
A DETAILS ON EXPERIMENTAL SETUP OF BASELINES

Code preparation We downloaded the code of all baselines (vanilla GCN 1, GraphSAGE 2, GAT
3, GIN 4 and MixHop 5) from corresponding official GitHub repositories. The original version of
GIN only worked on graph classification tasks and we adapted it to node classification tasks. The
multi-layer perceptrons in GIN have 2 layers.

Hyperparameter selection For baselines containing recommended hyperparameters in the source
code, including GAT on cora, MixHop, and Vanilla GCN on cora, citeseer, and pubmed, we
directly adopted their settings. Meanwhile, we conducted additional tests to adjust their learning
rate and model dimension and confirmed that their official settings are almost the best choices.
Specifically, GAT had an initial learning rate of 0.005, a hidden state dimension of 8, and 8 attention
heads. MixHop’s initial learning rates are 1, 0.5, and 0.25 on cora, citeseer, and pubmed
respectively. Vanilla GCN had an initial learning rate of 0.01 and a hidden state dimension of 16 6.

When there is no recommended setting of hyperparameters, or the settings are not affordable on our
device, we performed hyperparameter selection on learning rate, dropout rate, and model dimension.
We tested the initial learning rates 0.1, 0.01, 0.001, 0.0001 and the dropout rates 0.1, 0.3, 0.5, 0.7, 0.9
for all models. For fair comparison, we constrained the number of layers at 2 and the dimension of
hidden states at 128. All methods used a batch size of 512. Specifically, for MixHop, we performed
dropout rate selection on input and hidden layers and tested the layer capacities 18, 20, 24, 30. For
GIN, we adopted GIN-0 at each layer.

B DETAILS ON GRARF IMPLEMENTATION

Constructor We decomposed the actions into two stages. Each stage corresponded to a specific
sub-constructor. In both stages, all graph nodes were first encoded with a GraphSAGE layer (
hcu = elu(W c[xu‖ 1

n

∑
v∈Na(u)

xv] + bc). For the state encoder fs, we used linear transformations
of concatenations of central node representations and ARF-averaged node representations, i.e.,

fs(Na(u)) = W s[hu‖
1

n

∑
v∈Na(u)

hv] + bs). (1)

For the action encoder fa , we used the hidden representations of nodes, i.e., fa(v) = hc(v). The
approximated Q-function in GRARF was parameterized as

Q1(st, a
1
t ) = wT

1 [fa(a
1
t )‖fs(st))] + b1, (2)

Q2(st, a
2
t ; a

1
t ) = wT

2 [fa(a
1
t )‖fa(a2t )‖fs(st))] + b2, (3)

where a1t was the node selected in the first stage. In the training of the constructors, we set the
discount rate as γ = 0.9, and the exploration with linear decay. After 200 steps, the exploration rate
decayed to 0.05 and remained unchanged. The size of the memory pool was set as 50000. For each
action, the constructor chose a node to add to the ARF among all nodes adjacent to the ARF. Due
to memory constraints, we limited the size of nodes adjacent to the ARF to 300 by sampling. This
design was for nodes with large numbers of degrees specifically. The hidden representation of states
and actions (i.e. outputs of fs and fa) were defined to be 128-dimensional.

Hyperparameter selection In all settings, we performed hyperparameter selection on the learning
rate, training steps, maximum ARFs size and update frequency of constructor. In the pretraining
phase, we trained the evaluator with the same training nodes as in GRARF. The initial learning rate
in the pretraining phase was 0.001. In the training phase for GRARF, we performed a parameter

1https://github.com/tkipf/gcn
2https://gihub.com/williamleif/GraphSAGE
3https://gihub.com/PetarV-/GAT
4https://gihub.com/weihua916/powerful-gnns
5https://github.com/samihaija/mixhop
6We tried the hidden state dimension 128 in Vanilla GCN and the hidden state dimension 16 in GAT, while

no improvement was observed.

1



sweep on initial learning rates over 0.01, 0.001, 0.0001 with step-wise learning rate decay at every 3
steps. The decay γ was set as 0.95. For dataset cora, citeseer, pubmed, we updated the target
constructors every 20 steps. For dataset github, ppi, we updated the target constructors every
30 steps. We performed a parameter sweep on training steps over 400, 500, 600. The specific batch
number in each step was decided by the training size of each dataset. For cora, citeseer datasets,
the maximum ARFs size was set as 2. For pubmed dataset, the maximum ARFs size was set as 4,
and for github and ppi, the maximum ARFs size was set as 8. To train the evaluator, we used the
cross-entropy loss over the softmax output for single-class node classification and the sigmoid output
for multi-class node classification; to train the constructor, we used the mean-square-error loss.

C FURTHER ANALYSIS

Figure 1: Training loss. (a)-(f) correspond to the training loss curves of cora, citeseer, pubmed,
github and ppi datasets, respectively. The red lines represent step loss and the blue lines represent
sliding mean loss (sliding window size is 25).

Figure 2: (a) Entropy of each action step. The red line is the entropy of each action step, and the blue
line is the sliding mean entropy (sliding window size is 25). (b) Micro-f1s of different maximum
ARFs sizes and confidence intervals.

Training curves. The training loss curves of GRARF is shown in Figure 1. In our implementation,
the step loss would not reach near 0, but converge to a constant value. The strategies given by
constructors would also become stable as the number of training steps grown. To illustrate the
stability of strategy, we visualized the entropy of q-values in Figure 2 (a) given by constructors. With

2



the number increasing, the entropy of q-values of each step decreased in fluctuations, and finally
reached a constant approaching 0. This shows GRARF learns stable policies.

Effects of Maximum ARFs Sizes To explore the relationship between the performances of GRARF
and maximum ARFs sizes, we designed experiments on different maximum ARFs sizes on cora.
Results are shown in Figure 2 (b). The performance of GRARF remained consistent as the maximum
ARF size varies. We believe that this indicates the neighborhood can indeed be depicted with sparse
contexts.

Distance Distribution on LDD Experiments To further demonstrate the benefits of using ARFs
in LDD, we show the dependency length distributions of nodes having the same degree in Figure 3.
In these experiments, maximum ARFs size was set as 5. We selected LDD with λ = 2.0 and divided
central nodes according to their degrees. For low-degree central nodes, ARFs tended to include
long-dependency nodes to exploit more information. For high-degree central nodes, ARF nodes with
dependency length at 2 and 3 appeared more frequently. Note that in the LDD setup, we assigned a
split number k drawn from Poisson(λ) on each edge, and then split each edge to a (k + 1)-hop path
(do nothing if k = 0) by inserting k noises. Under this setting, informative nodes are pulled away
from central nodes, which means GCNs need to "look" further to aggregate informative nodes.

Figure 3: Dependency length of nodes in LDD experiments (λ = 2.0). (a)-(l) correspond to central
nodes of which degrees range from 2 to 13.

3


	Details on Experimental Setup of Baselines
	Details on GRARF Implementation
	Further Analysis

