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Supplementary Material

In this supplementary material, we aim to provide addi-
tional implementation details, ablation studies and more ex-
perimental results. The document is organised as follows:
first, we provide details about Laplace-Beltrami Operator in
Sec. 8 and implementation details including necessary pre-
processing steps in Sec. 9. In Sec. 10 we ablate our our ar-
chitecture and loss design and show an example how a chal-
lenging case is solved step-by-step by our careful design
(Sec. 10.1). We further ablate the performance of our pro-
posed method at different spectral resolutions, namely the
dimension of our predicted embeddings (Sec. 10.2). More-
over, we analyse the performance of our method’s execu-
tion time with inputs of different sizes (Sec. 10.3). Then we
elaborate the extension of our method to the partial setting
in Sec. 11. Finally, we present more qualitative results on
various datasets and failure cases in Sec. 12.

8. Laplace-Beltrami Operator
For a given function u defined on a Riemannian manifold
M, the Laplace-Beltrami Operator ∆u measures how the
function deviates from its average value within each lo-
cal neighborhood, taking into account the geometry of M.
This property leads to its widespread application in compu-
tational geometry and computer graphics, especially when
dealing with curved surfaces or manifolds. In practical ap-
plications, the discrete LBO approximates the continuous
operator, enabling its use on graphs or discrete meshes.

A prevalent variant of the discrete LBO is the cotangent
Laplacian, which is widely used due to its ability to approx-
imate the LBO on discrete surfaces. It is defined based on
the cotangent values of the angles around each vertex. The
discrete formulation of the LBO at a single vertex i is rep-
resented as:

(∆u)i ≈
1

2Ai

∑
j∈N(i)

(cotαij + cotβij)(ui − uj) (9)

Here, Ai denotes the area associated with vertex i, typically
computed as one-third of the areas of the adjacent faces, and
αij and βij are the angles opposite to the edge connecting
vertices i and j. Based on the definition of the LBO: ∆ =
M−1L, the mass matrix M and the stiffness matrix L are
defined as:

M = diag(A1,A2, . . . ,AnS ) (10)

Lij =


ωij = − 1

2 (cotαij + cotβij) j ∈ N (i)

−
∑

j∈N (i)

ωij j = i

0 otherwise

(11)

Geo. error (×100) FAUST SCAPE

Ablation study on loss terms
w/o Loff , Lo 20.1 25.8
w/o Lo 11.2 15.6
w/o Lc 5.6 4.7

Ablation study on network components
w/o ASAP 3.9 4.3
w/o Cross Attention 4.0 3.4
w/o ASAP, Cross Attention 4.1 3.6

Ablation study on shape communication
w/o Cross Attention, Lc 4.6 4.9
Ours 3.7 3.2

Table 4. Ablation study of our loss and pipeline. Each loss term
and network component contributes to reduce matching errors.

Finally, the eigenvalues Λ and eigenvectors Φ of the
LBO ∆ can be calculated using the following formula:

LΦ = MΛΦ (12)

9. Implementation Details
Our network is implemented in PyTorch [32]. The embed-
ding extractor is based on the ASAP DiffusionNet with the
default configuration published in [2] and the cross atten-
tion block is based on the implementation in [3]. We em-
ploy HKS [48] as descriptor functions D(·) in our pipeline,
where we set its feature dimension d = 512. The dimension
of the predicted (both intermediate and final) embeddings
Ψ(·) is set to be k = 50. Note that the same configuration is
used across all our experiments to ensure a non-biased com-
parison. For more details, please refer to the supplementary
material. The hyper-parameters in Eq. (7) are chosen as fol-
lows: µoff = 1, µo = 5e1 and µc = 1e3. Our network
is trained using the Adam optimiser with a learning rate of
1e-3 with a batch size of 1, except for SURREAL the batch
size is set to 4.

As pre-processing, we approximately pre-align (using
procrustes analysis or manually in blender) and normalise
all shapes to the unit ball in each dataset, compute their
point cloud LBOs [44] and eigen-decomposite them to ob-
tain the eigenvalues and eigenvectors, based on which the
HKS is pre-computed as well.

10. Ablation Study
10.1. Architecture and Loss

In this section, we first explain the difference between Dif-
fusionNet and our ASAP variant.Then we evaluate our pro-
posed loss terms Loff , Lo and Lc. We discard Loff and Lo



together, and then Lo, Lc respectively, since Loff and Lo

collectively encourages the desired basis structure. Next,
we progressively disable the ASAP operation (by revert-
ing to the original implementation of DiffusionNet) and the
cross attention block to demonstrate the effectiveness of our
proposed architecture design. Additionally, we evaluate the
scenario of removing all cross-communication components:
Lc and the cross attention block. All experiments follow
the same configuration as in Sec. 5.2 and are evaluated on
FAUST and SCAPE.

Compared to the original DiffusionNet, the ASAP ver-
sion achieves smoother features by projecting the embed-
ding Ψ̂

′(i) in layer i onto the Laplacian basis during the
diffusion process in each layer of the diffusion block, and
then projecting it back to the original space. This opera-
tion encourages the output embedding Ψ̂(i) of each layer
to approximate the properties of a smooth function, mean-
ing that the embedding space can be better described using
only low-frequency information. Specifically, this can be
expressed as: Ψ̂(i) = ΦΦ†Ψ̂

′(i).
Results The quantitative results are reported in Tab. 4. Each
loss term contributes to the accuracy of predicted corre-
spondences. The Lc and the cross attention block facilitate
communication cross shapes. The additional smoothness in
the embedding induced by ASAP operation is also helpful.
Fig. 7 illustrates that our design addresses the challenging
case of crossed legs step-by-step.

Figure 7. Visualisation of a challenging pair with crossed legs. We
show our full design can successfully handle this challenge while
all baseline methods fails (errors are highlighted in red).
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Figure 8. Our runtime vs. input point clouds size, ranging from
1k to 20k vertices. The runtime is measured per pair of shapes per
forward pass, as our network processes two shapes simultaneously.

10.2. Dimension of Learned Embeddings

We analyze the sensitivity of the dimension k of our learned
embeddings. In this experiment, we change k gradually
from 10 to 80 and train in total 8 different networks on
the SCAPE dataset. As shown in Fig. 10, with the in-
crease of k, the mean geodesic error of our predicted dense
correspondences decrease rapidly initially, then stagnates
stably at a low level. This is expected since we design
our off-diagonal loss such that the learned embeddings are
“frequency-aligned”, enabling a relatively faithful represen-
tation of the shape already with a handful of embeddings.

10.3. Runtime Complexity

In this section, we analyse the execution time and scalability
of our approach with respect to input size. Specifically, we
divide the total execution time into three stages: Precom-
putation, Training, and Inference. We conduct this analysis
using 20 shapes sampled from the FAUST dataset, measur-
ing the average run-time for each stage on an NVIDIA A800
GPU and an Intel Xeon Gold 6348 CPU @ 2.60GHz.

Fig. 8 presents the run-time across different input sizes
and stages. Although preprocessing involves some compu-
tational overhead, our method remains efficient and scal-
able, providing robust performance even for large and com-
plex inputs. Furthermore, Fig. 9 demonstrates our ap-
proach’s capability to effectively match large-scale point
clouds containing approximately 180k vertices.

11. Partial Shape Matching
As a proof-of-concept, we extend our method to the chal-
lenging task to match partial shapes. We take a full-partial
pair (from the same shape category in SHREC16 [10]) dur-
ing the training, and once the network is trained, we can
directly match two partial shapes at inference time.

For this we introduce a new off-diagonal term for partial



Figure 9. Matching results on MPI-FAUST [5] raw scan data. We
downsample the original point cloud to 50k for better visualiza-
tion. Our method can correctly handle point clouds of large sizes.

shapes analogous to the original one discussed in the main
paper (cf. Eq. (4)).

Loff partial =
∥∥ΨTLΨ− diag(ΨTLΨ)

∥∥
F

(13)

This adapted loss term only asks for the off-diagonal
term of ΨTLΨ to be as small as possible without any pref-
erence of frequency-alignment. This is reasonable because
Eq. (4) will still be applied to the full shape and the fre-
quency should be dictated by the full shape alone due to
missing eigenvalues and eigenvectors under shape partial-
ity [38]. Further we disable the orthogonal loss on the pre-
dicted embeddings of partial shapes. The reason behind is
the embedding should be coupled to the one from the full
shape, which contains frequencies that are absent in the par-
tial shape. Fundamentally, it relates to deleting rows (or
columns) of a Stiefel matrix will break the orthogonality,
leading to an matrix which is not Stiefel anymore. The final
loss reads as follows:

Lfinal = µoff partialLoff partial + µoff fullLoff full

+ µo fullLo full + µcLc. (14)

We employ deep features extracted from SSMSM [7]
(instead of HKS [48]). This choice was made because heat
diffusion behaves differently under different partiality, re-
sulting in even lower SNR of the final HKS, making it
much harder to learn anything useful from it. Since our
method is weakly supervised, we can exploit a test-time
adaptation as in [8]. The hyperparameters are set as follows:
µoff partial = µoff full = 1, µo full = 5e3 and µc = 5e3.
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Figure 10. Illustration of mean geodesic error under different spec-
tral resolutions. Our method is robust for different choice of spec-
tral resolution.

We conduct experiments using the SHREC16 partiality
dataset [10] and our proposed method show promising re-
sults especially in the HOLES sub-dataset (cf. Fig. 11).
However we leave a comprehensive study as future work
as partiality is challenging and deserves a thorough discuss
itself.

Figure 11. Qualitative result on SHREC16 HOLES. Ours per-
forms reasonably well under this challenging setting.

12. More Qualitative Results
In this section, we present additional qualitative results in-
cluding failure cases. See figure captions for explanation.



Figure 12. Visual comparison of our learned coupled embeddings vs. the LBO eigenbases. The first ten are shown. It can be seen that
our learned embeddings are consistent while the LBO eigenbases suffer from sign flips and ambiguity in space corresponding to repeated
eigenvalues.

Figure 13. Failure cases on FAUST. All three failure examples relate to the touching hands, where the points of two hands are locally
mixed and hard to separate. Note that this is the most challenging case for all point cloud methods in FAUST.



Figure 14. Qualitative results on SCAPE. Leftmost is the reference shape. Accurate correspondences are consistently obtained by our
proposed method.

Figure 15. Qualitative results on TOPKIDS. Leftmost is the reference shape. Although our method can handle topological noise (middle) ,
it still suffers from significant topological changes (right).

Figure 16. Qualitative results on DT4D-M. More qualitative non-isometric matching results (top) . Failure cases mainly due to challenging
topological noise (bottom) .



Figure 17. Robustness against additive noise. Ours produces stable correspondences under this noise compared to the baselines (errors
highlighted in red).


