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1 THEORETICAL ANALYSIS
Bi-recurrent and Parallel Equivalence. We state the theoretical
rationale for how the bidirectional retention mechanism M𝑅𝐷

(Eq.4 in main paper) we apply to visual branch has a bidirectional
recursive reasoning property. In original Retention Network [6],
given input 𝑋 ∈ R |𝑥 |×𝑑 (|𝑥 | is the length of word tokens, 𝑑 is the
feature dimension), define the current state as 𝑠𝑛 and current output
as 𝑜𝑛 , apply a linear transform to encode sequence information
recurrently with the weight matrix 𝐴 and bias 𝐾 , the undirectional
recurrent retention formulas are

𝑠𝑛 = 𝐴𝑠𝑛−1 + 𝐾⊺𝑛 𝑣𝑛 , 𝐴 ∈ R𝑑×𝑑 , 𝐾𝑛 ∈ 𝑅1×𝑑 ,

𝑜𝑛 = 𝑄𝑛𝑠𝑛 =

𝑛∑︁
𝑚=1

𝑄𝑛𝐴
𝑛−𝑚𝐾⊺𝑚𝑣𝑚 , 𝑄𝑛 ∈ 𝑅1×𝑑 .

(Eq.1 in [6])

In our paper, we consider applying the retention mechanism on
visual sequence modeling, and propose a new bidirectional reten-
tion expressed as a square matrix M𝑅𝐷 that decays exponentially
along the diagonal to both sides controlled by the decay factor 𝛾 ,
allowing for parallelized training. Specifically, we apply the new
BiRetention on visual branch with the input 𝑋𝑣 ∈ R𝑇×𝑑 (𝑇 is the
number of video clip tokens):

BiRetention(𝑉𝑣) = (𝑄𝐾⊺ ⊙ M𝑅𝐷 )𝑉𝑣 ;

(M𝑅𝐷 )𝑛,𝑚 = 𝛾 |𝑛−𝑚 | ,
(Eq.3 & Eq.4 revisited)

whereM𝑅𝐷 ∈ R𝑇×𝑇 . Here, we can denote the𝑄 = 𝑋𝑣𝑊𝑄 ⊙Θ, 𝐾 =

𝑋𝑣𝑊𝐾 ⊙ Θ with the addition of position embedding xPos [7] (Θ𝑛 =

𝑒𝑖𝑛𝜃 ), where𝑊 is learnable parameter, Θ and Θ are a conjugate
complex pair. Then we expand the formula for BiRetention based
on the definition of matrix multiplication as

𝑜𝑛 =

𝑇∑︁
𝑚=1

𝛾 |𝑛−𝑚 | (𝑄𝑛Θ𝑛) (𝐾𝑚Θ𝑚)⊺𝑣𝑚 ;

=

𝑇∑︁
𝑚=1

𝛾 |𝑛−𝑚 | (𝑄𝑛𝑒𝑖𝑛𝜃 ) (𝐾𝑚𝑒𝑖𝑚𝜃 )†𝑣𝑚 ,

(A1)

∗Corresponding authors

where † is the conjugate transpose, current output 𝑜𝑛 (row 𝑛 of the
BiRetention(𝑋𝑣)) depends on both its forward (the column index
is greater than 𝑛) and backward (the column index is less than 𝑛)
clip tokens. We then assume that a diagonalized matrix 𝐴 ∈ R𝑇×𝑇
has the following representation:

𝐴 = 𝑃 (𝛾𝑒𝑖𝜃 )𝑃−1

𝐴 |𝑛−𝑚 | = 𝑃 (𝛾𝑒𝑖𝜃 ) |𝑛−𝑚 |𝑃−1

= 𝑃𝛾 |𝑛−𝑚 |𝑒𝑖 ( |𝑛−𝑚 | )𝜃𝑃−1 .

(A2)

In the above formula, 𝑃 is a diagonal matrix, which can be absorbed
into the 𝑄𝑛 and 𝐾𝑚 , and the position embedding 𝑒𝑖 ( |𝑛−𝑚 | )𝜃 can be
assigned to 𝑄𝑛 and 𝐾𝑚 , respectively. So we update the BiRetention
formula in Eq. A1, and represent it as a bidirectional recurrent
formula with backward recurrent 𝑏𝑛 and forward recurrent 𝑓(𝑇−𝑛) :

𝑜𝑛 =

𝑇∑︁
𝑚=1

𝑄𝑛𝐴
|𝑛−𝑚 |𝐾⊺𝑚𝑣𝑚

=

𝑛∑︁
𝑚=1

𝑄𝑛𝐴
𝑛−𝑚𝐾⊺𝑚𝑣𝑚 +

𝑇∑︁
𝑚=𝑛+1

𝑄𝑛𝐴
𝑚−𝑛𝐾⊺𝑚𝑣𝑚

= 𝑄𝑛𝑏𝑛 +𝑄 (𝑇−𝑛) 𝑓(𝑇−𝑛) , (𝑛 = 1, 2, · · · ,𝑇 ).

(A3)

𝑏𝑛 = 𝐴𝑏𝑛−1 + 𝐾⊺𝑛 𝑣𝑛 , (𝑛 = 1, 2, · · · ) ,
𝑓(𝑇−𝑛) = 𝐴𝑓𝑇−𝑛−1 + 𝐾

⊺
(𝑇−𝑛)𝑣 (𝑇−𝑛) , (𝑛 = 𝑇 − 1,𝑇 − 2, · · · ) . (A4)

Eq. A3 changes the undirectional recurrent retentive reason-
ing formula into a bidirectional one, and in Eq. A4, we simplify
the parameters in the two recurren formulas to be represented
by the same matrices 𝐴 and 𝐾𝑛 , which will be optimized in par-
allelized training. Compared Eq. A4 to Eq.1 in [6], we change the
RNN formula from unidirectional to bidirectional in the BiReten-
tion. Thus, theoretically, the bidirectional retentionmechanism
M𝑅𝐷 (Eq.4 in main paper) we apply to visual branch has the
bidirectional sequential inference property like RNNs and
the parallelizable training like Transformers.
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Table A1: R@1 performance comparison of different reten-
tion decay factor 𝛾 in bidirectional retention maskM𝑅𝐷 .

𝛾
ANetCap Charades-STA

0.3 0.5 0.7 mIoU 0.3 0.5 0.7 mIoU
0.97 76.43 62.54 41.60 56.72 73.49 59.38 37.66 52.66
0.98 77.57 63.30 42.68 57.62 74.41 60.27 38.39 53.14
0.99 76.45 62.36 42.49 57.03 74.14 60.19 38.20 53.03
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Figure A1: Statistics on the query number per video. The
detests can be divided into three categories: large query size
(TACoS, most sizes are 110), middle query size (ANetCap,
most sizes are 3), and small query size (Charades-STA, most
sizes are 1, and the query description is often ambiguous,
semantically insufficient and time overlapping as the video
is too short for manually annotating events).
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Figure A2: The impact of training query number𝑚 on ANet-
Cap and TACoS dataset for NLMR task. “Full” denotes all
queries for a video are entered simultaneously. When our
MRNet is trained with the single-querymode (R@1, IoU@0.5
is 55.40 on ANetCap, R@1, IoU@0.3 is 54.49 on TACoS), we
also achieve promising performance compared to the state-
of-art methods listed in Tab. 2 of the main paper.

2 ADDITIONAL EXPERIMENTS
We conduct additional experiments to explore some of the other
important properties of our MRNet in order to get a fuller picture of
the role of our model in the MR tasks. All additional experimental
outlines are listed below:
(1) Hyperparameter Setting: Q1: How to set the decay factor 𝛾

of theM𝑅𝐷 to be optimal?
(2) About Training Mode: Q2: Would it be beneficial for the

model to refer to more query description information during
training?

(3) About Cross-modal Attention: Q3: Is a cross-modal base
environment necessary for video sequence modeling?

(4) AboutModel Complexity: Q4:How about the total parameter
quantity and inference speed of the model?

Table A2: R@1 performance comparison of the model w/o
cross-modal attention guidance.

Dataset Cross-modal IoU@0.3 IoU@0.5 IoU@0.7 mIoU

ANetCap ✗ 62.18 45.11 26.35 44.82
✓ 77.57 63.30 42.68 57.62

TACoS ✗ 45.09 33.27 19.17 31.61
✓ 71.98 41.31 22.27 39.45

Charades-STA ✗ 74.65 60.30 38.20 53.27
✓ 71.88 55.91 34.44 50.61

Table A3: Analysis with respect to performance (R@1),model
parameters (×106) and inference speed (s/query) on ANetCap
dataset for NLMR task. “Mode” refers to the training mode:
single-query training or multi-query training. ∗ denotes the
estimated number of parameters based on the model back-
bone network, due to lack of access to the source code.

Mode Method Venue IoU@0.5 # Param. Infer. Speed
2D-TAN [12] AAAI’20 44.51 84.94 0.061
MS-2D-TAN [11] TPAMI’21 46.16 479.46 0.141

Signle MGPN [5] SIGIR’22 47.92 5.12 0.115
BMRN [4] CVPR’23 48.47 90.00∗ -
MRNet-S (Ours) 55.40 77.16 0.023

Multi

MMN [9] AAAI’22 48.59 152.22 0.063
PTRM [13] AAAI’23 50.44 152.25 0.038
DFM [8] ACM MM’23 45.92 87.00∗ -
MRNet-M (Ours) 63.30 77.16 0.023

(5) About Case Visualization: Q5: A more comprehensive pre-
sentation of moment retrieval results on five datasets.

2.1 Retention Decay Analysis (Q1)
In Bidirectional Retention MaskM𝑅𝐷 in Eq.4, the value of decay
factor 𝛾 will explicitly control the valid receptive field range of
the current token, then the model’s temporally contextual learning
ability will be affected. When setting the 𝛾 , we consider the current
token to be able to view all tokens before and after it by a level of
magnitude. From Tab. A1, 𝛾 = 0.98 is optimal.

2.2 More Analysis on Training Mode (Q2)
From themain paper (Tab. 2, Tab. 3 and Tab. 4), we can conclude that
on datasets ANetCap and TACoS, when model refers to all query
description information related to the same video during training,
the model (MRNet-M) offers significant performance gains over the
single-query-only model; actually, the single-query model MRNet-S
has already achieved promising performance with the recent state-
of-arts. This conclusion can be also observed in Tab. A3, e.g., the
R@1, IoU@0.5 of MRNet-S is 55.40, which is much higher than the
SOTA single-training BMRN [4] and multi-training PTRM [13].

Based on the statistics of the number of queries on the datasets in
Fig. A1, we can simply divide the three datasets into two categories:
1) Multi-query: ANetCap and TACoS, and 2) Approximate single-
query: Charades-STA.We further investigate the following question
on the multi-query datasets: Whether it is more helpful for our
MRNet to train a stronger moment retrieval model by referring
to more query language descriptions during training? As the
results in Fig. A2 indicate, when we progressively increase the
number of queries trained at a time, the performance of the model
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improves, suggesting that our model is able to efficiently merge the
semantics of the language and the video in order to maximize the
effect of moment retrieval. Ideally, the model performs optimally
when it refers to all linguistic descriptions associated with a same
video during training.

2.3 Cross-modal Attention Analysis (Q3)
Video Moment retrieval (MR) is an important cross-modal task, in
our main paper, we focus on exploring the problem of optimiz-
ing video sequence modeling in a cross-modal environment
and demonstrate the effectiveness of our proposed retention opti-
mization approach. Here, we explore a more fundamental aspect
of MRNet, that is, the need for “multimodal guidance” in the
MRT block. We design two experimental setups: one with MRT
block that includes cross-modal attention, i.e., the model is able
to attend to both language and video information, and the other
with independent self-modal attention for video and query, i.e., the
model can only attend to one of the information alone.

The results on three different datasets are shown in Tab. A2, we
can see that for datasets ANetCap and TACoS, the cross-modal
environment significantly improves model performance, but for
Charades-STA dataset, purely self-modal modeling of video
sequences is insteadmore effective. Normally, cross-modal guid-
ance between language and video promotes the model’s semantic
alignment of the two modalities, which in turn improves perfor-
mance [1, 3, 10], as indicated by the results on datasets ANetCap
and TACoS in Tab. A2. However, for the Charades-STA dataset,
there’s an interesting anomaly occurring, and we have found some
explainable factors:

• Semantic Consistency:Most videos in Charades-STA dataset
contains contradictory annotations with overlapping moments,
e.g., for video (id is “FSOFF”) with the total duration of 19.79s,
there are two annotations “another person walks by the takes off
their shoes.” and “person proceeds to take their shoes off.” that
correspond to the same video moment 11.80s-17.97s, this causes
semantic inconsistencies in queries and moments to appear in
the cross-modal attention map, which affects the computation of
attention and pulls down the performance of moment retrieval.

• Query Length: The number of words in a query is a direct reflec-
tion of the semantic richness of the language, however, the query
length in the Charades-STA dataset averages 7 and contains more
pronouns, this leads to ambiguous and semantically insufficient
language description. Thus the attention interaction of language
and video may instead impair the model’s comprehension of
video information.

According to experimental results and our analyses, it can be
inferred that when the quality of the annotations is relatively low, or
there are semantic inconsistencies between query annotations and
video moments, we can consider omitting cross-modal guidance
and instead focus solely on video sequence modeling. As shown in
Tab. A2, with the purely self-modal modeling of video sequence,
our MRNet report new state-of-the-art performances (i.e., R@1,
IoU@0.3 is 74.65 as shown inmain paper) on Charades-STA dataset.

2.4 More Analysis on Model Efficiency (Q4)
We have presented the model parameters and the performance of
our model compared to recent MR methods in Fig. 2 of the main
paper. And our MRNet demonstrates the optimal trade-off between
model size and accuracy. In this section, we give a more detailed
efficiency comparison in Tab. A3. All experiments are conducted
on an RTX 2080Ti GPU. Noting that the parameters of MRT block
in our MRNet are only 1.98 M as shown in Tab. ??, and the total
parameters of whole back-end of MMN [9] (a typical proposal-based
method) are 74.59 M, which indicates that our proposed MRT
block occupies a very lightweight proportion of the entire
model parameters. It can be found that our MRNet achieves a
balance of model size and performance in both the single-query
trainingmoment retrieval methods [4, 5, 11, 12] and themulti-query
training methods [8, 9, 13]. Moreover, our MRNet achieves faster
inference compared to the MR methods in Tab. A3, the average
inference time per query is 0.023 s.

2.5 More Visualization Cases (Q5)
To make it clearer how well our MRNet works on the five bench-
marks for the three MR tasks, we provide additional visualizations
to complement the analysis. We show the distribution of GT mo-
ment samples in the test (or validation) set for all datasets on the
right side of Figs. A3∼A5 and randomly select a video sample from
among them for specific visualization and analysis.

2.5.1 Natural Language Moment Retrieval.
The Fig. A3 shows the visualisation samples for most popular video
moment retrieval task of NLMR (Natural Language Moment Re-
trieval). And there are three widely used datasets ActivityNet Cap-
tions (ANetCap), Caharades-STA and TACoS. The data distribution
of these three datasets exhibits different characteristics:

• Different moment distributions as shown in the Fig. A3 (right,
green contour maps). For ANetCap dataset, there are four peak
regions of targetmoments: the beginning of the video, themiddle
of the video, the end of the video, and the moment from across
the entire video. For Charades-STA dataset, two peaks at the
beginning and end of the video, the entire distribution is close to
the diagonal, containing a large number of short moments.
For TACoS dataset, a lot of the moments are focused on the
beginning of the video.

• Different query information length (avg.): 15 words in ANet-
Cap, 10 words in TACoS and 7 words in Charades-STA.

• Different video duration (avg.): 117.61s in ANetCap, 287.14s
in TACoS and 30.59s in Charades-STA.

• DifferentVideo Scene:Open-world activities in ANetCap, Cook-
ing in TACoS and indoors in Charades-STA.

From the visualization results, our model shows more accu-
rate moment retrieval compared to the MMN [9] across all three
NLMR datasets, this indicates our added cross-modal guidance
and video sequence modeling approach effectively corrects the
moment prediction bias of MMN. For example, in Fig. A3 (b), the
challenge with this sample is that the back-and-forth continuous
action makes the event boundaries difficult to capture, both
the beginning and ending boundaries of the MMN prediction con-
tain some background clips, while our MRNet predicts nearly no
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Duration: 33.38s

Video ID: v_R8vqzwGs6aE
Query: “More people are shown shooting the bow and arrow as well as the camera looking around targets.”

GT53.81 146.94

                          MMN77.61 206.96

MRNet (Ours)51.74 155.22

(a)

Query: "person they take their shoes off."

GT

MMN

Video ID: MVX03

16.40 25.20
14.60 27.12

MRNet (Ours)16.69 25.03

Duration: 206.96s

(b)

GT

Duration: 82.11s
Query: "The man places a glass on the counter."
Video ID: s27-d50.avi

show only the 0s~25s of the video

MMN

MRNet (Ours)

7.93 16.50

7.70 16.04

8.51 11.92

(c)
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Figure A3: More visualization samples for NLMR (Natural Language Moment Retrieval) task, on three widely used datasets:
(a) ActivityNet Captions, (b) Caharades-STA and (c) TACoS. On the right is the distribution of target moments for the test set
corresponding to each dataset, we randomly select a sample case in the GT distribution to visualize. Compared with MMN [9],
our MRNet can locate more accurate temporal regions.

GT43.20 145.92

 MMN6.00

MRNet (Ours)36.00 144.01

Video ID: v_czmYE1FzBXM
Query Content: “The men are then seen on a large field playing a game of lacrosse with one another.”

Video Duration: 192.01sAudio Query: czmYE1FzBXM_val_2_2.wav

66.00

ActivityNet Speech

En
d 

in
de

x

Start index

GT Moments Distribution (on Test Set)

Figure A4: More visualization samples for SLMR (Spoken Language Moment Retrieval) task, on recent dataset ActivityNet
Speech. The results show that our MRNet is also more effective than MMN for SLMR task.

gap boundaries with GT. This underscores the effectiveness of
our proposed MRNet, which achieves background de-redundancy
learning and contextual temporal correlation learning from videos.

2.5.2 Spoken Language Moment Retrieval.
We show additional visualization example on the recently proposed
ActivityNet Speech dataset in Fig. A4. When using the audio as the
query input, the MMN method shows some semantic bias in the
prediction of the test set sample “v_czmYE1FzBXM”, essentially rec-
ognizing no video clips about “large field playing a game of lacrosse
with one another”. Our MRNet, on the other hand, predicts a more
precise range of video semantics, this again demonstrates the

validity of our proposed MRT block, which additionally optimizes
video sequence modeling in a cross-modal environment, enhancing
contextual learning of video semantics of the model.

2.5.3 Moment Retrieval + Highlight Detection.
An additional visualization example on recent MR-related mul-
titasking dataset QVHighlights is in Fig. A5. We also present the
highlightness scores of the clip-by-clip predictions on the validation
set video sample “izeyQalOwGg_60.0_210.0”. In fact, GT’s real-time
annotations are 6s-10s, 12s-16s and 18s-36s and we simplify its rep-
resentation in Fig. A5 as 6s-36s. With the Moment Retrieval task as
the main focus, we can see the prediction of the highlighted scores
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QD-DETRGT Our MRNet

36GT

Video ID: izeyQalOwGg_60.0_210.0
Query: “Man in white top sits in a a van backseat.”

Duration: 150s

QD-DETR

6

60 98

MRNet (Ours)10 36

QVHighlights

En
d 

in
de

x

Start index

Highlightness score:

GT Moments Distribution
(on Validation Set)

Figure A5: More visualization samples for MR+HD (Moment retrieval and Highlight Detection) task, on recent dataset QVHigh-
lights. Compared with QD-DETR [2], our MRNet can predict more accurate temporal regions and highlightness scores.

as an aid to this task. From the visualization, compared to QD-
DETR, our approach to this multi-task learning has the advantage
of more accurate semantic understanding of video.

REFERENCES
[1] Daizong Liu, Xiaoye Qu, Xiao-Yang Liu, Jianfeng Dong, Pan Zhou, and Zichuan

Xu. 2020. Jointly cross-and self-modal graph attention network for query-based
moment localization. In ACM MM. 4070–4078.

[2] WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo.
2023. Query-dependent video representation for moment retrieval and highlight
detection. In CVPR. 23023–23033.

[3] Jonghwan Mun, Minsu Cho, and Bohyung Han. 2020. Local-global video-text
interactions for temporal grounding. In CVPR. 10810–10819.

[4] Muah Seol, Jonghee Kim, and Jinyoung Moon. 2023. BMRN: Boundary Match-
ing and Refinement Network for Temporal Moment Localization with Natural
Language. In CVPRW. 5571–5579.

[5] Xin Sun, Xuan Wang, Jialin Gao, Qiong Liu, and Xi Zhou. 2022. You need to read
again: Multi-granularity perception network for moment retrieval in videos. In
SIGIR. 1022–1032.

[6] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jiany-
ong Wang, and Furu Wei. 2023. Retentive network: A successor to transformer

for large language models. arXiv preprint arXiv:2307.08621 (2023).
[7] Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang, Alon Benhaim,

Vishrav Chaudhary, Xia Song, and Furu Wei. 2022. A length-extrapolatable
transformer. arXiv preprint arXiv:2212.10554 (2022).

[8] Xin Wang, Zihao Wu, Hong Chen, Xiaohan Lan, and Wenwu Zhu. 2023. Mixup-
Augmented Temporally Debiased Video Grounding with Content-Location Dis-
entanglement. In ACM MM. 4450–4459.

[9] Zhenzhi Wang, Limin Wang, Tao Wu, Tianhao Li, and Gangshan Wu. 2022. Neg-
ative sample matters: A renaissance of metric learning for temporal grounding.
In AAAI, Vol. 36. 2613–2623.

[10] Mingxing Zhang, Yang Yang, Xinghan Chen, Yanli Ji, Xing Xu, Jingjing Li, and
Heng Tao Shen. 2021. Multi-stage aggregated transformer network for temporal
language localization in videos. In CVPR. 12669–12678.

[11] Songyang Zhang, Houwen Peng, Jianlong Fu, Yijuan Lu, and Jiebo Luo. 2021.
Multi-scale 2d temporal adjacency networks for moment localization with natural
language. TPAMI 44, 12 (2021), 9073–9087.

[12] Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo Luo. 2020. Learning 2d
temporal adjacent networks for moment localization with natural language. In
AAAI, Vol. 34. 12870–12877.

[13] Minghang Zheng, Sizhe Li, Qingchao Chen, Yuxin Peng, and Yang Liu. 2023.
Phrase-level Temporal Relationship Mining for Temporal Sentence Localization.
In AAAI. 3669–3677.


	1 Theoretical Analysis
	2 Additional Experiments
	2.1 Retention Decay Analysis (Q1)
	2.2 More Analysis on Training Mode (Q2)
	2.3 Cross-modal Attention Analysis (Q3)
	2.4 More Analysis on Model Efficiency (Q4)
	2.5 More Visualization Cases (Q5)

	References

