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I EVALUATION CONFIGURATIONS

All evaluations are performed under the same configuration. The evaluation machine has two In-
tel(R) Xeon(R) Gold 5117 CPUs @ 2.00GHz, 256GB ram and two Nvidia V100 GPUs. SCIP
8.0.1 Bestuzheva et al. (2021), Gurobi 9.5.2 Gurobi Optimization, LLC (2022) and PyTorch
1.10.2 Paszke et al. (2019) are utilized in our experiments. The emphasis for Gurobi and SCIP
is set to focus on finding better primal solutions. The time limit for running each experiment is set
to 1, 000 seconds due to a tail-off of solution qualities after this point of time.

II DATA COLLECTION

The training process requires bipartite graph representations of MILP problems as the input and
weighted conditional marginal probabilities of variables as the label. We first extract the bipartite
graph by embedding variables and constraints as respective feature vectors (see v). Then, we run a
single-thread Gurobi with a time limit of 3,600 seconds on training sets to collect feasible solutions
along with their objective values. These solutions are thereafter weighted by the energy function as
in Equation (??) to obtain weighted conditional marginal probabilities.

III COMPARING OBJECTIVE VALUES IN DIFFERENT PARTIAL SOLUTIONS

We also scrutinize why fixing strategy could fail. Variables in the optimal solution are randomly
perturbed to simulate a real-world setting that a prediction is very likely to be inaccurate. Figure 1
exhibited a trend that, as we perturb more variables, the objective value gap (black) increases, and
the percentage of infeasible sub-problems (red) increases. The absolute gaps shown in Figure 1a
indicate large performance drawbacks given that the optimal objective value is 685. Convincingly,
we conclude that fixing approaches presumably produce sub-optimal solutions. Besides, as shown
in Figure 1b, randomly perturbing one variable can result in 20% of infeasible sub-problems. That
is, fixing strategy could lead to infeasible sub-problems even if relatively accurate predictions are
provided.

IV COMPARING WITH NEURAL DIVING PLUS SELECTIVE NET (NAIR ET AL., 2020)

Yet another interesting baseline could be the direct comparison between our proposed framework
and the Neural Diving framework with Selective Net (Nair et al., 2020). However, since detailed
settings and codes of the original work are not publicly available, reproducing the exact same result
is almost impossible. To our best effort, a training protocol with fine parameter tuning and an
evaluation process are established following algorithms provided in Nair et al. (2020).

Among six tested benchmark datasets, only three of them are publicly available: Corlat (Gomes
et al., 2008; Conrad et al., 2007), Neural Network Verification (Cheng et al., 2017; Tjeng et al.,
2017), and MipLib (Gleixner et al., 2021). Most Corlat instances can be solved by SCIP within a few
seconds; MipLib contains instances with integer variables rather than binary variables, which is out
of the scope of this work. Hence, Neural Network Verification (NNV) is chosen as the benchmark
dataset to evaluate the implemented Selective Net aided Neural Diving framework.

It is noteworthy that, empirically, turning on the presolve option in SCIP (Bestuzheva et al., 2021)
causes false assertion of feasibility on many NNV instances. Hence, in our experiments on the NNV
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(a) WA (b) WA

Figure 1: This plot shows how qualities of solutions to sub-problems vary as variables are randomly
perturbed in one WA instance. Maximum, minimum and average values are presented in the plot.
The x-axis is the number of variables perturbed in the partial solution while y-axis of Figure 1a is the
absolute gap between average objective values (only include feasible sub-problems) and the optimal
objective value; y-axis of Figure 1b on the right is the percentage of infeasible sub-problems.

dataset, the presolve option is turned off, which potentially hurts the performances of both SCIP
itself and frameworks implemented with SCIP. Under such circumstances, the best performance
obtained is exhibited in Figure (2). Clearly, the implemented Neural Diving framework achieves
significant advantages over SCIP.
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Figure 2: This figure shows the performance comparision between SCIP and our implemented Neu-
ral Diving framework. Advantages of the implemented framework can be easily observed in the
aspect of both solving efficiencies and solution qualities.

With such an implementation, we can start to compare our proposed framework against the Neural
Diving approach. Due to the limitation of computational power, we are not able to find suitable set-
tings of parameters to train Neural Diving framework on WA and CA datasets. Hence we conducted
experiments only on IP and IS datasets. As shown in Figure (3), the predict-and-search framework
achieved at least three times better average primal gap. An interesting observation is that Neural
Diving framework failed to surpass SCIP on IS dataset where the optimality is hard to achieve,
while our framework outperformed both SCIP and the implemented Neural Diving method.

V FEATURE DESCRIPTIONS FOR VARIABLE NODES, CONSTRAINT NODES AND EDGES

To encode the information of MILP problems, we propose a set of features extracted from con-
straints, variables, and edges. This set of features is relatively light-weighted and generalized; each
feature is obtained either directly from the original MILP model or by conducting simple calcula-
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Figure 3: Performance comparisons between PS and Neural Diving framework, where both ap-
proaches are implemented with SCIP. The average primal gap is averaged across 100 instances;
each plot represents one benchmark dataset. The result shows solid performance advantages of our
proposed method over Neural Diving framework.

tions. Moreover, such extractions do not require pre-solving the MILP instance, which would save
a significant amount of time for large and difficult MILP problems.

Table 1: features in embedded bipartite representations

# features. name detail

Variable

1 obj normalized coefficient of variables in the obj. function
1 v coeff average coefficient of the variable in all constraints
1 Nv coeff degree of variable node in the bipartite representation
1 max coeff maximum value among all coefficients of the variable
1 min coeff minimum value among all coefficients of the variable

1 int binary representation to show if the variable is an
integer variable

12 pos emb binary encoding of the order of appearance for
each variable among all variables.

Constraint

1 c coeff average of all coefficients in the constraint
1 Nc coeff degree of constraint nodes in the bipartite representation
1 rhs right hand side value of the constraint
1 sense the sense of the constraint

Edge 1 coeff Coefficient of variables in constraints

VI INSTANCE SIZES OF BENCHMARK PROBLEMS

Table 2 exhibits dimensions of the largest instance for each tested benchmark dataset. The numbers
of constraints, variables, and binaries are presented.

Table 2: max problem sizes of each dataset

dataset # constr. # var. # binary var.

IP 195 1,083 1,050
WA 64,480 61,000 1,000
IS 600 1,500 1,500
CA 6,396 1,500 1,500
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VII PARAMETRIC SETTINGS FOR EXPERIMENTS

For experiments where our predict-and-search (PS) framework is compared with SCIP, Gurobi, and
fixing-based strategy, the settings for fixing-parameter (k0, k1) and the neighborhood parameter
∆ are listed in Table 3. Based on the performance of the under-laying solver, various settings of
(k0, k1) are used to carry out experiments for each benchmark dataset shown in Table 3. The radius
of the search area ∆ is chosen respectively to different implementations (PS+SCIP, PS+Gurobi, and
Fix+SCIP) of our framework as shown in Table 3.

Table 3: k0, k1, and ∆ settings for different dataset

dataset PS+SCIP PS+Gurobi Fixing+SCIP
k0, k1 ∆ k0, k1 ∆ k0, k1 ∆

IP 400, 5 1 400, 5 10 400, 5 0
WA 0, 500 5 0, 500 10 0, 500 0
IS 300, 300 15 300, 300 20 300, 300 0

CA 400, 0 10 600, 0 1 600, 0 0
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