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A ADDITIONAL DATASET STATISTICS

We summarize detailed statistics of each token network in TGS datasets in Table 4. In the table, the
growth rate is the ratio of label 1, indicating the increase in the number of edge counts with respect to
the problem definition defined in Section 3. In addition, the novelty score, the average ratio of new
edges in each timestamp, and the surprise score, the ratio of edges that only appear in the test set,
introduced by Poursafaei et al. Poursafaei et al. (2022), are defined as followed:

novelty =
1

T

T∑
t=1

|Et \ Et
seen|

|Et| , (1a)

surprise =
|Etest \ Etrain|

|Etest|
, (1g)

where Et and Et
seen denotes the set of edges present only in timestamp t and seen in previous

timestamps, respectively. Etest represents edges that appear in the test set, and edges appearing in
the train set are represented as Etrain.

Comparison between training and testing set. Nodes, transactions, and length (in days) distribution
over the training and testing sets are shown in Figure 6. Training sets well-support the multi-network
model to generalize characteristics of the entire TGS dataset due to the similarity between nodes,
edge and length in days distributions shown in Figures 6a, 6b, 6c and those distributions across 84
token networks of TGS datasets. In addition, the variance of datasets’ characteristics of the testing
set is shown in Figures 6d, 6e and 6f.
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Figure 6: Distribution of the characteristics of the datasets over training and testing sets.
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Table 4: All token networks’ statistics.

Token Node Transaction Timestamp (days) Growth rate Novelty Surprise

ARC 11325 70968 606 0.43 0.32 0.88
CELR 65350 235807 1691 0.49 0.56 0.96
CMT 86895 205961 309 0.45 0.72 0.92
DRGN 113453 341849 2164 0.44 0.57 0.97
GHST 35156 180955 1146 0.43 0.51 0.93
INU 8556 66315 154 0.27 0.41 0.59
IOTX 63079 288469 1993 0.45 0.56 0.99
QSP 117977 299671 2178 0.45 0.67 0.99
REP 83282 224843 346 0.46 0.69 0.96
RFD 23208 173695 169 0.3 0.39 0.6
TNT 88247 316352 1216 0.43 0.55 0.93
TRAC 71667 299181 2110 0.46 0.54 0.97
RLB 28033 240291 129 0.43 0.49 0.76
steCRV 19079 211538 1033 0.45 0.53 0.9
ALBT 63042 434881 1152 0.43 0.44 0.89
POLS 128159 554705 1132 0.45 0.61 0.94
SWAP 69230 509769 1213 0.46 0.45 0.79
SUPER 83299 502030 986 0.47 0.46 0.85
RARI 87186 502960 1207 0.43 0.47 0.91
KP3R 39323 493258 1102 0.43 0.33 0.88
MIR 79984 444998 1066 0.45 0.43 0.92
aUSDC 23742 475680 1067 0.46 0.4 0.73
LUSD 25852 430473 943 0.48 0.36 0.87
PICKLE 28498 430262 1149 0.48 0.34 0.69
DODO 47046 390443 1131 0.47 0.45 0.91
YFII 43964 391984 1196 0.44 0.44 0.96
STARL 71590 369913 856 0.46 0.48 0.86
LQTY 34687 374230 943 0.45 0.34 0.91
FEG 118294 367584 1007 0.4 0.62 0.92
AUDIO 91218 362685 1108 0.45 0.58 0.95
OHM 45728 377068 690 0.43 0.46 0.88
WOOL 16874 351178 716 0.41 0.18 0.41
Metis 52586 343141 907 0.44 0.48 0.89
cDAI 52753 358050 1437 0.45 0.46 0.9
BITCOIN 34051 347054 178 0.48 0.39 0.63
INJ 60472 312822 1113 0.46 0.52 0.98
MIM 23038 269366 885 0.44 0.4 0.89
GLM 53385 234912 1080 0.5 0.53 0.96
Mog 14590 240680 107 0.37 0.38 0.55
DPI 40627 234246 1150 0.49 0.5 0.86
LINA 45342 227147 1144 0.45 0.46 0.95
Yf-DAI 22466 226875 1158 0.42 0.31 0.87
BOB 42806 212099 199 0.35 0.48 0.73
RGT 35277 211932 1110 0.44 0.46 0.98
TVK 42539 208082 1062 0.41 0.48 0.93
RSR 50645 205906 659 0.47 0.62 0.91
WOJAK 34341 198653 201 0.37 0.48 0.73
ANT 36517 200262 1107 0.47 0.46 0.93
LADYS 37486 192176 181 0.37 0.52 0.79
ETH2x-FLI 11008 199088 965 0.47 0.28 0.84
TURBO 38638 189048 189 0.33 0.48 0.72
REPv2 39061 191367 1194 0.48 0.5 0.97
NOIA 29798 185528 1133 0.46 0.37 0.7
0x0 21531 182430 283 0.51 0.46 0.81
PSYOP 25450 168896 169 0.32 0.39 0.59
ShibDoge 40023 134697 680 0.43 0.53 0.8
ADX 14567 123755 1188 0.44 0.4 0.91
BAG 11860 122634 298 0.31 0.44 0.87
QOM 21757 118292 598 0.46 0.41 0.81
BEPRO 26521 120261 1132 0.46 0.48 0.87
AIOZ 29231 119926 947 0.43 0.49 0.89
PRE 40476 118625 1113 0.5 0.55 0.86
CRU 19990 117712 1144 0.5 0.43 0.95
POOH 27245 111641 193 0.26 0.49 0.69
DERC 24277 111205 824 0.45 0.49 0.83
stkAAVE 37355 110924 1128 0.42 0.57 0.71
BTRFLY 8450 108371 453 0.48 0.34 0.44
SDEX 9127 104869 240 0.41 0.44 0.75
XCN 20085 104185 607 0.46 0.42 0.84
HOP 37004 102650 514 0.41 0.6 0.88
MAHA 18401 96180 749 0.43 0.47 0.91
DINO 15837 94140 358 0.44 0.44 0.74
bendWETH 1454 96898 593 0.51 0.21 0.51
PUSH 14501 93103 936 0.46 0.38 0.83
SPONGE 25852 90468 184 0.31 0.66 0.81
sILV2 12838 92905 611 0.4 0.34 0.48
SLP 6675 95368 1151 0.43 0.36 0.91
crvUSD 2950 88647 174 0.61 0.37 0.73
MUTE 12426 82345 977 0.43 0.46 0.95
EVERMOON 7552 79868 163 0.24 0.35 0.52
HOICHI 5075 77361 436 0.36 0.32 0.71
DOGE2.0 7664 79047 123 0.45 0.38 0.66
ORN 44010 239451 1134 0.46 0.47 0.87
aDAI 13648 187050 1068 0.45 0.46 0.82
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B TEMPORAL GRAPH REPRESENTATION LEARNING METHODS

In this section, we give further details about the temporal graph learning models we used as a baseline
for our work.

HTGN leverages the power of hyperbolic geometry, which is well-suited for capturing hierarchical
structures and complex relationships in temporal networks. HTGN maps the temporal graph into
hyperbolic space and utilizes hyperbolic graph neural networks and hyperbolic gated recurrent neural
networks to model the evolving dynamics. It incorporates two key modules that are hyperbolic
temporal contextual self-attention (HTA) and hyperbolic temporal consistency (HTC)-to ensure that
temporal dependencies are effectively captured and that the model is both stable and generalizable
across various tasks Yang et al. (2021).

GraphPulse addresses the challenge of learning from nodes and edges with different timestamps,
which many existing models struggle with. It combines two key techniques: the Mapper method from
topological data analysis to extract clustering information from graph nodes and Recurrent Neural
Networks (RNNs) for temporal reasoning. This principled approach helps capture both the structure
and dynamics of evolving graphs Shamsi et al. (2024).

GCLSTM combines a Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM)
units to handle both the structural and temporal aspects of evolving networks. The GCN is used to
capture the local structural properties of the network at each snapshot, while the LSTM learns the
temporal evolution of these snapshots over time Chen et al. (2022).

EvolveGCN is designed to capture the temporal dynamics of graph-structured data. Instead of relying
on static node embeddings, EvolveGCN evolves the parameters of a graph convolutional network
(GCN) over time. By using a recurrent neural network (RNN) to adapt the GCN parameters, this
model is capable of dynamically adjusting during both training and testing, allowing it to handle
evolving graphs, even when node sets vary significantly across different time steps Pareja et al.
(2020).

C TEMPORAL GRAPH PROPERTY PREDICTION

C.1 NETWORK GROWTH/SHRINK

In this study, we define graph property prediction as the task of predicting a specific graph property.
In our case, this involves predicting the growth or shrinkage in the number of transactions in the next
snapshot. Specifically, given the current weekly snapshot of a network, the objective is to predict
the trend—whether the network will experience growth or shrinkage in transaction volume in the
following week. This task has significant applications in the financial domain, as it provides insights
into the willingness of investors to engage in a network and whether transaction activity is likely to
increase. To ensure consistency, we use the same property prediction setting as GraphPulse (Shamsi
et al., 2024), and the formal definition of the graph property is as follows:

Definition. We define network growth in terms of edge count as the predicted graph property. Let
G represent a graph, t a specific time, δ1 and δ2 time intervals, and E(t1, tn) the multi-set of edges
between times t1 and tn. The property P is formally expressed as:

P (G, t1, tn, δ1, δ2) =
{
1, if |E(tn + δ1, tn + δ2)| > |E(t1, tn)|,
0, otherwise.

Setting n = 7, δ1 = 1, and δ2 = 7, we establish a practical graph property with a 7-day prediction
window. This choice is particularly relevant in financial contexts, such as Ethereum asset networks,
where it can guide investment decisions, and in social network infrastructure, like Reddit, where it
supports maintenance planning.
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Insights for Transaction Networks. The graph growth/shrink property prediction in financial
networks forecasts changes in transaction numbers (edge count), revealing trends in network activity.
A growth in edge count indicates increased investor engagement, while a shrinkage suggests reduced
activity or market hesitation. This property helps guide investment strategies, resource allocation,
and risk management by providing insights into the evolving dynamics of transaction networks.

In temporal graphs, property predictions provide valuable insights into the dynamics and behaviors of
evolving networks. While this work focuses on specific properties, numerous other characteristics can
also be defined in this domain to highlight the significance of temporal graph property predictions. For
instance, properties like the temporal global efficiency, temporal-correlation coefficient, and temporal
betweenness centrality offer additional perspectives by capturing unique aspects of a graph’s temporal
evolution. These examples further clarify the importance of studying temporal graph properties
and their relevance to understanding complex network dynamics. Below, we formalize these three
additional temporal graph properties and explain their relevance and insights which can be used in
future works, particularly for transaction networks.

C.2 TEMPORAL GLOBAL EFFICIENCY

Definition. Temporal global efficiency measures how efficiently information can travel across a
temporal graph, considering the dynamic nature of node connections. For a temporal graph Gt at time
t, let dij(t) represent the shortest temporal distance between nodes i and j. The global efficiency
Eglobal(t) is defined as:

Eglobal(t) =
1

N(N − 1)

∑
i ̸=j∈1,2,...N

1

dij(t)
,

where N is the total number of nodes in the graph. For disconnected node pairs where no temporal
path exists, dij(t) is set to infinity, and the corresponding term in the sum is considered zero. (Dai
et al., 2016)

Insights for Transaction Networks. In transaction networks, temporal global efficiency can reveal
how effectively transactions propagate through the network. A high-efficiency score indicates
well-connected networks with fewer bottlenecks, which may reflect a healthy flow of transactions.
Conversely, a low-efficiency score could signal congestion or isolation, impacting investor confidence
and transaction throughput.

C.3 TEMPORAL-CORRELATION COEFFICIENT

Definition.Temporal-correlation coefficient C is the measure of the overall average probability for an
edge to persist across two consecutive time steps (Nicosia et al., 2013). The temporal-correlation
coefficient C of snapshot tm is defined as follows :

Ctm =
1

N

N∑
i=1

∑
j aij(tm)aij(tm+1)√

[
∑

j aijtm][
∑

j aijtm+1]

where aij illustrates an entry in the unweighted adjacency matrix of the graph, and N is the total
number of nodes at snapshot tm(Büttner et al., 2016).

Insights for Transaction Networks. Temporal-correlation coefficient can highlight the stability
or volatility of transaction patterns over time. A high correlation suggests consistent behaviour
across snapshots, which could indicate steady transaction volumes or repeat interactions between
participants. A low correlation might point to abrupt changes, such as new market participants,
significant events, or shifts in transaction trends.

C.4 TEMPORAL BETWEENNESS CENTRALITY
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Definition. Temporal betweenness centrality measures how often a node acts as a bridge along the
shortest temporal paths in a graph. For a node v, its temporal betweenness centrality of each node u
at timestamp t:

Bt
u =

1

(N − 1)(N − 2)

∑
j∈V

∑
k∈V

U(i, t, j, k)

|Sjk|

defined when Sjk ̸= ∅, where the function U return the number of shortest temporal paths include
node u from node j to k. In the case when Sjk = ∅, we set temporal betweenness centrality of node u
to 0 (Tang et al., 2010). The betweenness centrality of each snapshot can be obtained by performing
an average of the betweenness centrality of each node for each snapshot.

Insights for Transaction Networks. In transaction networks, temporal betweenness centrality
identifies key participants that facilitate transactions. Nodes with high centrality act as intermediaries,
playing a crucial role in maintaining network connectivity. Understanding such nodes can help detect
influential investors, hubs of activity, or potential points of failure.

D HYPERBOLIC TEMPORAL GRAPH NETWORK (HTGN)

Given feature vectors XE
t of snapshot t in Euclidean space, an HGNN layer first adopts an exponential

map to project Euclidean space vectors to hyperbolic space as follows XH
t = expc(XE

t ), and then
performs aggregation and activation similar to GNN but in a hyperbolic manner, X̃H

t = HGNN(XH
t ).

To prevent recurrent neural networks from only emphasizing the most nearby time and to ensure
stability along with generalization of the embedding, HTGN uses temporal contextual attention
(HTA) to generalize the lastest w hidden states such that H̃H

t−1 = HTA(Ht−w; ...;Ht−1) Yang et al.
(2021). HGRU takes the outputs from HGNN, X̃H

t , and the attentive hidden state, H̃H
t−1, from HTA

as input to update gates and memory cells and then provides the latest hidden state as the output,
HH

t = HGRU(X̃H
t , H̃H

t−1).

To interpret hyperbolic embeddings, Yang et al. (2021) adopt Poincaré ball model with negative
curve −c, given c > 0, coresponds to the Riemannian manifold (Hn,c) = {x ∈ Rn : c||x||2 < 1} is
an open n-dimensional ball. Given a Euclidean space vector xE

i ∈ Rd, we consider it as a point in
tangent space Tx′Hd,c and adopt the exponential map to project it into hyperbolic space :

xH
i = expcx′(xE

i ) (2)

Resulting in xH
i ∈ Hd,c, which is then served as input to the HGNN layer as follows Yang et al.

(2021):

mH
i = W ⊗c xH

i ⊕c b, (3a)

m̃H
i = expc

x′(
∑

j∈N (i)

αij log
c
x′(m

H
i )), (3b)

x̃H
i = expc

x′(σ(log
c
x′(m̃

H
i )). (3c)

where W , b are learnable parameters and hyperbolic activation function σ achieved by applying
logarithmic and exponential mapping. HGNN leverages attention-based aggregation by assigning
attention score αij to indicate the importance of neighbour j to node i, computed as followed:

αij = softmax(j∈N (i))(sij) =
exp(sij)∑

j′∈Ni
exp(sij′)

,

sij = LeakReLU(aT [logc0(m
l
i)∥ logc0(m

l
j)]),

(4)

where a is trainable vector and || denotes concatenation operation.

The output of HGNN, X̃H
t , is then used as input to HGRU along with attentive hidden state H̃H

t−1
obtained by HTA, which generalize Ht−1 to lastest w snapshots {Ht−w, ...,Ht−1} Yang et al. (2021).
Operations behind HGRU are characterized by the following equation Yang et al. (2021):
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XE
t = logcx′(X̃

H
t ), (5a)

HE
t−1 = logcx′(H̃

H
t−1), (5b)

PE
t = σ(WzX

E
t + UzH

E
t−1) (5c)

RE
t = σ(WrX

E
t + UrH

E
t−1), (5d)

H̃E
t = tanh(WhX

E
t + Uh(Rt ⊙HE

t−1)), (5e)

HE
t = (1− PE

t )⊙ H̃E
t + PE

t ⊙HE
t−1, (5f)

HH
t = expc

x′(H
E
t ). (5g)

where Wz,Wr,Wh, Uz, Ur, Uh are the trainable weight matrices, PE
t is the update gate to control

the output and RE
t is the reset gate to balance the input and memory Yang et al. (2021).

E ADDITIONAL RESULTS

Here, we present the test results for the six multi-network models trained on different network
sizes, as well as the single model and persistence forecast results. Figure 7 illustrates the AUC of
these models on the test set. In most datasets, multi-network models outperform the single model,
and in all datasets, they outperform the persistence forecast. We have also compared our model
against additional state-of-the-art models, specifically including EvolveGCN Pareja et al. (2020),
GC-LSTM Chen et al. (2022) and the only model designed for temporal graph properties prediction,
GraphPulse Shamsi et al. (2024) as baselines for the test set. In Table 5 and Table 6 the average and
standard deviation of AUC and AP are presented respectively for all models.
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Figure 7: Test AUC of multi-network models trained on 2n datasets where n ∈ [1, 6] and evaluated
on unseen test datasets. Comparing the performance with single models trained and tested on each
dataset and persistence forecast results.

F EFFECT OF DATA SELECTION ON MULTI-NETWORK MODEL PERFORMANCE

In this section, we investigate the effect of data selection on the performance of multi-network models
trained with different training data packs. As the first work on multi-network training for temporal
graphs, we explore the importance of our dataset selection process. To avoid any bias, we randomly
sampled the training datasets from the 64 available networks. We conducted a novel empirical
experiment to examine the impact of dataset selection on training MN models. In this experiment, we
choose three disjoint sets of datasets (data pack A, B, and C) for training MN-2, MN-4, MN-8, and
MN-16 and two disjoint sets of datasets (data pack A, B) for training MN-32. Using disjoint data
packs ensures that each model is trained on unique data, eliminating any overlap that could obscure
the results. We then test our models on 20 unseen test datasets.

As shown in Figures 8a the number of training networks increases, the multi-network model perfor-
mance increases while the variance between different choices of training networks reduces. However,
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Table 5: AUC scores of multi-network models, single models, and persistence forecasts on test sets
across three seeds, including comparisons with state-of-the-art models EvolveGCN, GC-LSTM and
GraphPulse. The best performance is shown in bold, and the second best is underlined.

Token Per. Fore. GraphPulse HTGN GCLSTM EvolveGCN MN-2 MN-4 MN-8 MN-16 MN-32 MN-64

WOJAK 0.378 0.467± 0.030 0.479 ± 0.005 0.484 ± 0.000 0.505 ± 0.023 0.534 ± 0.020 0.556 ± 0.029 0.561 ± 0.018 0.556 ± 0.016 0.534 ± 0.017 0.524 ± 0.027

DOGE2.0 0.250 0.384 ± 0.18 0.590 ± 0.059 0.538 ± 0.000 0.551 ± 0.022 0.397 ± 0.124 0.667 ± 0.219 0.603 ± 0.080 0.526 ± 0.059 0.551 ± 0.022 0.538 ± 0.038

EVERMOON 0.241 0.519 ± 0.130 0.512 ± 0.023 0.562 ± 0.179 0.451 ± 0.046 0.287 ± 0.153 0.373 ± 0.037 0.426 ± 0.065 0.488 ± 0.054 0.543 ± 0.075 0.517 ± 0.039

QOM 0.334 0.775 ± 0.011 0.633 ± 0.017 0.612 ± 0.001 0.618 ± 0.002 0.635 ± 0.061 0.624 ± 0.025 0.633 ± 0.032 0.644 ± 0.009 0.669 ± 0.034 0.647 ± 0.019

SDEX 0.423 0.436 ± 0.030 0.762 ± 0.034 0.720 ± 0.002 0.733 ± 0.028 0.585 ± 0.139 0.643 ± 0.021 0.515 ± 0.031 0.476 ± 0.010 0.536 ± 0.042 0.614 ± 0.020

ETH2x-FLI 0.355 0.666 ± 0.047 0.610 ± 0.059 0.670 ± 0.009 0.688 ± 0.010 0.595 ± 0.083 0.632 ± 0.019 0.663 ± 0.018 0.710 ± 0.037 0.715 ± 0.032 0.729 ± 0.015
BEPRO 0.393 0.783 ± 0.003 0.655 ± 0.038 0.632 ± 0.019 0.610 ± 0.012 0.720 ± 0.028 0.742 ± 0.013 0.762 ± 0.007 0.765 ± 0.024 0.776 ± 0.008 0.782 ± 0.003

XCN 0.592 0.821 ± 0.004 0.668 ± 0.099 0.306 ± 0.092 0.512 ± 0.067 0.754 ± 0.025 0.774 ± 0.062 0.773 ± 0.076 0.827 ± 0.061 0.848 ± 0.000 0.851 ± 0.043
BAG 0.792 0.934 ± 0.020 0.673 ± 0.227 0.196 ± 0.179 0.329 ± 0.040 0.667 ± 0.134 0.802 ± 0.155 0.808 ± 0.095 0.884 ± 0.044 0.898 ± 0.075 0.931 ± 0.028

TRAC 0.400 0.767 ± 0.001 0.712 ± 0.071 0.748 ± 0.000 0.748 ± 0.000 0.734 ± 0.012 0.752 ± 0.009 0.764 ± 0.012 0.776 ± 0.012 0.770 ± 0.007 0.785 ± 0.008
DERC 0.353 0.769 ± 0.040 0.683 ± 0.013 0.703 ± 0.022 0.669 ± 0.009 0.593 ± 0.108 0.617 ± 0.030 0.657 ± 0.009 0.723 ± 0.058 0.756 ± 0.045 0.798 ± 0.027
Metis 0.423 0.812 ± 0.011 0.715 ± 0.122 0.646 ± 0.023 0.688 ± 0.027 0.672 ± 0.103 0.734 ± 0.017 0.730 ± 0.036 0.734 ± 0.016 0.753 ± 0.005 0.760 ± 0.025

REPv2 0.321 0.830 ± 0.001 0.760 ± 0.012 0.725 ± 0.014 0.709 ± 0.002 0.690 ± 0.024 0.725 ± 0.023 0.719 ± 0.022 0.774 ± 0.013 0.773 ± 0.013 0.789 ± 0.020

DINO 0.431 0.801 ± 0.020 0.730 ± 0.195 0.874 ± 0.028 0.868 ± 0.029 0.692 ± 0.140 0.827 ± 0.112 0.794 ± 0.096 0.809 ± 0.087 0.764 ± 0.048 0.779 ± 0.113

HOICHI 0.374 0.714 ± 0.010 0.807 ± 0.047 0.857 ± 0.000 0.856 ± 0.001 0.733 ± 0.101 0.795 ± 0.025 0.759 ± 0.040 0.763 ± 0.026 0.731 ± 0.029 0.765 ± 0.018

MUTE 0.536 0.779 ± 0.004 0.649 ± 0.015 0.593 ± 0.030 0.617 ± 0.010 0.613 ± 0.027 0.627 ± 0.024 0.633 ± 0.024 0.684 ± 0.042 0.657 ± 0.035 0.673 ± 0.013

GLM 0.427 0.769 ± 0.018 0.830 ± 0.029 0.451 ± 0.003 0.501 ± 0.033 0.613 ± 0.115 0.671 ± 0.034 0.746 ± 0.082 0.800 ± 0.062 0.826 ± 0.035 0.831 ± 0.024
MIR 0.327 0.689 ± 0.097 0.750 ± 0.005 0.768 ± 0.026 0.745 ± 0.015 0.497 ± 0.192 0.510 ± 0.015 0.669 ± 0.103 0.800 ± 0.044 0.809 ± 0.022 0.836 ± 0.016
stkAAVE 0.426 0.743 ± 0.006 0.702 ± 0.042 0.368 ± 0.011 0.397 ± 0.022 0.597 ± 0.076 0.571 ± 0.026 0.626 ± 0.023 0.666 ± 0.033 0.696 ± 0.027 0.709 ± 0.022

ADX 0.362 0.784 ± 0.002 0.769 ± 0.018 0.723 ± 0.002 0.718 ± 0.004 0.695 ± 0.003 0.708 ± 0.025 0.680 ± 0.008 0.678 ± 0.019 0.671 ± 0.015 0.679 ± 0.024

Table 6: AP scores of multi-network models, single models, and persistence forecasts on test sets
across three seeds, including comparisons with state-of-the-art models EvolveGCN, GC-LSTM and
GraphPulse. The best performance is shown in bold, and the second best is underlined.

Token Per. Fore. GraphPulse HTGN GCLSTM EvolveGCN MN-2 MN-4 MN-8 MN-16 MN-32 MN-64

WOJAK 0.658 0.863± 0.006 0.812 ± 0.003 0.812 ± 0.000 0.827 ± 0.017 0.832 ± 0.009 0.836 ± 0.015 0.842 ± 0.015 0.850 ± 0.006 0.842 ± 0.008 0.837 ± 0.019

DOGE2.0 0.2 0.966 ± 0.002 0.933 ± 0.010 0.925 ± 0.000 0.927 ± 0.004 0.889 ± 0.031 0.940 ± 0.050 0.936 ± 0.014 0.920 ± 0.014 0.927 ± 0.004 0.921 ± 0.014

EVERMOON 0.469 0.768 ± 0.01 0.585 ± 0.065 0.612 ± 0.200 0.494 ± 0.017 0.442 ± 0.059 0.508 ± 0.045 0.542 ± 0.031 0.530 ± 0.040 0.567 ± 0.053 0.551 ± 0.021

QOM 0.315 0.840 ± 0.002 0.623 ± 0.024 0.592 ± 0.001 0.597 ± 0.002 0.632 ± 0.070 0.617 ± 0.022 0.616 ± 0.007 0.626 ± 0.020 0.648 ± 0.027 0.635 ± 0.027

SDEX 0.212 0.662 ± 0.017 0.825 ± 0.048 0.725 ± 0.002 0.750 ± 0.025 0.723 ± 0.039 0.725 ± 0.021 0.650 ± 0.046 0.628 ± 0.036 0.697 ± 0.064 0.699 ± 0.021

ETH2x-FLI 0.381 0.836 ± 0.015 0.590 ± 0.103 0.735 ± 0.018 0.756 ± 0.013 0.607 ± 0.122 0.621 ± 0.039 0.658 ± 0.057 0.745 ± 0.051 0.737 ± 0.049 0.784 ± 0.007

BEPRO 0.374 0.802 ± 0.001 0.686 ± 0.042 0.637 ± 0.022 0.622 ± 0.009 0.743 ± 0.033 0.769 ± 0.015 0.799 ± 0.016 0.804 ± 0.034 0.815 ± 0.007 0.816 ± 0.014
XCN 0.413 0.793 ± 0.002 0.687 ± 0.085 0.420 ± 0.032 0.555 ± 0.073 0.708 ± 0.065 0.765 ± 0.080 0.781 ± 0.082 0.829 ± 0.057 0.851 ± 0.023 0.861 ± 0.042
BAG 0.504 0.957 ± 0.004 0.523 ± 0.290 0.235 ± 0.041 0.263 ± 0.011 0.474 ± 0.152 0.699 ± 0.193 0.682 ± 0.160 0.784 ± 0.118 0.829 ± 0.119 0.889 ± 0.043

TRAC 0.4 0.767 ± 0.002 0.685 ± 0.074 0.716 ± 0.006 0.722 ± 0.001 0.705 ± 0.013 0.734 ± 0.012 0.741 ± 0.006 0.764 ± 0.015 0.741 ± 0.015 0.758 ± 0.021

DERC 0.39 0.773 ± 0.004 0.532 ± 0.021 0.621 ± 0.053 0.513 ± 0.012 0.505 ± 0.157 0.477 ± 0.021 0.516 ± 0.030 0.639 ± 0.118 0.700 ± 0.080 0.741 ± 0.024

Metis 0.38 0.801 ± 0.003 0.601 ± 0.187 0.575 ± 0.041 0.577 ± 0.006 0.532 ± 0.126 0.645 ± 0.029 0.632 ± 0.056 0.611 ± 0.021 0.647 ± 0.026 0.639 ± 0.077

REPv2 0.376 0.797 ± 0.003 0.758 ± 0.033 0.691 ± 0.006 0.689 ± 0.001 0.610 ± 0.063 0.619 ± 0.019 0.635 ± 0.042 0.705 ± 0.027 0.721 ± 0.004 0.729 ± 0.011

DINO 0.480 0.871 ± 0.026 0.747 ± 0.175 0.881 ± 0.029 0.875 ± 0.024 0.738 ± 0.113 0.842 ± 0.102 0.793 ± 0.094 0.824 ± 0.077 0.753 ± 0.030 0.765 ± 0.119

HOICHI 0.602 0.623 ± 0.003 0.666 ± 0.062 0.650 ± 0.000 0.658 ± 0.011 0.531 ± 0.109 0.677 ± 0.049 0.605 ± 0.037 0.609 ± 0.016 0.551 ± 0.045 0.594 ± 0.012

MUTE 0.38 0.726 ± 0.002 0.615 ± 0.049 0.504 ± 0.012 0.527 ± 0.015 0.579 ± 0.023 0.612 ± 0.041 0.603 ± 0.058 0.675 ± 0.032 0.609 ± 0.021 0.647 ± 0.048

GLM 0.387 0.712 ± 0.047 0.797 ± 0.024 0.513 ± 0.001 0.529 ± 0.013 0.598 ± 0.123 0.651 ± 0.031 0.709 ± 0.088 0.783 ± 0.092 0.819 ± 0.035 0.838 ± 0.032
MIR 0.405 0.766 ± 0.041 0.751 ± 0.003 0.765 ± 0.012 0.752 ± 0.007 0.493 ± 0.212 0.442 ± 0.024 0.645 ± 0.133 0.783 ± 0.064 0.799 ± 0.015 0.811 ± 0.019
stkAAVE 0.207 0.751 ± 0.005 0.750 ± 0.020 0.506 ± 0.003 0.493 ± 0.009 0.662 ± 0.066 0.622 ± 0.011 0.694 ± 0.021 0.730 ± 0.037 0.741 ± 0.020 0.759 ± 0.019
ADX 0.372 0.765 ± 0.003 0.758 ± 0.017 0.666 ± 0.002 0.661 ± 0.017 0.638 ± 0.021 0.667 ± 0.040 0.632 ± 0.010 0.621 ± 0.013 0.622 ± 0.018 0.628 ± 0.012
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Figure 8: Comparative analysis of data selection effects on model performance.

the difference between models that use the same number of datasets diminishes as we move from
models of 2 to 32 datasets. Figure 8b shows the average performance of multi-network models versus
the number of training networks used. We observe that smaller models (i.e., MN-2) have a higher
variance when compared to larger models (i.e., MN-64); in addition, the model performance also
increases from small to large models. For example, MN-64 outperforms MN-32 on 16 out of 20
datasets. While certain datasets, such as ADX, may have a different distribution than other training
datasets, overall, we observe that training with more datasets leads to better performance.
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Table 7: AUC scores of multi-network models, single models, and persistence forecasts on train sets
across three seeds. The best performance is shown in bold.

Token Per. Fore. Single Model MN-64 Token Per. Fore. Single Model MN-64

POOH 0.250 0.904 ± 0.008 0.930 ± 0.002 SPONGE 0.167 0.688 ± 0.032 0.698 ± 0.024
MAHA 0.284 0.892 ± 0.008 0.900 ± 0.001 SWAP 0.468 0.596 ± 0.044 0.684 ± 0.020
PICKLE 0.321 0.841 ± 0.018 0.877 ± 0.024 MIM 0.372 0.671 ± 0.014 0.681 ± 0.016
TURBO 0.789 0.575 ± 0.061 0.867 ± 0.008 TVK 0.376 0.460 ± 0.100 0.679 ± 0.005
DODO 0.346 0.739 ± 0.022 0.851 ± 0.015 OHM 0.652 0.616 ± 0.008 0.674 ± 0.017
KP3R 0.528 0.843 ± 0.028 0.844 ± 0.027 DRGN 0.385 0.570 ± 0.067 0.672 ± 0.008
Mog 0.333 0.435 ± 0.042 0.833 ± 0.147 aDAI 0.434 0.521 ± 0.042 0.668 ± 0.012
REP 0.360 0.786 ± 0.026 0.823 ± 0.063 FEG 0.442 0.484 ± 0.034 0.601 ± 0.002
POLS 0.393 0.708 ± 0.021 0.822 ± 0.013 STARL 0.219 0.463 ± 0.028 0.515 ± 0.037
AUDIO 0.441 0.802 ± 0.005 0.821 ± 0.025 crvUSD 0.291 0.367 ± 0.076 0.367 ± 0.060
LINA 0.428 0.773 ± 0.014 0.814 ± 0.016 RSR 0.542 0.661 ± 0.075 0.683 ± 0.028
ORN 0.333 0.704 ± 0.018 0.812 ± 0.025 INU 0.292 1.000 ± 0.000 1.000 ± 0.000
SUPER 0.432 0.744 ± 0.036 0.810 ± 0.002 RLB 0.273 0.981 ± 0.000 0.846 ± 0.038

HOP 0.415 0.284 ± 0.014 0.810 ± 0.028 sILV2 0.581 0.887 ± 0.008 0.857 ± 0.035

RARI 0.440 0.753 ± 0.033 0.809 ± 0.012 PSYOP 0.403 0.863 ± 0.008 0.863 ± 0.008
CRU 0.431 0.719 ± 0.078 0.808 ± 0.037 RGT 0.396 0.852 ± 0.028 0.829 ± 0.009

ShibDoge 0.514 0.781 ± 0.042 0.807 ± 0.006 TNT 0.469 0.811 ± 0.046 0.797 ± 0.009

YFII 0.315 0.794 ± 0.004 0.804 ± 0.018 ARC 0.532 0.800 ± 0.014 0.746 ± 0.049

CELR 0.495 0.729 ± 0.038 0.788 ± 0.026 CMT 0.262 0.764 ± 0.054 0.746 ± 0.016

LQTY 0.366 0.747 ± 0.057 0.782 ± 0.010 BOB 0.105 0.748 ± 0.004 0.623 ± 0.059

BITCOIN 0.382 0.544 ± 0.006 0.782 ± 0.179 PRE 0.481 0.732 ± 0.008 0.663 ± 0.013

AIOZ 0.390 0.745 ± 0.030 0.769 ± 0.003 IOTX 0.366 0.726 ± 0.020 0.720 ± 0.036

RFD 0.277 0.718 ± 0.006 0.762 ± 0.023 LUSD 0.372 0.719 ± 0.014 0.681 ± 0.022

ALBT 0.317 0.603 ± 0.265 0.758 ± 0.009 aUSDC 0.513 0.719 ± 0.019 0.687 ± 0.032

GHST 0.344 0.737 ± 0.047 0.757 ± 0.005 QSP 0.431 0.693 ± 0.008 0.680 ± 0.011

Yf-DAI 0.434 0.745 ± 0.008 0.755 ± 0.010 ANT 0.469 0.654 ± 0.064 0.648 ± 0.019

DPI 0.291 0.751 ± 0.026 0.754 ± 0.012 bendWETH 0.490 0.649 ± 0.039 0.508 ± 0.018

INJ 0.444 0.750 ± 0.042 0.752 ± 0.066 steCRV 0.360 0.636 ± 0.133 0.537 ± 0.016

LADYS 0.324 0.210 ± 0.007 0.744 ± 0.022 PUSH 0.450 0.617 ± 0.023 0.610 ± 0.052

cDAI 0.519 0.688 ± 0.016 0.733 ± 0.022 0x0 0.383 0.550 ± 0.021 0.484 ± 0.011

NOIA 0.359 0.616 ± 0.010 0.719 ± 0.018 SLP 0.415 0.517 ± 0.028 0.484 ± 0.002

WOOL 0.507 0.630 ± 0.016 0.707 ± 0.125 BTRFLY 0.127 0.851 ± 0.019 0.763 ± 0.074
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G NODE OVERLAP ANALYSIS

We analyze the overlap of nodes between different datasets and within each dataset, which helps
demonstrate the highly dynamic nature of our datasets. Specifically, we compared the nodes in
each test network with those in the training networks and calculated the average overlap. As shown
in Table 8, on average, only 2% of the nodes are common between the training and test datasets,
highlighting the rapidly changing structure of these networks. Furthermore, we analyzed the node
overlap within each test dataset by splitting it into the standard train-validation-test setup. We
compared the nodes in the 70% training snapshots with the nodes in the final 15% test snapshots, and
on average, only 4% of the nodes overlapped. This indicates the highly inductive nature of our model
and emphasizes the zero-shot challenge it addresses in this domain. These findings underscore the
importance of tackling such dynamic and evolving challenges in temporal graph learning.

Table 8: Overlapping Nodes Statistics

Dataset
Average Node in Common

vs Train Set of MN-64 (± std)
Train vs Test Snapshots

Node in Common

MIR 0.021 ± 0.019 0.007
DOGE2.0 0.026 ± 0.033 0.015
MUTE 0.033 ± 0.020 0.045
EVERMOON 0.023 ± 0.033 0.043
DERC 0.020 ± 0.020 0.031
ADX 0.024 ± 0.020 0.018
HOICHI 0.023 ± 0.013 0.053
SDEX 0.024 ± 0.019 0.141
BAG 0.019 ± 0.017 0.107
XCN 0.016 ± 0.010 0.034
ETH2x-FLI 0.038 ± 0.041 0.028
stkAAVE 0.026 ± 0.027 0.057
GLM 0.014 ± 0.015 0.047
QOM 0.018 ± 0.014 0.044
WOJAK 0.025 ± 0.032 0.018
DINO 0.018 ± 0.014 0.049
Metis 0.020 ± 0.013 0.041
REPv2 0.016 ± 0.017 0.013
TRAC 0.015 ± 0.016 0.031
BEPRO 0.023 ± 0.022 0.021
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