn1:t∗+1 obtains a higher cumulative expected reward than πo1:t∗+1.

• At time t∗ + 2, the new policy follows that snk1,t∗+2 = γ + γ2sok1,t∗ and snk2,t∗+2 =

γ2 + γ2sok2,t∗ . On the other hand, the old policy has sok1,t∗+2 = γ2 + γ2sok1,t∗ and
sok2,t∗+2 = γ + γ2sok2,t∗ .

Let Nk1 := {t : t∗ + 2 ≤ t ≤ T, πot = k1} and Nk2 := {t : t∗ + 2 ≤ t ≤ T, πot = k2} denote the
sets of time steps when k1 and k2 are played in πo1:T . For a given satiation level x at time t′ together
with the time steps the arm is pulled Nk, we have that at time t ≥ t′, the arm has satiation level
gNk(x, t, t′) = γt−t

′
x+

∑
Nk,i<t

γt−Nk,i where Nk,i is the i-th smallest element in Nk.

In Case I, the difference of the cumulative expected rewards between the two policies satisfies:

GT (πn1:T)−GT (πo1:T) >

|Nk2 |∑
i=1

−λgNk2 (snk2,t∗+2, Nk2,i, t
∗ + 2) + λgNk2 (sok2,t∗+2, Nk2,i, t

∗ + 2)

+

|Nk1 |∑
j=1

−λgNk1 (snk1,t∗+2, Nk1,j , t
∗ + 2) + λgNk1 (sok1,t∗+2, Nk1,j , t

∗ + 2)

= λ
(
sok2,t∗+2 − snk2,t∗+2

) |Nk2 |∑
i=1

γNk2,i−(t
∗+2) + λ

(
sok1,t∗+2 − snk1,t∗+2

) |Nk1 |∑
j=1

γNk1,j−(t
∗+2) > 0,

where we have used the fact that sok2,t∗+2−snk2,t∗+2 = −
(
sok1,t∗+2 − snk1,t∗+2

)
> 0, |Nk2 | ≥ |Nk1 |

and for all j ∈ [|Nk1 |], Nk2,j < Nk1,j . In Case II, similarly, we have that

GT (πn1:T)−GT (πo1:T) >

|Nk1 |∑
j=1

−λgNk1 (snk2,t∗+2, Nk1,j , t
∗ + 2) + λgNk1 (sok1,t∗+2, Nk1,j , t

∗ + 2)

+

|Nk2 |∑
i=1

−λgNk2 (snk1,t∗+2, Nk2,i, t
∗ + 2) + λgNk2 (sok2,t∗+2, Nk2,i, t

∗ + 2)

16

= λ
(
sok1,t∗+2 − snk2,t∗+2

) |Nk1 |∑
j=1

γNk1,j−(t
∗+2) + λ

(
sok2,t∗+2 − snk1,t∗+2

) |Nk2 |∑
i=1

γNk2,i−(t
∗+2) > 0,

since sok1,t∗+2 − snk2,t∗+2 = −
(
sok2,t∗+2 − snk1,t∗+2

)
> 0, |Nk2 | ≤ |Nk1 | and for all i ∈ [|Nk2 |],

Nk1,i < Nk2,i.

Finally, for Case III, the new policy construction is a mix of Case I and Case II. We represent the time
interval [t∗ + 2, T] to be [t∗ + 2, T] = [ti1,s1 , ti1,e1] ∪ [ti2,s2 , ti2,e2] ∪ · · · ∪ [tiM ,sM , tiM ,eM] where
t∗ + 2 = ti1,s1 ≤ . . . ≤ tiM ,sM = T , ∩Mm=1[tim,sm , tim,em] = ∅ and M − 1 is the number of new
policy construction switches happen in between t∗ + 2 and T . We say that a new policy construction
switch happens at time t if the policy construction follows Case I at time t− 1 but follows Case II at
time t or vice versa. Each im 6= im−1 can take values I or II, representing which policy construction
rule is used between the time period tim,sm and tim,em . For any time index set V , we use the notation
V [tim,sm , tim,em] := {t ∈ V : tim,sm ≤ t ≤ tim,em}.
We notice that at any switching time tim,sm , the number of previous pulls of arm k1 and k2 from
time tim−1,sm−1

to tim−1,em−1
are equivalent, which is denoted by lm = |Nk1 [tim,sm , tim,em]| =

|Nk2 [tim,sm , tim,em]| for all m < M . From our analysis of Case I and Case II, we know that to show
that πn1:T obtains a higher cumulative expected reward, it suffices to prove: for all m < M such that

sok2,tim,sm − s
n
k2,tim,sm

= −
(
sok1,tim,sm − s

n
k1,tim,sm

)
> 0,

sok1,tim,sm − s
n
k2,tim,sm

= −
(
sok2,tim,sm − s

n
k1,tim,sm

)
> 0,

we have

sok2,tim+1,sm+1
− snk2,tim+1,sm+1

= −
(
sok1,tim+1,sm+1

− snk1,tim+1,sm+1

)
> 0,

sok1,tim+1,sm+1
− snk2,tim+1,sm+1

= −
(
sok2,tim+1,sm+1

− snk1,tim+1,sm+1

)
> 0.

We will establish these facts in Lemma 3. Finally, we note that the above required conditions are held
at time ti1,s1 = t∗ + 2.

Lemma 3. LetNk[ts, te] denote the set of time steps when arm k is pulled in between (and including)
time ts and te under policy πo1:T . Let sok,t and snk,t represent the satiation level of arm k at time t
when following the policy πo1:T and πn1:T , respectively. For two different arms k1 and k2, suppose
that at time ts we have

sok2,ts − s
n
k2,ts = −

(
sok1,ts − s

n
k1,ts

)
> 0,

sok1,ts − s
n
k2,ts = −

(
sok2,ts − s

n
k1,ts

)
> 0.

Further, suppose that from time ts to te, πn1:T follows either Case I (or Case II) of new policy
construction (see proof of Theorem 1 for their definitions); and at time t′s = te + 1, the new policy
construction for πn1:T has switched to Case II (or Case I if Case II is used from ts to te). Then at time
t′s, we have that

sok2,t′s − s
n
k2,t′s

= −
(
sok1,t′s − s

n
k1,t′s

)
> 0,

sok1,t′s − s
n
k2,t′s

= −
(
sok2,t′s − s

n
k1,t′s

)
> 0.

Proof of Lemma 3. Following the definition in the proof of Theorem 1, given that at time ts, arm k
has satiation s, let gNk[ts,te](s, t

′
s, ts) denote the satiation level of arm k at time t′s after being pulled

at the time steps in the set Nk[ts, te]. Let Nk,i[ts, te] be the i-th smallest element in the set Nk[ts, te].
From the definition of the new policy construction given in the proof of Theorem 1, we also know
that (1) N := |Nk1 [ts, te]| = |Nk2 [ts, te]|; (2) if Case I is applied in between ts and te, we have that
for all i ∈ [N], Nk2,i[ts, te] < Nk1,i[ts, te]; and (3) if Case II is applied in between ts and te, we
have that for all i ∈ [N], Nk2,i[ts, te] > Nk1,i[ts, te].

17

We first consider the setting when Case I new policy construction is applied, then at time t′s, we can
show that

sok1,t′s − s
n
k2,t′s

=gNk1 [ts,te]
(
sok1,ts , t

′
s, ts

)
− gNk2 [ts,te]

(
snk2,ts , t

′
s, ts

)
=γt

′
s−ts

(
sok1,ts − s

n
k2,ts

)
+

l∑
i=1

γt
′
s−Nk1,i[ts,te] − γt

′
s−Nk2,i[ts,te]

=γt
′
s−ts

(
snk1,ts − s

o
k2,ts

)
+

l∑
i=1

γt
′
s−Nk1,i[ts,te] − γt

′
s−Nk2,i[ts,te]

=snk1,t′s − s
o
k2,t′s

> 0,

where the last inequality has used the fact that when we use Case I construction, we have
Nk2,i[ts, te] < Nk1,i[ts, te]. Meanwhile, we also have that

sok2,t′s − s
n
k2,t′s

=gNk2 [ts,te]
(
sok2,ts , t

′
s, ts

)
− gNk2 [ts,te]

(
snk2,ts , t

′
s, ts

)
=γt

′
s−ts

(
sok2,ts − s

n
k2,ts

)
= −γt

′
s−ts

(
sok1,ts − s

n
k1,ts

)
=−

(
sok1,t′s − s

n
k1,t′s

)
> 0.

When Case II new policy construction is applied, then at time t′s, we get

sok1,t′s − s
n
k2,t′s

=gNk1 [ts,te]
(
sok1,ts , t

′
s, ts

)
− gNk1 [ts,te]

(
snk2,ts , t

′
s, ts

)
=γt

′
s−ts

(
sok1,ts − s

n
k2,ts

)
= −γt

′
s−ts

(
sok2,ts − s

n
k1,ts

)
=−

(
sok2,t′s − s

n
k1,t′s

)
> 0,

since sok1,ts − s
n
k2,ts

> 0. On the other hand, we have that

sok2,t′s − s
n
k2,t′s

=gNk2 [ts,te]
(
sok2,ts , t

′
s, ts

)
− gNk1 [ts,te]

(
snk2,ts , t

′
s, ts

)
=γt

′
s−ts

(
sok2,ts − s

n
k2,ts

)
+

l∑
i=1

γt
′
s−Nk2,i[ts,te] − γt

′
s−Nk1,i[ts,te]

=γt
′
s−ts

(
snk1,ts − s

o
k1,ts

)
+

l∑
i=1

γt
′
s−Nk2,i[ts,te] − γt

′
s−Nk1,i[ts,te]

=snk1,t′s − s
o
k1,t′s

> 0,

where the last inequality is true because when Case II new policy construction is applied, we have
Nk1,i[ts, te] < Nk2,i[ts, te].

B.3 Proof of Proposition 2

Proof. If T ≤ K, a Max K-Cut of KT is ∀k ∈ [T], Pk = {k}, which is the same as an optimal
solution to (4). Let 1{·} denote the indicator function. When T > K, the integer program in (4) is
equivalent to

max
uk,t∈{0,1}:

∀t∈[T],
∑
k uk,t=1

K∑
k=1

buk,1 +

K∑
k=1

T∑
t=2

(
buk,t − λ

t−1∑
i=1

γt−iuk,iuk,t

)

= max
P1,...,PK⊆[T]:
∪kPk=[T],

∀k 6=k′,Pk∩Pk′=∅

K∑
k=1

b1{1 ∈ Pk}+

K∑
k=1

T∑
t=2

(
b1{t ∈ Pk} − λ

t−1∑
i=1

γt−i1{i ∈ Pk}1{t ∈ Pk}

)

= max
P1,...,PK⊆[T]:
∪kPk=[T],

∀k 6=k′,Pk∩Pk′=∅

Tb−
K∑
k=1

∑
t,i∈Pk:
i<t

λγt−i

18

=Tb−
T∑
t=2

t−1∑
i=1

λγt−i + max
P1,...,PK⊆[T]:
∪kPk=[T],

∀k 6=k′,Pk∩Pk′=∅

K−1∑
k=1

K∑
k′=k+1

∑
t∈Pk,
i∈Pk′ :
i<t

λγt−i,

where the second equality uses the fact
∑K
k=1 1{t ∈ Pk} = 1 for all t ∈ [T] and the third equality is

true because for any P1, . . . PK such that ∀k 6= k′, Pk ∩ Pk′ = ∅ and ∪kPk = [T], we have

Total Edge Weights of KT =

T∑
t=2

t−1∑
i=1

e(t, i) =
∑

t,i∈[T]:i<t,
∃k∈[K],i,t∈Pk

e(t, i) +
∑

t,i∈[T]:i<t,
∀k∈[K],i,t/∈Pk

e(t, i).

B.4 Proof of Theorem 2

Proof. Given π∗1:T and πw1:T , define a set of new policies {π̃i1:T }
l−1
i=1 such that for all i, π̃i1:T =

(πw1:iw, π
∗
iw+1:T). Based on this, we have the following decomposition

GT (π∗1:T)−GT (πw1:T) = GT (π∗1:T)−GT (π̃1
1:T)︸ ︷︷ ︸

A0

+

 l−2∑
i=1

GT (π̃i1:T)−GT (π̃i+1
1:T)︸ ︷︷ ︸

Ai

+GT (π̃l−11:T)−GT (πw1:T)︸ ︷︷ ︸
Al−1

.

To distinguish the past pull sequences of each arm under different policies, we use the following
notations: µk,t(uk,0:t−1;π′) gives the expected reward of arm k at time t by following pull sequence
π′1:t−1. By the definition of πw1:T , we have that

A0 =

w∑
t=1

µπ∗t ,t(uπ∗t ,0:t−1;π∗)− µπwt ,t(uπwt ,0:t−1;πw) +

T∑
t=w+1

µπ∗t ,t(uπ∗t ,0:t−1;π∗)− µπ∗t ,t(uπ∗t ,0:t−1; π̃1)

≤
T∑

t=w+1

µπ∗t ,t(uπ∗t ,0:t−1;π∗)− µπ∗t ,t(uπ∗t ,0:t−1; π̃1),

where the inequality follows from the fact that πw1:w is optimal for (4) when T = w. Similarly, we
obtain that for all i ∈ [l − 2],

Ai =

iw∑
t=1

µπwt ,t(uπwt ,0:t−1;πw)− µπwt ,t(uπwt ,0:t−1;πw)︸ ︷︷ ︸
=0

+

(i+1)w∑
t=iw+1

µπ∗t ,t(uπ∗t ,0:t−1; π̃i)− µπwt ,t(uπwt ,0:t−1;πw)︸ ︷︷ ︸
≤0

+

T∑
t=(i+1)w+1

µπ∗t ,t(uπ∗t ,0:t−1; π̃i)− µπ∗t ,t(uπ∗t ,0:t−1; π̃i+1)

≤
T∑

t=(i+1)w+1

µπ∗t ,t(uπ∗t ,0:t−1; π̃i)− µπ∗t ,t(uπ∗t ,0:t−1; π̃i+1).

Finally, we have Al−1 =
∑T
t=(l−1)w+1 µπ∗t ,t(uπ∗t ,0:t−1; π̃l−1) − µπwt ,t(uπwt ,0:t−1;πw) ≤ 0. To

complete the proof, it suffices to use the fact that for all i ∈ {1, . . . , l − 1},

max
π′1:T ,π1:T :

π′iw+1:T=πiw+1:T

T∑
t=iw+1

µπt,t(uπt,0:t−1;π)− µπt,t(uπt,0:t−1;π′) ≤
T−iw−1∑
t=0

λγt
γ

1− γ
≤ λγ(1− γT−iw)

(1− γ)2

≤ λγ(1− γT−w)

(1− γ)2
,

where the first inequality holds because for any arm, the maximum satiation level discrepancy under
two pull sequences (after iw time steps) is γ/(1− γ) and from time iw + 1 till time T , the objective
will be maximized when the arm with the maximum satiation discrepancy is played all the time.

19

C More Discussion on Learning with Unknown Dynamics
As we have noted in Section 5, when the learner makes a decision on which arm to pull, the learner
does not observe the hidden satiation level the user has for the arms. The POMDP the learner faces can
be cast as a fully observable MDP (Appendix C.1) where the estimated reward model (Appendix C.2)
can be used for planning (Appendix C.3). In addition to policies that are time-dependent (actions
taken by time-dependent policies only depend on the time steps at which they are taken) considered
in Section 6, we also consider state-dependent policies where the states are continuous.

C.1 MDP Setup
We begin with describing the full MDP setup of rebounding bandits, including the state representation
and reward function defined in Section 5.1. Following [32], at any time t ∈ [T], we define our state
vector to be xt = (x1,t, n1,t, x2,t, n2,t, . . . , xK,t, nK,t), where nk,t ∈ N is the number of steps since
arm k is last selected and xk,t is the satiation influenceas of the most recent pull of arm k. Since the
most recent pull happens at t− nk,t, we have xk,t = bk − µk,t−nk,t = λksk,t−nk,t . We note that bk
can be obtained when arm k is pulled for the first time since the satiation effect is 0 if an arm has not
been pulled before. The initial state is xinit = (0, . . . , 0). Transitions between two states xt and xt+1

are defined as follows: If arm k is chosen at time t, i.e., πt = k, and reward µk,t is obtained, then the
next state xt+1 will be:

A.1 For the pulled arm k, nk,t+1 = 1 and xk,t+1 = bk − µk,t.
A.2 For other arms k′ 6= k, nk′,t+1 = nk′,t + 1 if nk′,t 6= 0 and nk′,t+1 = 0 if nk′,t = 0. The

satiation influence remains the same, i.e., xk′,t+1 = xk′,t.

For all xt ∈ X and k ∈ [K], we have that E[xk,t] ≤ λγ/(1 − γ) and Var[xk,t] ≤ λ
2
σ2
z/(1 − γ2).

Hence, for any δ ∈ (0, 1), P (maxk,t |xk,t| ≥ B(δ)) ≤ δ, where

B(δ) :=
λγ

1− γ
+ λσz

√
2 log(2KT/δ)

1− γ2
. (10)

The MDP the learner faces can be described as a tupleM := 〈xinit, [K], {γk, λk, bk}Kk=1, T 〉 of the
initial state xinit, actions (arms) [K], the horizon T and parameters {γk, λk, bk}Kk=1. Let ∆(·) denote
the probability simplex. Given {γk, λk, bk}Kk=1, the expected reward r : X × [K]→ R and transition
functions p : X × [K]× [T]→ ∆(X) are defined as follows:

1. r : X × [K] → R gives the expected reward of pulling arm k conditioned on xt, i.e.,
r(xt, k) = E[µk,t|xt].2 If nk,t = 0, then r(xt, k) = bk. If nk,t ≥ 1, r(xt, k) = bk −
γ
nk,t
k xk,t − λkγ

nk,t
k .

2. When pulling arm k at time t and state xt, p (xt+1|xt, k, t) = 0 if xt+1 does not satisfy A.1
or A.2. When xt+1 fulfills both A.1 and A.2, we consider two cases of xt. If nk,t 6= 0,
then the transition function p (xt+1|xt, k, t) is given by the Gaussian density with mean
γ
nk,t
k (xk,t + λk) and variance λ2kσ

2
z

∑nk,t−1
i=0 γ2ik , as illustrated in (11). If nk,t = 0, then

p(xt+1|xt, k, t) = 1 since for the first pull of arm k, the obtained reward µk,t = bk.

At time t, the learner follows an action πt : X → [K] that depends on the state. We use V πt,M : X →
R to denote the value function of policy π1:T at time t under MDPM: V πt,M(xt) = r(xt, πt(xt)) +

Ext+1∼p(·|xt,πt(xt),t)[V
π
t+1,M(xt+1)] and V πT+1,M(x) = 0 for all x ∈ X . To restate our goal (2) in

terms of the value function: for an MDPM, we would like to find a policy π1:T that maximizes

V π1,M(xinit) = E

[
T∑
t=1

r(xt, πt(xt))

∣∣∣∣∣x1 = xinit

]
.

To simplify the notation, we use π to refer to a policy π1:T . Given an MDP M, we denote its
optimal policy by π∗M and the value function for the optimal policy by V ∗t,M, i.e., V ∗t,M(x) :=

V
π∗M
t,M(x).

2By conditioning on xt, we mean conditioning on the σ-algebra generated by past actions and observed
rewards.

20

C.2 Exploration and Estimation of the Reward Model
As we have discussed in § 6.1, based on our satiation and reward models, the satiation influence xk,t
of arm k forms a dynamical system where we only observe the value of the system when arm k is
pulled. When arm k is pulled at time t and nk,t 6= 0, we observe the satiation influence λksk,t which
becomes the next state xk,t+1, i.e.,

xk,t+1 = λksk,t = λkγ
nk,t
k sk,t−nk,t + λkγ

nk,t
k + λk

nk,t−1∑
i=0

γikzk,t−1−i

= γ
nk,t
k xk,t+1−nk,t + λkγ

nk,t
k + λk

nk,t−1∑
i=0

γikzk,t−1−i. (11)

We note that the current state xk,t equals to xk,t+1−nk,t since xk,t+1−nk,t is the last observed satiation
influence for arm k and nk,t is the number of steps since arm k is last pulled.

Exploration Settings Depending on the nature of the recommendation domain, we consider two
types of exploration settings: one where the users only interact with the recommendation systems for
a short time after they log in to the service (Appendix C.2.1) and the other where the users tend to
interact with the system for a much longer time, e.g., automated music playlisting (Appendix C.2.2).
In the first case, the learner collects multiple (n) short trajectories of user utilities, while in the second
case, similar to § 6.2, the learner obtains a single trajectory of user utilities that has length n. In both
settings, we obtain that under some mild conditions, the estimation errors of our estimators for γk
and λk are O(1/

√
n).

Exploration Strategies Generalizing from the case where arms are pulled repeatedly, we explore
by pulling the same arm at a fixed interval m. In particular, when m = 1, the exploration strategy
is the same as repeatedly pulling the same arm for multiple times, which is the exploration strategy
used in § 6.1. When m = K, the exploration strategy is to pull the arms in a cyclic order. We present
the estimator for γk, λk using the dataset collected by this exploration strategy in both the multiple
trajectory and single trajectory settings.

C.2.1 Estimation using Multiple Trajectories
For each arm k ∈ [K], we use Dn,mk to denote a dataset containing n trajectories of evenly spaced
observed satiation influences that are collected by our exploration phase. The time interval between
two pulls of an arm is denoted by m. Each trajectory is of length at least Tmin + 1 for Tmin > 1. For
trajectory i ∈ [n], the observed satiation influences are denoted by x̃(i)k,1, . . . , x̃

(i)
k,Tmin+1, . . ., where

x̃
(i)
k,1 = 0 is the initial satiation influence and the rest of the satiation influences x̃(i)k,j (j > 1) is the

difference between the first received reward, i.e., the base reward bk, and the reward from the j-th
pull of arm k. In other words, for x̃(i)k,j , x̃

(i)
k,j+1 ∈ D

n,m
k , it follows that

x̃
(i)
k,j+1 = akx̃

(i)
k,j + dk + z̃

(i)
k,j , (12)

where ak = γmk , dk = λkγ
m
k and z̃(i)k,j are the independent samples from N

(
0, σ2

z,k

)
with σ2

z,k =

λ2kσ
2
z(1− γ2mk)/(1− γ2k).

To estimate dk, we use the estimator d̂k = 1
n

∑n
i=1 x̃

(i)
k,2 = dk + 1

n

∑n
i=1 z̃

(i)
k,1. By the standard

Gaussian tail bound, we obtain that for δ ∈ (0, 1), with probability 1− δ,

|d̂k − dk| ≤

√
2σ2

z,k log(2/δ)

n
=: εd(n, δ, k). (13)

When estimating ak, we first take the difference between the first Tmin + 1 entries of two trajectories
i and 2i for i ∈ bn/2c and obtain a new trajectory ỹ(i)k,1, . . . , ỹ

(i)
k,Tmin+1 where ỹ(i)k,j = x̃

(i)
k,j − x̃

(2i)
k,j for

j ∈ [Tmin + 1]. We note that the new trajectory forms a linear dynamical system without the bias term
dk, i.e.,

ỹ
(i)
k,j+1 = akỹ

(i)
k,j + w̃

(i)
k,j ,

21

where w̃(i)
k,j are samples from N (0, 2σ2

z,k). We use the ordinary least squares estimator to estimate
ak:

âk = arg min
a

bn/2c∑
i=1

(
ỹ
(i)
k,Tmin+1 − aỹ

(i)
k,Tmin

)2
=

∑bn/2c
i=1 ỹ

(i)
k,Tmin

ỹ
(i)
k,Tmin+1∑bn/2c

i=1

(
ỹ
(i)
k,Tmin

)2 . (14)

Theorem 6. [24, Theorem II.4] Fix δ ∈ (0, 1). Given n ≥ 64 log(2/δ), with probability 1− δ, we
have that

|âk − ak| ≤ 4

√
2 log(4/δ)

n
∑Tmin
t=0 a

2t
k

=: εa(n, δ, k). (15)

We notice that as the minimum length of the trajectory gets greater, the upper bound of the estimation
error of ak gets smaller. Using our estimators for ak and dk, we estimate γk and λk through
γ̂k = |âk|1/m and λ̂k = |d̂k/âk|.
Corollary 7. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are givenDn,mk where n ≥ 64 log(2/δ)
and âk > 0 where âk is defined in (14). Then, with probability 1− δ, we have that for all k ∈ [K],

|γ̂k − γk| ≤
εa(n, δ/K, k)

γm−1k

= O

(
1√
n

)
and |λ̂k − λk| ≤ O

(
1√
n

)
.

The proof of Corollary 7 can be found in Appendix F.1. In the case where we are have collected n
trajectories of evenly spaced user utilities for each arm, when the sample size n is sufficient large, the
estimation errors of γ̂k and λ̂k are O(1/

√
n).

C.2.2 Estimation using a Single Trajectory
In the case where the learner gets to interact with the user for a long period of time (which is the
setting considered in § 5 and § 6), we collect a single trajectory of evenly spaced arm pulls for
each arm: for each arm k ∈ [K], we use Pn,mk to denote a dataset containing a single trajectory of
n+ 1 observed satiation influences x̃k,1, . . . , x̃k,n+1, where similar to the multiple trajectories case,
x̃k,1 = 0, x̃k,j (j > 1) is the difference between the first received reward and the j-th received reward
and the time interval between two consecutive pulls is m. Thus, for x̃k,j , x̃k,j+1 ∈ Pn,mk , it follows
that

x̃k,j+1 = akx̃k,j + dk + z̃k,j , (16)

where ak, dk and z̃k,j are defined the same as the ones in (12). For all k ∈ [K], given Pn,mk , we use
the following estimators to estimate Ak = (ak, dk)>,

Âk =

(
âk
d̂k

)
= (Xk

>
Xk)−1Xk

>
Yk, (17)

where Yk ∈ Rn is an n-dimensional vector whose j-th entry is x̃k,j+1 and Xk ∈ Rn×2 has its j-th
row to be the vector xk,j = (x̃k,j , 1)>. Finally, we take γ̂k = |âk|1/m and λ̂k = |d̂k/âk|. We note
that Âk = arg minAk∈R2 ‖Yk−XkAk‖22, i.e., it is the ordinary least squares estimator for Ak given
the dataset that treats x̃k,j+1 to be the response of the covariates xk,j .

As we have noted earlier (§ 6.2), unlike the multiple trajectories setting, in the single trajectory
case, the difficulty in analyzing the ordinary least squares estimator (17) comes from the fact that
the samples are not independent. Asymptotic guarantees of the ordinary least squares estimators in
this case have been studied previously in control theory and time series community [13, 22]. The
recent work on system identifications for linear dynamical systems focuses on studying the sample
complexity of the problem [40, 38]. Adapting the proof of [40, Theorem 2.4], we derive the following
theorem for identifying our affine dynamical system (16).

22

Theorem 8. Fix δ ∈ (0, 1). For all k ∈ [K], there exists a constant n0(δ, k) such that if the dataset
Pn,mk satisfies n ≥ n0(δ, k), then

P
(
‖Âk −Ak‖2 &

√
1/(ψn)

)
≤ δ,

where ψ =

√
min

{
σ2
z,k(1−ak)2

16d2k(1−a
2
k)+(1−ak)2σ2

z,k
,

σ2
z,k

4(1−a2k)

}
.

As shown in Theorem 8, when dk = λkγ
m
k gets larger, the rates of convergence for Âk gets

slower. Given that we have a single trajectory of sufficient length, |âk − ak| ≤ O(1/
√
n) and

|d̂k − dk| ≤ O(1/
√
n). Similar to the multiple trajectories case, as shown in Corollary 9, the

estimators of γk and λk also achieve O(1/
√
n) estimation error.

Corollary 9. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we have P(‖Âk − Ak‖2 & 1/
√
n) ≤ δ

and âk > 0 where Âk and âk are defined in (17). Then, with probability 1− δ, we have that for all
k ∈ [K],

|γ̂k − γk| ≤ O
(

1√
n

)
and |λ̂k − λk| ≤ O

(
1√
n

)
.

In the next section, we assume that the satiation and reward models are estimated using the dataset
collected by the proposed exploration strategies and estimators for multiple trajectories or a single
trajectory of user utilities. We will show that performing planning based on these estimated models
will give us policies that perform well for the true MDP.

C.3 Planning
For a continuous-state MDP, planning can be done through either dynamic programming with a
discretized state space or approximate dynamic programming that uses function approximations. In
Appendix C.3.2, we consider the case where we are given a continuous-state MDP planning oracle
and provide guarantees of the optimal state-dependent policy planned under the estimated satiation
dynamics and reward model. Within the state-dependent policies, we also consider a set of policies
that only depend on time (Appendix C.3.1), i.e., the time-dependent competitor class defined in
§ 5.2. In addition to not requiring discretization of the state space to solve the planning problem,
such policies can be deployed to settings where user utilities are hard to attain after the exploration
stage. We will show that using the dataset (collected by our exploration strategy in Appendix C.2)
with sufficient trajectories (or a sufficient long trajectory) to estimate {γk, λk}Kk=1, the optimal policy
π∗
M̂

for M̂ = 〈x1, [K], {γ̂k, λ̂k, bk}Kk=1, T 〉 also performs well in the original MDPM. We note
that bk is known exactly since it is the same as the first observed reward for arm k, as discussed in
Appendix C.2.

C.3.1 Time-dependent Policy
We first show that finding the optimal time-dependent policy is equivalent to solving the bilinear
program (4).

Lemma 4. Consider a policy π that depends only on the time step t but not the state xt, i.e., π
satisfies πt = πt(xt) = πt(x

′
t) for all t ∈ [T] and xt, x′t ∈ X . Then, we have

V π1,M(xinit) =

T∑
t=1

µπt,t(uπt,0:t−1),

where uπt,0:t−1 is the corresponding pull sequence of arm πt under policy π and µk,t is defined
in (3).

Remark 6. We denote the policy obtained by solving (4) using model parameters in M by πTM.
Because solving (4) is equivalent to maximizing

∑T
t=1 µπt,t(uπt,0:t−1), Lemma 4 suggests that, for

MDPM, the best policy π that depends only on the time step t but not the exact state xt (which we
refer as time-dependent policies), is πTM.

Proposition 5. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are given Dn,mk such that n ≥
64 log(2/δ) and âk ∈ (a, a) for some 0 < a < a < 1 almost surely where âk is defined in (14).

23

Consider a policy π that depends on only the time step t but not the state xt. Then, with probability
1− δ, we have that

|V π1,M(xinit)− V π1,M̂(xinit)| ≤ O
(
T√
n

)
.

Remark 7. Proposition 5 applies to time-dependent policies. Such policies can be constructed
from an optimal solution to (4) or the w-lookahead policy (5). From these results, we deduce that
when the historical trajectory is of size n = O(T), the

√
T -lookahead policy πw

M̂
obtained from

solving (5) with the parameters from the estimated MDP M̂ will be O(
√
T)-separated from the

optimal time-dependent policy πTM obtained by solving (4) with the true parameters ofM. That is,

0 ≤ V π
T
M

1,M(xinit)− V
πwM̂
1,M(xinit) = V

πTM
1,M(xinit)− V

πTM
1,M̂

(xinit) + V
πTM
1,M̂

(xinit)− V
πTM̂
1,M̂

(xinit)

+ V
πTM̂
1,M̂

(xinit)− V
πwM̂
1,M̂

(xinit) + V
πwM̂
1,M̂

(xinit)− V
πwM̂
1,M(xinit)

≤ |V π
T
M

1,M(xinit)− V
πTM
1,M̂

(xinit)|+ |V
πTM̂
1,M̂

(xinit)− V
πwM̂
1,M̂

(xinit)|+ |V
πwM̂
1,M̂

(xinit)− V
πwM̂
1,M(xinit)|

≤ O(
√
T),

where the second inequality follows from the fact that V π
T
M

1,M̂
(xinit)− V

πTM̂
1,M̂

(xinit) ≤ 0 (since for the

MDP M̂, πT
M̂

is the optimal time-dependent policy), and the third (last) inequality is derived by
applying Proposition 5 twice and using Remark 4.

C.3.2 State-dependent Policy
In Proposition 6, we show that the difference between the value of the optimal state-dependent policy
π∗M, and the value of the optimal state-dependent policy π∗

M̂
planned under the estimated M̂ is of

order O(T 2/
√
n) where n is the number of historical trajectories if we use multiple trajectories to

estimate γk and λk.

Proposition 6. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are given Dn,mk such that n ≥
64 log(2/δ) and âk ∈ (a, a) for some 0 < a < a < 1 almost surely where âk is defined in (14). Then,
with probability 1− δ,

|V ∗1,M(xinit)− V
π∗M̂
1,M(xinit)| ≤ O

(
T 2

√
n

)
.

Remark 8. The assumptions in Proposition 5 and 6 correspond to the case where we use multiple
trajectories to estimate the satiation dynamics and reward model. They can be replaced by conditions
on single trajectory datasets when one uses a single trajectory to estimate the parameters.

In summary, as Proposition 6 suggests, when given a continuous-state MDP planning oracle, our
algorithm obtain a policy π∗

M̂
that is O(T 2/

√
n) away from the optimal policy π∗M under the true

MDPM where the size of the exploration stage for our algorithm (EEP) is O(Kn) and the horizon
of the exploitation/planning stage is T . We also note that the optimal state-dependent policy π∗M is
the optimal competitor policy when the competitor class (§ 5.2) contains all measurable functions
from X to [K].

24

D Proofs of Section 6.2 and Appendix C.2.2
D.1 Proof of Theorem 3 and Theorem 8
We notice that Theorem 3 is a consequence of Theorem 8 when m = 1. More specifically, the dataset
Pnk and the parameter Ak = (γk, λkγk)> in Theorem 3 is a special case of the dataset Pn,mk and
parameter Ak = (γmk , λkγ

m
k)> considered in Theorem 8 by taking m = 1. Thus, below we directly

present the proof of Theorem 8 where we use the notation from Theorem 8 (and Appendix C.2.2),
i.e., ak = γmk and dk = λkγ

m
k .

We begin with presenting some key results from [40]; we utilize these results in establishing the sample
complexity of our estimator for identifying an affine dynamical system in Appendix C.2.2.

Definition 1. [40, Definition 2.1] Let {φt}t≥1 be an {Ft}t≥1-adapted random process taking values
in R. We say (φt)t≥1 satisfies the (k, ν, p)-block martingale small-ball (BMSB) condition if, for any
j ≥ 0, one has 1

k

∑k
i=1 P(|φj+i| ≥ ν|Fj) ≥ p almost surely. Given a process (Xt)t≥1 taking values

in Rd, we say that it satisfies the (k,Γsb, p)-BMSB condition for Γsb � 0 if for any fixed w in the unit
sphere of Rd, the process φt := 〈w,Xt〉 satisfies (k,

√
w>Γsbw, p)-BMSB.

Proposition 7. [40, Proposition 2.5] Fix a unit vector w ∈ Rd, define φt = w>Xt. If the scalar
process {φt}t≥1 satisfies the (l,

√
w>Γsbw, p)-BMSB condition for some Γsb ∈ Rd×d, then

P

(
n∑
t=1

φ2t ≤
w>Γsbwp

2

8
lbT/lc

)
≤ exp

(
−bT/lcp

2

8

)
.

Theorem 10. [40, Theorem 2.4] Fix δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb � Γ. Then if (Xt, Yt)t≥1 ∈
(Rd × Rn)n is a random sequence such that (a) Yt = AXt + ηt, where Ft = σ(η1, . . . , ηt) and
ηt|Ft−1 is σ2-sub-Gaussian and mean zero, (b) X1, . . . , XT satisfies the (l,Γsb, p)-BMSB condition,
and (c) P(

∑n
t=1XtX

>
t � TΓ) ≥ δ. Then if

T ≥ 10l

p2
(
log (1/δ) + 2d log(10/p) + log det(ΓΓ−1sb)

)
,

we have that for Â = arg minA∈Rn×d
∑T
t=1 ‖Yt −AXt‖22,

P

‖Â−A‖op >
90σ

p

√
n+ d log(10/p) + log det

(
ΓΓ−1sb

)
+ log(1/δ)

Tλmin(Γsb)

 ≤ 3δ.

We note that in the proof of Theorem 10 in [40], condition (b) is used through applying Proposition 7
to ensure that for any unit vector w ∈ Rd,

P

(
T∑
t=1

〈w,Xt〉2 ≤
(w>Γsbw)p2

8
lbT/lc

)
≤ exp

(
−bT/lcp

2

8

)
. (18)

To apply Theorem 10 in our setting to obtain Theorem 8, we verify condition (a) and (c). For
condition (b), we show a result similar to (18). The below technical lemmas are used in our proof of
Theorem 8.

Lemma 8. Let a, b be scalars with b > 0. Suppose that X ∼ N(a, b). Then for any θ ∈ [0, 1],

P(|X| ≥
√
θ(a2 + b)) ≥ (1− θ)2

9
.

Proof. By the Paley-Zygmund inequality,

P(|X| ≥
√
θE[X2]) = Pr(X2 ≥ θE[X2]) ≥ (1− θ)2E[X2]2

E[X4]
.

25

Using the mean and variance of non-central chi-squared distributions, we obtain that

E[X2] = a2 + b,

E[X4] = a4 + 6a2b+ 3b2 = (a2 + 3b)2 − 6b2.

Plugging them back to the Paley-Zygmund inequality, we have that

P(|X| ≥
√
θ(a2 + b) ≥ (1− θ)2

9
,

where the last inequality uses the fact that E[X4] ≤ (a2 + 3b)2 ≤ 9(a2 + b)2 = 9E[X2]2.

Lemma 9. Let {φt}t≥1 be a scalar process satisfying that

1

l

l∑
i=1

P(|φt+i| ≥ νt|Ft) ≥ p,

for νt depending on Ft. If P(mint νt ≥ ν) ≥ 1− δ for ν > 0 that depends on δ, then

P

(
T∑
t=1

φ2t ≤
ν2p2

8
lbT/lc

)
≤ exp

(
−3bT/lcp

4

)
+ δ.

Proof. We begin with partitioning Z1, . . . , ZT into S := bT/lc blocks of size l. Consider the random
variables

Bj = 1

(
l∑
i=1

φ2jl+i ≥
ν2jlpk

2

)
, for 0 ≤ j ≤ S − 1.

We observe that

P

(
T∑
t=1

φ2t ≤
ν2p2

8
lbT/lc

)
= P

({
T∑
t=1

φ2t ≤
ν2p2

8
lbT/lc

}
∩ {min

t
νt ≥ ν}

)

+ P

({
T∑
t=1

φ2t ≤
ν2p2

8
lbT/lc

}
∩ {min

t
νt < ν}

)

≤ P

({
T∑
t=1

φ2t ≤
ν2bt/lclp

2

8
lS

}
∩ {min

t
νt ≥ ν}

)
+ P(min

t
νt < ν)

≤ P

(
T∑
t=1

φ2t ≤
ν2bt/lclp

2

8
kS

)
+ δ.

Using Chernoff bound, we obtain that

P

(
T∑
t=1

φ2t ≤
ν2bt/lclp

2

8
kS

)
≤ P

S−1∑
j=0

l∑
i=1

φ2jl+i ≤
ν2jlp

2

8
lS

 = P

S−1∑
j=0

l∑
i=1

φ2jl+i ≤
ν2jlp

2

8
lS


≤ P

S−1∑
j=0

Bj ≤
p

4
S

 ≤ inf
λ≤0

e−
pS
4 E[eλ

∑S−1
j=0 Bj],

where the second to the last inequality uses the fact that
ν2
jlpl

2 Bj ≤
∑l
i=1 φ

2
jl+i Further, we have that

E[Bj |Fjl] = P

(
l∑
i=1

φ2jl+i ≥
ν2jlpl

2

∣∣∣Fjl) ≥ P(1

l

l∑
i=1

1 {|φjl+i| ≥ νjl} ≥
p

2

∣∣∣Fjl)
≥ p

2
,

26

where the first inequality uses the fact that 1
ν2
jl
φ2jl+i ≥ 1{φjl+i| ≥ νjl} and the last inequality uses

the fact that for a random variable X supported on [0, 1] almost surely such that E[X] ≥ p for some
p ∈ (0, 1), then for all t ∈ [0, p], P (X ≥ t) ≥ p−t

1−t . This is true because

P (X ≥ t) =

∫ 1

t

dP(x) ≥
∫ 1

t

xdP(x) =

∫ 1

0

xdP(x)−
∫ t

0

xdP(x) = p− t (1− P (X ≥ t)) .

In our case, E
[
1
l

∑l
i=1 1 {|φjl+i| ≥ νjl}

∣∣∣Fjl] = 1
l

∑l
i=1 P

(
|φjl+i| ≥ νjl

∣∣∣Fjl) ≥ p. Thus, we

obtain that for λ ≤ 0, i.e., eλ ≤ 1,

E[eλBj |Fjl] = eλP
(
Bj = 1

∣∣∣Fjl)+ P (Bj = 0) = (eλ − 1)E[Bj |Fjl] + 1 ≤ (eλ − 1)
p

2
+ 1.

By law of iterated expectation, we obtain that

E[eλ
∑S−1
j=0 Bj] = E

[
eλ

∑S−2
j=0 BjE[eλBj |F(S−1)k]

]
≤
(

(eλ − 1)
p

2
+ 1
)
E
[
eλ

∑S−2
j=0 Bj

]
≤
(

(eλ − 1)
p

2
+ 1
)S

.

Finally, we need to find

inf
λ≤0

e−pS/4
(

(eλ − 1)
p

2
+ 1
)S

.

We can see that λ∗ = −∞, which gives that

inf
λ≤0

e−pS/4
(

(eλ − 1)
p

2
+ 1
)S

= e−pS/4
(

1− p

2

)S
≤ e−pS/4e−pS/2 = e−3pS/4,

where we have used the fact that 1 + x ≤ ex for all real-valued x.

To apply Theorem 10, we first recall that the affine dynamical system we aim to identify is as
follows:

x̃k,j+1 = akx̃k,j + dk + z̃k,j ,

where x̃k,1 = 0, ak ∈ (0, 1) and z̃k,j ∼ N (0, σ2
z,k). We define the following quantities

Γk,j := σ2
z,k

j−1∑
i=0

a2ik , dk,j :=

j−1∑
i=0

ajkdk,

and Γk,∞ = σ2
z,k

∑∞
i=0 a

2i
k =

σ2
z,k

1−a2k
. We notice that for all t ∈ [T], j ≥ 1,

x̃k,t+j |x̃k,t ∼ N
(
ajkx̃k,t + dk,j ,Γk,j

)
.

Lemma 10. Fix t ≥ 0 and j ≥ 1. Recall that xk,t := (x̃k,t, 1) ∈ R2. Fix a unit vector w ∈ R2. For
any ε ∈ (0, 1), we have

P

(
|〈w, xk,t+j〉| ≥

1√
2

√
min

{
1− ε,Γk,j −

(
1

ε
− 1

)
(ajkx̃k,t + dk,j)2

})
≥ 1

36

Proof. By Lemma 8, we have that for any unit vector w ∈ R2,

P

{
|〈w, xk,t+j〉| ≥

1√
2

√(
w1

(
ajkx̃k,t + dk,j

)
+ w2

)2
+ w2

1Γk,j

∣∣∣∣ xk,t
}
≥ 1

36
.

For all ε ∈ (0, 1), we have

((w1(ajkx̃k,t + dk,j) + w2)2 + w2
1Γk,j =

(
w1

(
ajkx̃k,t + dk,j

))2
+ w2

2 + 2w2w1

(
ajkx̃k,t + dk,j

)
+ w2

1Γk,j

≥ (1− ε)w2
2 −

(
1

ε
− 1

)(
w1

(
ajkx̃k,t + dk,j

))2
+ w2

1Γk,j

≥ min

{
1− ε,Γk,j −

(
1

ε
− 1

)
(ajkx̃k,t + dk,j)

2

}
.

27

Lemma 11. Fix δ ∈ (0, 1). {xk,t}nt=1 satisfy that for any unit vector w ∈ R2,

P

(
n∑
t=1

〈w, xk,t〉2 ≤
ψ2p2

16
j?bn/j?c

)
≤ exp

(
−3bn/j?cp

4

)
+ δ

with p = 1/72,

j? :=

⌈
max

{
− logak

(
1 + (1− ak)

√
2Γk,∞ log(n/δ)

dk

)
,− logak

√
2

}⌉
,

ψ :=

√√√√√min

 Γk,∞
16d2k

(1−ak)2 + Γk,∞
,

Γk,∞
4

.

Proof. Fix δ ∈ (0, 1). Recall that from Lemma 9, we have shown that for all t ≥ 0 and k ≥ 1, given
a unit vector w ∈ R2, for any ε ∈ (0, 1), we have

P

{
|〈w, xk,t+j〉| ≥

1√
2

√
min

{
1− ε,Γk,j −

(
1

ε
− 1

)
(ajkx̃k,t + dk,j)2

}}
≥ 1

36
.

Denote qt,j = ajkx̃k,t+dk,j where x̃k,t ∼ N (dk,t,Γk,t). Fix δ ∈ (0, 1). Using the standard Gaussian
tail bound and the union bound, we have that with probability 1− δ,

max
t∈[T]

qt,j ≤ ajk

(
dk

1− ak
+
√

2Γ∞ log(n/δ)

)
+

dk
1− ak

.

When j ≥ j?, Γk,j ≥ Γk,∞/2, and with probability 1− δ, maxt∈[T] qt,j ≤ 2dk
1−ak . Thus, for j ≥ j?,

and

ε =

4d2k
(1−ak)2

4d2k
(1−ak)2 + Γ∞/4

,

we have

ν2t,j := min

{
1− ε,Γk,j −

(
1

ε
− 1

)
q2t,j

}
≥min

{
1− ε,Γk,∞/2−

(
1

ε
− 1

)
4d2k

(1− ak)2

}

≥min

 Γk,∞
16d2k

(1−ak)2 + Γk,∞
,

Γk,∞
4

 = ψ2.

Putting it altogether, we have

1

2j?

2j?∑
j=1

P
(
|〈w, xk,t+j〉| ≥ νt,j/

√
2|Ft

)
≥ 1

2j?

2j?∑
j=j?

Pr(|〈w, xk,t+j〉| ≥ νt,j?/
√

2|Ft) ≥
1

72
.

Further, we have

P
(

min
t∈[T]

ν2t,j? ≥ ψ
2

)
≥ 1− δ.

Applying Lemma 9, we have that for p = 1
72 ,

P

(
n∑
t=1

〈w, xk,t〉2 ≤
ψ2p2

16
j?bn/j?c

)
≤ exp

(
−3bn/j?cp

4

)
+ δ.

28

Proof of Theorem 8. Based on our setup, condition (a) of Theorem 10 is satisfied. For any n, using
Lemma 11 with δ = exp(−n), we have that

∀w ∈ R2, P

(
n∑
t=1

〈w, xk,t〉2 ≤
ψ2p2

16
j?bn/j?c

)
≤ exp

(
−3bn/j?cp

4

)
+ δ ≤ 2 exp

(
−3bn/j?cp

4

)
,

with p = 1/72,

j? :=

⌈
max

{
− logak

(
1 + (1− ak)

√
2Γk,∞(log(n) + n)

dk

)
,− logak

√
2

}⌉
,

ψ :=

√√√√√min

 Γk,∞
16d2k

(1−ak)2 + Γk,∞
,

Γk,∞
4

.
Thus, we have provided a similar result to (18), which is what condition (b) of Theorem 10 is used
for. In this case, we have Γsb = ψI where I is a 2× 2 identity matrix. Finally, to verify condition (c),
we notice that we have

Γk,j := E[xk,jx
>
k,j] =

 b2k(1−a
j−1
k)2

(1−ak)2 +
σ2
z,k(1−a

2j−2
k)

1−a2k
(1−aj−1

k)bk
1−ak

(1−aj−1
k)bk

1−ak 1

 .

and we denote

Γ := Γk,n +

(
0 0
0 1

)
+ Γsb,

which gives that 0 ≺ Γsb ≺ Γ and for all j ≥ 1, 0 � Γk,j ≺ Γ. Then, we have that

P
(
X
>
kXk �

2n

δ
Γ

)
= P

(
λmax

(
(nΓ)−1/2X

>
kXk(nΓ)−1/2

)
≥ 2

δ

)
≤ δ

2
E
[
λmax

(
(nΓ)−1/2X

>
kXk(nΓ)−1/2

)]
≤ δ

2
E
[
tr
(

(nΓ)−1/2X
>
kXk(nΓ)−1/2

)]
≤ δ,

where the last inequality is true since E
[
X
>
kXk

]
=
∑n
j=1 Γk,j � nΓ (for all j ∈ [n], trace(Γ −

Γk,j) > 0 and det(Γ − Γk,j) > 0). Following Theorem 10, for δ ∈ (0, 1), when the number of
samples satisfy that

n

j?
≥ 10

p2
(
log (1/δ) + 4 log(10/p) + log det(ΓΓ−1sb)

)
,

we have that

P

‖Âk −Ak‖2 > 90σz,k
p

√
1 + 2 log(10/p) + log det

(
ΓΓ−1sb

)
+ log(1/δ)

nψ

 ≤ 3δ.

D.2 Proof of Corollary 4 and Corollary 9
Similar to Appendix D.1, Corollary 4 is a special case of Corollary 9 when m = 1. Hence, we
directly present the proof of Corollary 9 below.

Proof of Corollary 9. Fix δ ∈ (0, 1). We have that with probability 1−δ, ε(n, δ, k) := ‖Âk−Ak‖2 ≤
O(1/

√
n). With probability at least 1 − δ

K , εak := |âk − ak| ≤ ‖Âk − Ak‖2 = ε(n, δ/K, k) =

O(1/
√
n) and εdk := |d̂k − bk| ≤ ‖Âk − Ak‖2 = ε(n, δ/K, k) = O(1/

√
n). When m = 1, then

29

|γ̂k − γk| = ||âk| − ak| ≤ |âk − ak| = εak ≤ ε(n, δ/K, k). When m ≥ 2, since γk 6= 0, we have
that

|γ̂k − γk| =
∣∣∣∣ |âk| − ak
|âk|(m−1)/m + |âk|(m−2)/mγk + . . .+ γm−1k

∣∣∣∣ ≤ |âk − ak|γm−1k

.

On the other hand, we obtain that

|λ̂k − λk| =

∣∣∣∣∣
∣∣∣∣∣ d̂kâk

∣∣∣∣∣− dk
ak

∣∣∣∣∣ ≤
∣∣∣∣∣ d̂kâk − dk

âk
+
dk
âk
− dk
ak

∣∣∣∣∣ ≤ εdk
âk

+
λkεak
âk

≤ O
(

1√
n

)
.

The proof completes as follows:

P
(
∀k ∈ [K], |γ̂k − γk| ≤ O(1/

√
n), |λ̂k − λk| ≤ O(1/

√
n)
)
≥

K∏
k=1

(
1− δ

K

)
≥ 1− δ,

where the last inequality follows from Bernoulli’s inequality.

30

E Additional Proofs and Discussion of Section 6
E.1 Proof of Theorem 5

Lemma 12. Consider any episode i + 1 (from time ti + 1 to ti+1) where the initial state xi =
(µ1,ti+1(u1,0:ti), n1,ti+1, . . . , µK,ti+1(uK,0:ti), nK,ti) and {uk,0:ti}Kk=1 are the past pull sequences
of the proposed policy π1:ti . For all π̃ti+1:ti+1

such that π̃t = π̃t(xt) = π̃t(x
′
t), π̃t ∈ [K],∀t ∈

[ti + 1, ti+1], xt, x
′
t ∈ X , we have that

ti+1∑
t=ti+1

Exti+2,...,xti

[
r(xt, π̃t(xt))|xti+1 = xi

]
=

ti+1∑
t=ti+1

µk,t(uk,0:t−1),

where {uk,ti+1:ti+1}Kk=1 is the arm pull sequence of π̃ti+1:ti+1 .

Proof. Let k denote π̃t where t ∈ {ti + 1, . . . , ti+1}. Recall that we use uk,0:t−1 to denote the pull
sequence of arm k under policy π̃1:ti+1 = (π1:ti , π̃ti+1:ti+1). If k has not been pulled before time t by
π̃1:ti+1

, then Exti+2,...,xti+1

[
r(xt, π̃t)|xti+1 = xi

]
= bπt = µπt,t(uπt,0:t−1). If k has been pulled

before, then let q1, . . . , qn denote the time steps that arm k has been pulled before time t by π̃1:ti+1
,

i.e., uk,qi = 1 for i ∈ [n] and uk,t′ = 0 for t′ /∈ {q1, . . . , qn}. We have that for t ∈ {ti+1, . . . , ti+1},

Exti+2,...,xti+1

[
r(xt, π̃t)|xti+1 = xi

]
=bk −

(
Exti+2,...,xti+1−1

[
Exti+1

[
γ
nk,ti+1

k xk,ti+1
+ λkγ

nk,ti+1

k

]
|xti+1 = xi

])
=bk −

(
Exti+2,...,xqn

[
Exqn+1

[
γ
nk,ti+1

k xk,qn+1 + λkγ
nk,ti+1

k

]
|xti+1 = xi

])
=bk −

(
Exti+2,...,xqn

[
γ
nk,ti+1

k

(
γ
nk,qn
k xk,qn + λkγ

nk,qn
k

)
+ λkγ

nk,ti+1

k |xti+1 = xi
])

= . . . = bk − λk
(
γ
nk,ti+1

k + γ
nk,ti+1

+nk,qn
k + . . .+ γ

nk,ti+1+nk,qn+...nk,q1
k

)
=µk,t(uk,0:t−1),

where the second equality is true because when arm k is not pulled for example at time ti+1 − 1, the
state for arm k at time ti+1 − 1 will satisfy that xk,ti+1

= xk,ti+1−1 and nk,ti+1
= nk,ti+1−1 + 1

with probability 1. In this case, we have that

Exti+1

[
γ
nk,ti+1

k xk,ti+1 + λkγ
nk,ti+1

k

∣∣xti+1−1

]
= γ

nk,ti+1−1+1

k xk,ti+1−1 + λkγ
nk,ti+1−1+1

k

= γ
nk,ti+1

k xk,ti+1−1 + λkγ
nk,ti+1

k .

The third equality is true since when arm k is pulled for example at time qn, then we have that

Eqn+1∼pM(·|xqn ,k,qn)

[
γ
nk,ti+1

k xk,qn+1 + λkγ
nk,ti+1

k

]
=γ

nk,ti+1

k

(
γ
nk,qn
k xk,qn + λkγ

nk,qn
k

)
+ λkγ

nk,ti+1

k ,

where pM is given in Appendix C.1. The second to last last equality holds because xk,ti+1 =
µk,ti+1(uk,0:ti) where µk,t(·) is defined in (3).

Lemma 13. For any episode i + 1 (from time ti + 1 to ti+1), given the past arm pull sequences
{uk,0:ti}Kk=1 of the proposed policy π1:ti , the optimal time-dependent competitor policy π̃ti+1:ti+1 ,
where π̃t = π̃t(xt) = π̃t(x

′
t), π̃t ∈ [K],∀t ∈ [ti + 1, ti+1], xt, x

′
t ∈ X , for this episode is given

by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1) where {λk, γk, bk}Kk=1 are the true reward
parameters for the rebounding bandits instance.

Proof. By Lemma 12, we have that the optimal time-dependent competitor policy π̃ti+1:ti+1
maxi-

mizes
∑ti+1

t=ti+1 µk,t(uk,0:t−1), by choosing uk,ti+1:ti+1 . Thus, by the definition of Lookahead (5),
given our proposed policy π1:ti , the optimal time-dependent competitor policy is given by
Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1).

31

Proof of Theorem 5. Using Lemma 13, we have that given our policy π1:T and its correspond-
ing pull sequence uk,0:t−1 for k ∈ [K], t ∈ [T], the optimal competitor policy for episode
i + 1 where i ∈ {0, . . . , bT/wc} (episode i + 1 ranges from time ti + 1 = iw + 1 to
ti+1 = min{iw + w, T}) is given by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1). We use
M({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1) to denote the (optimal) objective value of (5) given by
Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1). Denote b = maxk bk and b = mink bk.

Exploration Stage Recall that in Algorithm 1, we have defined T̃ = T 2/3 + w − (T 2/3 mod w)

which is a multiple of w. For the first T̃ time steps, as defined in Algorithm 1, our policy π1:T̃ is a
time-dependent policy, i.e., it satisfies that πt = πt(xt) = πt(x

′
t), πt ∈ [K],∀t ∈ [1, T̃], xt, x

′
t ∈ X .

Using 12, we obtain that the regret for the first T̃ /w episodes is given by
T̃ /w−1∑
i=0

max
π̃1:w∈Cw

E

 w∑
j=1

r(xiw+j , π̃j(xiw+j))
∣∣∣xiw+1 = xi


−
T̃ /w−1∑
i=0

E
[
r(xiw+j , πiw+j(xiw+j))

∣∣∣xiw+1 = xi
]

≤
T̃ /w−1∑
i=0

M({λk, γk, bk}Kk=1, {uk,0:iw}Kk=1, iw, iw + w)− T̃
(
b− λγ

1− γ

)
≤T̃

(
b− b+

λγ

1− γ

)
. T̃ . T 2/3.

since T̃ ≤ T 2/3 + w and by assumption, w ≤ T 2/3.

Estimation Stage By Theorem 3 and Corollary 4, we have that for any δ ∈ (0, 1) and n ≥ n0(δ, k)
where n0(δ, k) depends on δ logarithmically, with probability 1 − δ, for all k ∈ [K] |γ̂k − γk| ≤
Cγk log(1/δ)√

n
and |λ̂k − λk| ≤

Cλk log(1/δ)√
n

when γ̂k > 0.

We define two numbers T ′0 := minT {T : (
∑K
k=1 n0(k, T−1/3))3/2 = C1K(log T)3/2 < T} and

T ′′0 := minT

{
T : maxk γk +

Cγk√
T 2/3/K

< 1

}
. These two numbers exist as T can be chosen to

be arbitrarily large. Take T0 = max{T ′0, T ′′0 }. Then for all T ≥ T0, with probability 1 − δ

where δ = T−1/3, we have that ∀k ∈ [K], |γ̂k − γk| ≤ εγ = O(
√
KT−1/3 log T), |λ̂k − λk| ≤

ελ = O(
√
KT−1/3 log T) and

(
ελ

∣∣∣ γ̂k
1−γ̂k

∣∣∣+ εγ

∣∣∣ λ
(1−γ̂k)(1−γk)

∣∣∣) ≤ O(
√
KT−1/3 log T) since γ̂k ≤

γk +
Cγk√
T

2/3
0 /K

< 1 and γk ≤ γ < 1.

For any pull sequence uk,0:t−1, using our obtained estimated parameters {γ̂k, λ̂k, b̂k}Kk=1, we define

the estimated reward function: for t ≥ 2, µ̂k,t(uk,0:t−1) = bk − λ̂k
(∑t−1

i=1 γ̂
t−i
k uk,i

)
, and for t = 1,

µ̂k,1(uk,0:1) = bk = µk,1(uk,0:1), where we note that b̂k = bk since it is the reward of the first pull
of arm k. Given t ≥ 2, we have that

|µk,t(uk,0:t−1)− µ̂k,t(uk,0:t−1)|

=

∣∣∣∣∣λ̂k
(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
=

∣∣∣∣∣λ̂k
(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
+ λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
≤|λ̂k − λk|

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ λ

∣∣∣∣ γ̂k
1− γ̂k

− γk
1− γk

∣∣∣∣
≤ελ

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ εγ

∣∣∣∣ λ

(1− γ̂k)(1− γk)

∣∣∣∣ . (19)

32

Planning Stage Given our policy π1:T (along with its pull sequence {uk,0:T }Kk=1), starting from
time T̃ +1, for any episode i+1 ≥ T̃ /w, we denote the optimal competitor policy to be π∗ti+1:ti+1

=

Lookahead({λk, γk, bk}Kk=1, {uk,0:ti−1
}Kk=1, ti, ti+1) where ti = iw and ti+1 = min{iw + w, T}.

The cumulative expected reward collected by π∗ti+1:ti+1
and πti+1:ti+1

has the difference

M({λk, γk, bk}Kk=1, {uk,0:ti−1}Kk=1, ti, ti+1)−M({λ̂k, γ̂k, bk}Kk=1, {uk,0:ti−1}Kk=1, ti, ti+1)

=

ti+1∑
t=ti+1

µπ∗t ,t(u
∗
π∗t ,0:t−1)−

ti+1∑
t=ti+1

µπt,t(uπt,0:t−1)

=

ti+1∑
t=ti+1

µπ∗t ,t(u
∗
π∗t ,0:t−1)−

ti+1∑
t=ti+1

µ̂π∗t ,t(u
∗
π∗t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂π∗t ,t(u
∗
π∗t ,0:t−1)−

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)

+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1)

≤
ti+1∑

t=ti+1

µπ∗t ,t(u
∗
π∗t ,0:t−1)−

ti+1∑
t=ti+1

µ̂π∗t ,t(u
∗
π∗t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1).

where u∗π∗t ,0:t−1 is the corresponding pull sequence of arm π∗t under policy π∗1:t = (π1:ti , π
∗
ti+1:t), and

the last inequality holds because πti+1:ti+1
= Lookahead({λ̂k, γ̂k, b̂k}Kk=1, {uk,0:ti}Kk=1, ti, ti+1)

is the optimal solution under the estimated parameters {λ̂k, γ̂k, b̂k}Kk=1 and π’s previous past pull
sequence {uk,0:ti}Kk=1. Further, using (19) and the fact that ti − ti−1 ≤ w, we obtain that

ti+1∑
t=ti+1

µπ∗t ,t(u
∗
π∗t ,0:t−1)−

ti+1∑
t=ti+1

µ̂π∗t ,t(u
∗
π∗t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1)

≤2wmax
k

(
ελ

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ εγ

∣∣∣∣ λ

(1− γ̂k)(1− γk)

∣∣∣∣) .
Finally, putting it altogether, we have obtained that for all T ≥ T0,

Regw(T) =
∑dT/we−1
i=0 maxπ̃1:w∈Cw E

[∑min{w,T−iw}
j=1 r(xiw+j , π̃j(xiw+j))

∣∣∣xiw+1 = xi
]

− E
[∑min{w,T−iw}

j=1 r(xiw+j , πiw+j(xiw+j))
∣∣∣xiw+1 = xi

]
≤O(T 2/3) + (1− T−1/3)

dT/we−1∑
i=T/w

2wO(
√
KT−1/3 log T)

+ T−1/3
(
T

(
b− b+

λγ

1− γ

))
≤O(T 2/3) + (T − T 2/3)O(

√
KT−1/3 log T) +O(T 2/3)

≤O(
√
KT 2/3 log T),

which we notice that with probability δ = T−1/3, the cumulative expected reward from time T̃ to T
between the optimal competitor policy and our policy π is at most T

(
b− b+ λγ

1−γ

)
. This completes

the proof.

33

E.2 Exploration Strategies

In the exploration phase of Algorithm 1 (from time 1 to T̃), in addition to playing each arm repeatedly
for T̃ /K times, in general, we could explore by playing each arm at a fixed interval, i.e., the time
interval between two consecutive pulls of arm k should be a constant mk. For example, this includes
playing the arms cyclically with the cylce being 1, 2, . . . ,K or playing the first two arms in an
alternating fashion from time 1 to 2T̃ /K, then the next two arms, etc. As shown in Theorem 8 and
Corollary 9, using the datasets (of size n) collected by these exploration strategies, we can obtain
estimators γ̂k and λ̂k with the estimation error being on the order of O(1/

√
n). Using these results

(in replacement of Theorem 3 and Corollary 4 in the estimation stage of the proof of Theorem 5), we
can obtain that there exists T0 such that for all T ≥ T0, the regret upper bound of EEP under these
exploration strategies are of order O(

√
KT 2/3 log T).

34

F Additional Proofs of Appendix C
F.1 Proof of Corollary 7
Proof. Fix δ ∈ (0, 1). By Theorem 6, for all k ∈ [K], with probability 1− δ

2K , we have the following:
When m = 1, then |γ̂k − γk| = ||âk| − ak| ≤ |âk − ak| ≤ εa(n, δ

2K , k). When m ≥ 2, we have that

|γ̂k − γk| =
∣∣∣∣ |âk| − ak
|âk|(m−1)/m + |âk|(m−2)/mγk + . . .+ γm−1k

∣∣∣∣ ≤ |âk − ak|γm−1k

.

On the other hand, given that |âk − ak| ≤ εa(n, δ
2K , k), we have that with probability 1− δ

2K ,

|λ̂k − λk| =

∣∣∣∣∣
∣∣∣∣∣ d̂kâk

∣∣∣∣∣− dk
ak

∣∣∣∣∣ ≤
∣∣∣∣∣ d̂kâk − dk

âk
+
dk
âk
− dk
ak

∣∣∣∣∣ ≤ εd(n,
δ

2K , k)

âk
+
λkεa(n, δ

2K , k)

âk
≤ O

(
1√
n

)
.

The proof completes as follows:

P

(
∀k, |γ̂k − γk| ≤

|âk − ak|
γm−1k

, |λ̂k − λk| ≤
εd(n,

δ
2K , k)

âk
+
λkεa(n, δ

2K , k)

âk

)
≥

K∏
k=1

(
1− δ

2K

)2

≥ 1− δ,

where the last inequality follows from Bernoulli’s inequality.

F.2 Proof of Lemma 4

Proof. Let π1:T denote the sequence that policy π will take from time 1 to T . By the definition of
the value function, we have that

V π1,M(xinit) = bπ1
+

T∑
t=2

Ex2,...,xt [r(xt, πt)] ,

where xt ∼ pM(·|xt−1, πt−1, t− 1) is a state vector drawn from the transition distribution defined
in Section C.1. Let k denote πt and uk,0:t−1 denote the past pull sequence for arm k under policy π.
If k has not been pulled before time t, then Ex2,...,xt [r(xt, πt)] = bπt = µπt,t(uπt,0:t−1). If k has
been pulled before, then let t1, . . . , tn denote the time steps that arm k has been pulled before time t.
We have that

Ex2,...,xt [r(xt, k)] = bk −
(
Ex2,...,xt−1

[
Ext∼pM(·|xt−1,k,t−1)

[
γ
nk,t
k xk,t + λkγ

nk,t
k

]])
= bk −

(
Ex2,...,xtn

[
Extn+1∼pM(·|xtn ,k,tn)

[
γ
nk,t
k xk,tn+1 + λkγ

nk,t
k

]])
= bk −

(
Ex2,...,xtn

[
γ
nk,t
k

(
γ
nk,tn
k xk,tn + λkγ

nk,tn
k

)
+ λkγ

nk,t
k

])
= . . . = bk − λk

(
γ
nk,t
k + γ

nk,t+nk,tn
k + . . .+ γ

nk,t+nk,tn+...nk,t1
k

)
= µk,t(uk,0:t−1),

where we note that the second equality is true because when arm k is not pulled for example at time
t − 1, the state for arm k at time t − 1 will satisfy that xk,t = xk,t−1 and nk,t = nk,t−1 + 1
with probability 1. In this case, we have that Ext∼pM(·|xt−1,k,t−1)

[
γ
nk,t
k xk,t + λkγ

nk,t
k

]
=

γ
nk,t−1+1
k xk,t−1 + λkγ

nk,t−1+1
k = γ

nk,t
k xk,t−1 + λkγ

nk,t
k . The third equality is true since when arm

k is pulled for example at time t−1, then we have that Ext∼pM(·|xt−1,k,t−1)
[
γ
nk,t
k xk,t + λkγ

nk,t
k

]
=

γ
nk,t
k

(
γ
nk,t−1

k xk,t−1 + λkγ
nk,t−1

k

)
+ λkγ

nk,t
k . The proof completes by summing over

Ex2,...,xt [r(xt, πt)] for all t ≥ 2.

F.3 Proof of Proposition 5

Proof. Fix δ ∈ (0, 1). Let E1 be the event that

∀k ∈ [K], |γ̂k − γk| = εγk ≤ O
(

1√
n

)
, |λ̂k − λk| = ελk ≤ O

(
1/
√
n
)
.

From Corollary 7, we have that P(E1) ≥ 1− δ. Let π1:T denote the sequence that policy π will take
from time 1 to T . From Lemma 4, we have that

|V π1,M(xinit)− V π1,M̂(xinit)| =

∣∣∣∣∣
T∑
t=1

µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)

∣∣∣∣∣ ,
35

where uπt,0:t−1 is the past pull sequence for arm πt under policy π before time t and µ̂k,t(uk,0:t−1) =

bk− λ̂k
(∑t−1

i=1 γ̂
t−i
k uk,i

)
for t ≥ 2 and µ̂k,1(uk,0:1) = bk = µk,1(uk,0:1). Given t ≥ 2, let k denote

πt, we have that

|µk,t(uk,0:t−1)− µ̂k,t(uk,0:t−1)|

=

∣∣∣∣∣λ̂k
(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
=

∣∣∣∣∣λ̂k
(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
+ λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
≤|λ̂k − λk|

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ λ

∣∣∣∣ γ̂k
1− γ̂k

− γk
1− γk

∣∣∣∣
≤ γ̂kελk

1− γ̂k
+

λεγk
(1− γ̂k)(1− γk)

Since γ̂k < 1 (âk ∈ (a, a)) almost surely and with probability 1−δ, for all k ∈ [K], εγk ≤ O (1/
√
n)

and ελk ≤ O (1/
√
n). We have that with probability 1− δ,∣∣∣∣∣

T∑
t=1

µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)

∣∣∣∣∣ ≤
T∑
t=1

|µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)| ≤
(
T√
n

)
.

F.4 Proof of Proposition 6

Proof. Fix δ ∈ (0, 1). Let E1 be the event that

∀k ∈ [K], |γ̂k − γk| = εγk ≤ O
(

1√
n

)
, |λ̂k − λk| = ελk ≤ O

(
1/
√
n
)
.

From Corollary 9, we have that P(E1) ≥ 1 − δ/2. Let ελ := maxk ελk . Let E2 denote the event
that ∀t ∈ [T], k ∈ [K], |xk,t| ≤ B(δ/2) (10). We know that P(E2) ≥ 1 − δ/2. When E1 and E2

happen, we first observe that for all positive integer n and k ∈ [K],

|γ̂nk − γnk | ≤ |γ̂k − γk|
(
nmax(γn−1k , γ̂n−1k)

)
≤ |γ̂k − γk|

max(γk, γ̂k) ln (1/max(γk, γ̂k))
= O(1/

√
n),

whereand the second inequality uses the assumption that âk, γk are bounded away from 0 and 1.

To continue, we first bound the distance between the transition function in M̂ andM. At any any
time t and state xt = (x1,t, n1,t, . . . , xK,t, nK,t), when we pull arm πt = k, the next state xt+1

is updated by: (i) for arm k, nk,t+1 = 1 and (ii) for all other arms k′ 6= k, nk,t+1 = nk,t + 1 if
nk 6= 0, nk,t+1 = 0 if nk,t = 0, and xk′,t+1 = xk′,t. Then, by [8, Theorem 1.3], we have that when
nπt,t 6= 0,

‖pM̂ (xt+1|xt, πt, t)− pM (xt+1|xt, πt, t) ‖1
(∗)
≤ 3|λ̂2k

∑nk,t−1
i=0 γ̂2ik − λ2k

∑nk,t−1
i=0 γ2ik |

λ2k
∑nk−1
i=0 γ2ik

+
|γnk,tk xk,t + λkγ

nk,t
k − γ̂nk,tk xk,t − λ̂kγ̂

nk,t
k |

λk

√∑nk,t−1
i=0 γ2ik

=
3|λ̂2k

(∑nk,t−1
i=0 γ̂2ik −

∑nk,t−1
i=0 γ2ik

)
+ (λ̂2k − λ2k)

∑nk,t−1
i=0 γ2ik |

λ2k
∑nk−1
i=0 γ2ik

+
|γ̂nk,tk − γnk,tk |B(δ/2) + |λkγ

nk,t
k − λ̂kγ̂

nk,t
k |

λk

√∑nk,t−1
i=0 γ2ik

(∗∗)
≤ 3

∣∣∣∣∣∣λ̂2k
nk,t−1∑

i=0

γ̂2ik −
nk,t−1∑
i=0

γ2ik

+ (λ̂2k − λ2k)

nk,t−1∑
i=0

γ2ik

∣∣∣∣∣∣+ |γ̂nk,tk − γnk,tk | (B(δ/2) + λk)

36

+ |λkγ̂
nk,t
k − λ̂kγ̂

nk,t
k |

≤3

(
(λk + ελ)2

∣∣∣∣ 1

1− γ̂2k
− 1

1− γ2k

∣∣∣∣+
|λ̂k − λk|(2λk + ελ)

1− γ2k

)
+ |γ̂nk,tk − γnk,tk | (B(δ/2) + λk) + |λk − λ̂k|

=3

(
(λk + ελ)2|γ̂2k − γ2k|
(1− γ̂2k) (1− γ2k)

+
|λ̂k − λk|(2λk + ελ)

1− γ2k

)
+ |γ̂nk,tk − γnk,tk | (B(δ/2) + λk) + |λk − λ̂k|

=: εP = O

(
1√
n

)
,

where (∗) holds since pM (xt+1|xt, πt, t) is a Gaussian density with mean γnk,tk xk,t + λkγ
nk,t
k and

variance λ2k
∑nk−1
i=0 γ2ik and (∗∗) uses the fact that λ2k

∑nk−1
i=0 γ2ik ≥ λ2k ≥ 1. When nπt,t = 0 and

condition (i) and (ii) are fulfilled, we have that ‖pM̂ (xt+1|xt, πt, t) − pM (xt+1|xt, πt, t) ‖1 = 0.
Otherwise, that is, if condition (i) or (ii) is not satisfied, we also have that ‖pM̂ (xt+1|xt, πt, t) −
pM (xt+1|xt, πt, t) ‖1 = 0 since pM̂ (xt+1|xt, πt, t) = pM (xt+1|xt, πt, t) = 0. Next, we examine
the difference of the expected reward obtained by pulling arm k at state xt at time t in MDPM and
M̂; when nk,t 6= 0, this is given by

|r̂(xt, k)]− r(xt, k)]| = |γnk,tk xk,t + λkγ
nk,t
k − γ̂nk,tk xk,t − λ̂kγ̂

nk,t
k |

≤ |xk,t| · |γnk,t − γ̂nk,t |+ |λkγ
nk,t
k − λkγ̂

nk,t
k + λkγ̂

nk,t
k − λ̂kγ̂

nk,t
k |

≤ (B(δ/2) + λk) |γ̂nk,tk − γnk,tk |+ |λ̂k − λk| =: εR = O

(
1√
n

)
,

where r̂(xt, k) is the expected reward of pulling arm k at state xt in MDP M̂. Putting it altogether,
we have that for any deterministic policy π,

V π1,M(xinit)− V π1,M̂(xinit) = r(xinit, π1(xinit))− r̂(xinit, π1(xinit)) + Ex2∼pM(·|x1,π,1)[V
π
2,M(x2)]

− Ex2∼pM̂(·|x1,π,1)[V
π
2,M̂(x2)]

≤ εR + Ex2∼pM(·|x1,π,1)[V
π
2,M(x2)]− Ex2∼pM̂(·|x1,π,1)[V

π
2,M(x2)]

+ Ex2∼pM̂(·|x1,π,1)[V
π
2,M(x2)]− Ex2∼pM̂(·|x1,π,1)[V

π
2,M̂(x2)]

≤ TεR +

T∑
t=1

EM̂,π

{
Ext+1∼pM(·|xt,π,t)[V

π
t+1,M(xt+1)]

− Ext+1∼pM̂(·|xt,π,t)[V
π
t+1,M(xt+1)]

}
≤ TεR + T 2εP max

k
bk,

where pM(·|xt, π, t) denotes p(·|xt, πt(xt), t) in MDP M and the last inequality uses the fact
that 〈pM(·|xt, π, t)− pM̂(·|xt, π, t), V πt+1,M〉 ≤ ‖pM(·|xt, π, t)− pM̂(·|xt, π, t)‖1‖V πt+1,M‖∞ ≤
εPT maxk bk. Finally, we have that

V ∗1,M(xinit)− V
π∗M̂
1,M(xinit) = V

π∗M
1,M(xinit)− V

π∗M
1,M̂

(xinit) + V
π∗M
1,M̂

(xinit)− V
π∗M̂
1,M̂

(xinit)

+ V
π∗M̂
1,M̂

(xinit)− V
π∗M̂
1,M(xinit) ≤ 2TεR + 2T 2εP max

k
bk,

where the equation follows from the fact that V ∗1,M(xinit) = V
π∗M
1,M(xinit) and rearranging the terms, and

the inequality follows from applying the bound of V π1,M(xinit)−V π1,M̂(xinit) ≤ TεR+T 2εP maxk bk

that was derived above for π = π∗M and π = π∗
M̂

and using the fact that the policy π∗
M̂

is optimal for

MDP M̂. Let E3 denote the event that V ∗1,M(xinit)−V
π∗M̂
1,M(xinit) ≤ O(T 2/

√
n). Putting it altogether,

we have that P(E3) ≥ P(E2, E1) = 1− P(Ec2 ∪ Ec1) ≥ 1− δ.

37

G Additional Experimental Details and Results

We present additional experimental details and results.

w-lookahead Performance When evaluating the performance of w-lookahead policies, in addition
to the case where T = 30 (Figure 3a), we have also run the experiments with T = 100 (Figure 4a).
When solving for the 100-lookahead policy, we have increased the number of threads to 50 to solve
for (4) and stopped the program at a time limit of 24 hours. In such settings, we obtain an upper
bound on the absolute optimality gap of 64.0 (percentage optimality gap of 13.0%). When solved
for w-lookahead policies with w in between 1 and 15 using 10 threads, Gurobi ends up solving (5)
within 40s for all different w values. Thus, despite using significantly lower computational time,
w-lookahead policies achieve a similar expected cumulative reward to the T -lookahead policies (see
Figures 3a and 4a).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
w

400
420
440
460
480
500
520
540
560

Cu
m

ul
at

iv
e

Re
wa

rd

T-lookahead (24h, 50 threads)
Upper Bound (24h, 50 threads)
w-lookahead

(a) T = 100

50 100 150 200 250 300 350 400
T

0

50

100

150

Ap
pr

ox
im

at
e

Re
gT

w = 2
w = 5
w = 8
w = 10

(b) Approximate RegT v.s. T

Figure 4: Figure 4a shows the expected cumulative reward collected by w-lookahead policies (blue
dots) when T = 100. When solving for the T -lookahead policy (solving (4) with T = 100), after 24
hours, Gurobi 9.1 obtains an objective value of 491.3 (red solid line) with an upper bound 555.3 (red
dotted line) and an absolute optimality gap 64.0 (13.0%). The true expected cumulative reward for T -
lookahead policy for this problem lies in between the solid and dotted red lines. Figure 4b shows the
approximate T -step lookahead regret ofw-lookahead EEP. The reason why it is an approximate T -step
lookahead regret is that the T -lookahead policy used to obtain the regret is set to be the one attained
by Gurobi using 25 threads for 24 hours. The percentage optimality gaps for these attained policies
are 6.8%, 10.1%, 12.4%, 14.2%, 15.1%, 33.5%, 39.8% when T = 60, 80, 100, 150, 200, 300, 400,
respectively. The results are averaged over 20 random runs.

4.0 4.5 5.0 5.5 6.0 6.5
log T

4.5

5.0

5.5

6.0

6.5

lo
g

Re
gw

w = 2, Slope = 0.61
w = 5, Slope = 0.67
w = 8, Slope = 0.68
w = 10, Slope = 0.71

(a) logRegw v.s. log T

5.4 5.6 5.8 6.0 6.2
log T

5.4

5.6

5.8

6.0

lo
g

Re
gw

w = 2, Slope = 0.49
w = 5, Slope = 0.55
w = 8, Slope = 0.69
w = 10, Slope = 0.73

(b) logRegw v.s. log T

Figure 5: Figure 5a shows the log-log plot of the w-step lookahead regret of w-lookahead EEP
(averaged over 20 random runs) under different T when there are 5 arms. Figure 5b shows the log-log
plot of the w-step lookahead regret of w-lookahead EEP (averaged over 20 random runs) under
different T when there are 10 arms.

EEP Performance Figure 3b is the log-log plot of the w-step lookahead regret of w-lookahead
EEP against the horizon T when T = 60, 80, 100, 150, 200, 300, 400 (averaged over 20 random runs)
and Figure 5a is the log-log plot when T = 60, 80, 100, 150, 200, 300, 400, 600, 800 (averaged over
20 random runs), under the experimental setup provided in § 7.

38

To compare the w-lookahead EEP under the same regret definition, we present the (approximate)
T -step lookahead regret for these policies (Figure 4b). We note that in order to obtain the T -
step lookahead regret (6), we need to find the T -lookahead policy which requires us to solve (4)
when T = 60, 80, 100, 150, 200, 300, 400. As we have noted earlier and demonstrated empirically
(Figure 4a), solving (4) for large T can be computationally intractable. In contrast, w-lookahead
EEP only requires us to solve much smaller programs (5). In Figure 4b, we use the policy attained
by Gurobi using 25 threads for 24 hours as the competitor policy against w-lookahead EEP to
obtain the approximate T -step lookahead regret. The percentage optimality gaps for these attained
approximate T -lookahead policies are 6.8%, 10.1%, 12.4%, 14.2%, 15.1%, 33.5%, 39.8% when T =
60, 80, 100, 150, 200, 300, 400, respectively. Notably, there are cases when the w-lookahead EEP
outperforms the attained approximate T -lookahead policies, resulting in negative approximate T -step
lookahead regret.

Finally, we present the result when we include 5 additional arms to the existing problem. The 5 new
arms have parameters γ6 = .4, γ7 = .5, γ8 = .6, γ9 = .8, γ10 = .7, λ6 = 2, λ7 = 3, λ8 = 2, λ9 =
3, λ10 = 1, and b6 = 10, b7 = 5, b8 = 6, b9 = 7, b10 = 8. Figure 5b is the log-log plot of the w-step
lookahead regret of w-lookahead EEP against the horizon T when T = 200, 250, 300, 350, 450, 500
(averaged over 20 random runs).

39

	Introduction
	Related Work
	Rebounding Bandits Problem Setup
	Planning with Known Dynamics
	The Greedy Policy
	When is Greedy Optimal?
	The w-lookahead Policy

	Learning with Unknown Dynamics: Preliminaries
	State Representation
	Evaluation Criteria: w-step Lookahead Regret

	Explore-Estimate-Plan
	The Exploration Phase: Repeated Pulls
	Estimating the Reward Model and Satiation Dynamics
	Planning and Regret Bound

	Experiments
	Conclusions
	Integer Linear Programming Formulation
	Proofs and Discussion of Section 4
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 2

	More Discussion on Learning with Unknown Dynamics
	MDP Setup
	Exploration and Estimation of the Reward Model
	Estimation using Multiple Trajectories
	Estimation using a Single Trajectory

	Planning
	Time-dependent Policy
	State-dependent Policy

	Proofs of Section 6.2 and Appendix C.2.2
	Proof of Theorem 3 and Theorem 8
	Proof of Corollary 4 and Corollary 9

	Additional Proofs and Discussion of Section 6
	Proof of Theorem 5
	Exploration Strategies

	Additional Proofs of Appendix C
	Proof of Corollary 7
	Proof of Lemma 4
	Proof of Proposition 5
	Proof of Proposition 6

	Additional Experimental Details and Results

