
Under review as a conference paper at ICLR 2024

ON THE GLOBAL CONVERGENCE OF NATU-
RAL ACTOR-CRITIC WITH NEURAL NETWORK
PARAMETRIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the empirical effectiveness of natural actor-critic (NAC) algorithms, their
theoretical underpinnings remain relatively unexplored, especially with neural
network parameterizations. In the existing literature, the non-asymptotic sample
complexity bounds for NAC hold only when the critic is either tabular or are repre-
sented by a linear function. In this work, we relax such assumptions for NAC and
utilize multi-layer neural network parameterization of the critic and an arbitrary
smooth function for the actor. We establish the non-asymptotic sample complexity
bounds of Õ

(
1

ϵ4(1−γ)4

)
for the global convergence of NAC algorithm. We ob-

tain this result using our unique decomposition of the error incurred at each critic
step. The critic error is decomposed into the error incurred in fitting the sampled
data, the error incurred due to the lack of knowledge of the transition matrix as
well as the error incurred due to the limited approximation power of the class of
neural networks. In contrast to the existing works for NAC with neural network
parameterization of the critic, our analysis does not require i.i.d sampling.

1 INTRODUCTION

The use of neural networks in actor-critic (AC) algorithms is widespread in various machine learning
applications, such as games (Vinyals et al., 2017; Bonjour et al., 2022), robotics (Morgan et al.,
2021), autonomous driving (Kiran et al., 2022), ride-sharing (Al-Abbasi et al., 2019), networking
(Geng et al., 2020), and recommender systems (Li et al., 2020). AC algorithms sequentially update
the estimate of the actor (policy) and the critic (value function) based on the data collected at each
iteration, as described in Konda & Tsitsiklis (1999). An empirical and theoretical improvement
of the AC, known as natural actor-critic (NAC), was proposed in Peters & Schaal (2008). NAC
replaced the stochastic gradient step of the actor with the natural gradient descent step described
in Kakade (2001b) based on the theory of Rattray et al. (1998). The finite-time or non-asymptotic
sample complexity bounds for NAC are limited to settings the critic has a linear parametrization (Xu
et al., 2020a). However, since linear parametrization is quite restrictive, in practice mostly non-linear
neural network-based parameterizations for both actor and critic are used as in Wang et al. (2021a).
Despite the widespread use in practice, no finite-time sample complexity bounds are available for
the setting when neural networks (NNs) represent the critic in the NAC algorithm.

The linear parametrization allows for a closed-form update for both the actor and the critic update
steps. On the other hand, no such closed-form expressions are available for the NAC algorithm
with non-linear parametrization. In recent work by Fu et al. (2020), a finite time bound is derived
for linear function approximation but for NN parametrization, only an asymptotic convergence is
established, moreover, this work requires i.i.d sampling. Wang et al. (2019) establishes similar
asymptotic bounds where both the actor and critic are represented using a 2-layer neural network.
Hence, we ask this question

Is it possible to obtain non-asymptotic sample complexity bounds for global convergence of the
natural actor-critic algorithm with a multi-layer neural network parametrization of the critic?

We answer this question by deriving precise non-asymptotic sample complexity bounds for the
global convergence of the NAC algorithm. Our approach relies on decomposing the error incurred

1

Under review as a conference paper at ICLR 2024

Table 1: This table summarizes the sample complexities of different natural actor-critic algorithms.
Our result is the first to provide sample complexity results of NAC for a general MDP setting with
neural network (NN) parametrization for the critic.

References Actor
parametrization

Critic
parametrization

Sample
Complexity

(Xu et al., 2020b) Linear Linear Õ(ϵ−4(1− γ)−9)

(Khodadadian et al., 2021) Linear Linear Õ(ϵ−3(1− γ)−11)

(Xu et al., 2020a) Linear Linear Õ(ϵ−2(1− γ)−4)
(Wang et al., 2019) 2-layer NN 2-layer NN Asymptotic

(Fu et al., 2020) Multi-layer NN Multi-layer NN Asymptotic
This work Multi-layer NN Multi-layer NN Õ(ϵ−4(1− γ)−4)

at each step of the NAC algorithm into the errors at the actor and critic steps separately. The main
novelty in our approach is that the error incurred in the critic step is decomposed into the error in
fitting the observed data, the error incurred due to the lack of knowledge of the transition matrix
and the error due to finite approximation power of the class of neural networks. This contrasts the
approach in Fu et al. (2020) where both the critic and actor optimizations are analyzed as stochastic
gradient descent problems; thus, only an asymptotic error bound is possible with their approach.
Hence, we summarize our contributions as follows.

• We derive a non-asymptotic sample complexity bound of Õ(ϵ−4(1 − γ)−4) for the global
convergence of the natural actor-critic algorithm with neural network parameterizations for
the critic and the actor. To achieve that, our two main novelties in the convergence analysis
are highlighted next.

• Building upon the insights presented in Agarwal et al. (2021), we leverage the inherent
smoothness property of the actor parametrization to derive an upper bound on the estima-
tion error of the optimal value function. This upper bound is expressed in terms of the error
incurred in attaining the compatible function approximation term, as elucidated in Sutton
et al. (1999) and the error incurred in estimating the action value function used to solve the
compatible function approximation.

• The error incurred at the critic step in fitting the data obtained through sampling is upper
bounded using results from Allen-Zhu et al. (2019). The error incurred due to the lack of
knowledge of the transition matrix is bounded in terms of the Radamacher complexity of
the class of neural networks. This approach allows us to achieve the first non-asymptotic
sample complexity bound for NAC with the critic parameterised by a multi layer neural
network. It also allows us to have a milder assumption on the error incurred due to the
limited approximation the function class representing the critic as compared to other finite
time convergence results such as Xu et al. (2020a). Finally, we do not need to assume i.i.d
sampling in this approach.

2 RELATED WORKS

Natural Policy Gradient. The problem of the non-convexity of the critic can be avoided if we use
the natural policy gradient algorithm (Kakade, 2001b) where instead of maintaining a parameterized
estimate of the critic, we obtain an estimate (or multiple estimates) at each iteration through a Monte
Carlo estimate. In such a case, sample complexity estimates are possible without the assumption of
linear function approximation of the value function. Agarwal et al. (2021) obtained a sample com-
plexity bound of Õ

(
1

ϵ4(1−γ)8

)
, which was improved to Õ

(
1

ϵ2(1−γ)7

)
in (Yuan et al., 2022) with

the restriction of the actor being represented by a log-linear class of functions. Further improvement
was obtained in (Liu et al., 2020b) with a sample complexity of Õ

(
1

ϵ3(1−γ)6

)
and also did not re-

quire the restriction to log-linear class of functions to represent the actor. In spite of obtaining finite
time sample complexity bounds, the Natural Policy Gradient algorithms suffer from high variance
due to the Monte Carlo estimate. Additionally, each estimate of the critic requires on average a
sample of size

(
1

1−γ

)
, thus these algorithms are not sample efficient in terms of γ. Additionally the

2

Under review as a conference paper at ICLR 2024

error incurred due to the Monte Carlo sampling of the critic as well as the lack of expressability of
the class of functions representing the policy is represented as a constant.

Actor-Critic Methods. First conceptualized in Sutton (1988), aim to combine the benefits of the
policy gradient methods and Q-learning based methods. The policy gradient step in these methods
is replaced by a Natural Policy Gradient proposed in (Kakade, 2001b) to obtain the so-called Natural
Actor Critic in (Peters et al., 2005). Sample complexity results for Actor Critic were first obtained
for MDP with finite states and actions in (Williams & Baird, 1990), and more recently in (Lan, 2023;
Zhang et al., 2020). Finite time convergence for natural actor critic using a linear MDP assumption
has been obtained in (Chen & Zhao, 2022; Khodadadian et al., 2021; Xu et al., 2020b) with the
best known sample complexity of Õ

(
1

ϵ2(1−γ)4

)
(Xu et al., 2020a). Finite time sample complexity

results are however, not available for Natural Actor Critic setups for general MDP where neural
networks are used to represent the critic. (Fu et al., 2020) obtained asymptotic results for a variant
of the Natural Actor Critic using a PPO update for the policy gradient step, but it forgoes the use of
the ‘clipped surrogate objective’, which makes the algorithm unsuitable practically. The key related
works here are summarized in Table 1.

3 PROBLEM FORMULATION

We consider a discounted Markov Decision Process (MDP) given by the tuple M :=
(S,A, P,R, γ), where S is a bounded measurable state space, A is the finite set of actions.
P : S × A → P(S) is the probability transition kernel1,R : S × A → P([0, Rmax]) is the re-
ward kernel on the state action space with Rmax being the absolute value of the maximum reward,
and 0 < γ < 1 is the discount factor. A policy π : S → P(A) maps a state to a probability
distribution over the action space. The action value function for a given policy π is given by

Qπ(s, a) = E

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (1)

where r(st, at) ∼ R(·|st, at), at ∼ π(·|st) and st+1 ∼ P (·|st, at) for t = {0, · · · ,∞}. For a
discounted MDP, we define the optimal action value functions as

Q∗(s, a) = sup
π
Qπ(s, a), ∀(s, a) ∈ S ×A. (2)

A policy that achieves the optimal action-value functions is known as the optimal policy and is de-
noted as π∗. Similarly, we can define the value function as V π(s) = E [

∑∞
t=0 γ

tr′(st, at)|s0 = s] ,
and from the definition ofQπ(s, a), it holds that V π(s) = Ea∼π [Q

π(s, a)]. Similarly, we can define
the optimal value function as V ∗(s) = supπ V

π(s), ∀s ∈ S.

We define ρπν (s) as the stationary state distribution induced by the policy π starting at state
distribution ν and ζπν (s, a) is the corresponding stationary state action distribution defined as
ζπν (s, a) = ρπν (s)π(a|s). We further define V π(ν) = Es0∼ν [V

π(s0)], where ν is an initial state
distribution. We can define the visitation distribution as dπs0(s) = (1− γ)

∑∞
t=0 γ

tPrπ(st = s|so).
Here Prπ(st = s|so) denotes the probability the state at time t is s given a starting state of so.
Hence, we can write dπρ (s) = Eso∼ρ[d

π
s0(s)]. Finally for any measurable function f : S × A → R

and a measure ν defined on S ×A we define E(f)ν =
∫
S×A fdν,.

We additionally define the bellman operator for a policy π on a function Q : S ×A → R is defined
as

(TπQ)(s, a) = E(r(s, a)) + γ

∫
Q(s′, π(s′))P (ds′|s, a) (3)

Further, operator Pπ is defined as

PπQ(s, a) = E[Q(s′, a′)|s′ ∼ P (·|s, a), a′ ∼ π(·|s′)] (4)

This is the one step Markov transition operator for policy π for the Markov chain defined on S ×A
with the transition dynamics given by St+1 ∼ P (·|St, At) andAt+1 ∼ π(·|St+1). It defines a distri-
bution on the state action space after one transition from the initial state. Similarly, Pπ1Pπ2 · · ·Pπm

is the m-step Markov transition operator following policy πt at steps 1 ≤ t ≤ m.
1For a measurable set X , let P(X) denote the set of all probability measures over X .

3

Under review as a conference paper at ICLR 2024

4 NATURAL ACTOR CRITIC ALGORITHM OVERVIEW

We now describe our natural actor-critic (NAC) algorithm. In a natural policy gradient algorithm
(Kakade, 2001a), the policy is parameterized as {πλ, λ ∈ Λ} and Λ ⊂ Rd where d is a positive
integer. We have K total iterations of the Algorithm. At iteration k, the policy parameters are
updated using a natural policy gradient step given by

λk+1 = λk + ηF †
ν (λ)∇λV

πλ(ν), (5)
From the policy gradient theorem in (Sutton et al., 1999) we have

∇λk
V πλk (ν) = Es,a(∇log(πλk

)(a|s)Qπλk (s, a)), (6)

Fν(λk) = Es,a

[
∇ log πλk

(a|s) (∇t log πλk
(a|s))⊤

]
, (7)

where s ∼ d
πλk
ν , a ∼ πλk

(.|s). From Sutton et al. (1999), the principle of compatible function
approximation implies that we have

F †
ν (λk)∇λk

V πλk (ν) =
1

1− γ
w∗

k (8)

w∗
k = argmin

w
Es,a(A

πλk (s, a)− w∇λ log(πλk
(a|s)))2, (9)

and s ∼ d
πλk
ν , a ∼ πλk

(.|s) Here (Aπλk (s, a) = Qπλk (s, a) − V πλk (s)) and where F † denotes
the Moore-Penrose pseudo-inverse of the matrix F . For natural policy gradient algorithms such
as in Agarwal et al. (2021) and Liu et al. (2020b) an estimate of Qπλk (and from that an estimate
of Aπλk (s, a)) is obtained through a sampling procedure that requires on average

(
1

1−γ

)
for each

sample of Qπλk (and thus Aπλk). For the natural actor-critic setup, we maintain a parameterized
estimate of the Q-function, which is updated at each step and is used to approximate Qπλk . In our
case, a neural network with L layers and at least m neurons per layer is used to represent the Q
function, at each iteration k of the algorithm, an estimate of its parameters is obtained by solving an
optimization of the form

argmin
θ∈Θ

Es,a(Q
πλk −Qθ)

2, (10)

Where (s, a) ∼ ζ
πλk
ν , Θ is the space of parameters for the neural networks and Qθ is the neural

network corresponding to the parameter θ. This step is known as the critic step. A DQN like
algorithm to get an estimate of Qπλk , as is done in practical implementations of the Natural Actor
Critic like Wang et al. (2021a). We summarize the Natural Actor-Critic approach in Algorithm 1. It
has one main for loop indexed by the iteration counter k. The first inner for loop indexed by j is the
loop where the critic step is performed. At a fixed iteration k of the main for loop and iteration j of
the first inner for loop, we solve the following optimization problem

argmin
θ∈Θ

Es,a(T
πλkQk,j−1(s, a)−Qθ(s, a))

2, (11)

This is equivalent to the target network feature of the Deep Q Network(DQN) algorithm. For the
inner loop at iteration j, the target is fixed to be TπλkQk,j−1(s, a). The first inner for loop has a
nested inner for loop indexed by i where the optimization step for the current target is performed.
The target network is updated at the end of the first inner loop. We note that the target network
technique is applied in most real-world applications of natural actor critic with neural network critic
as in (Wei et al., 2019). The first inner loop controls how many times the target network is updated.
To get rid of the Markov dependence between the samples, the replay buffer technique is used
wherein we randomly sample from the collected data instead of using it sequentially. For the sake of
generality, we have not used this as our analysis will account for the Markov dependence between
the samples.

The estimate of w∗
k is obtained in the second inner for loop of Algorithm equation 1 indexed by i

where a gradient descent is performed for the loss function of the form given in equation 9 using
the state action pairs sampled in the first inner for loop. Note that we do not have access to the
true advantage function required for the critic update. Thus, we use the estimate of the Q function
obtained at the end of the first inner for loop to calculate the advantage function. After obtaining
our estimate of the minimizer of equation 9, we update the policy parameter using the stochastic
gradient update step. Here, the state action pairs used are the same we sampled in the first inner for
loop.

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Natural Actor Critic with Neural Parametrization
Input: S, A, γ, Time Horizon K ∈ Z , Updates per time step J ∈ Z ,starting state sampling
distribution ν, Actor step sizes βi,k,∀k ∈ {1, · · · ,K}, i ∈ {1, · · · , n.J}, Critic step size α, policy
gradient step size η,

1: Initialize: λ0 = {0}d,
2: for k ∈ {1, · · · ,K} do
3: Initialize X = ∅, Qk(s, a) = 0 ∀(s, a) ∈ S ×A
4: for j ∈ {1, · · · , J} do
5: Sample s1 from ν and a1 by following πλk

6: Initialize θ0 using a standard Gaussian.
7: for i ∈ {1, · · · , n} do
8: Sample the tuple si+1, ai+1 by following the policy πλk

9: Set yi = r
′
(si, ai) + γQk(si+1, ai+1),

10: θi = θi−1 + α(yi −Qθi(si, ai))∇Qθi(si, ai)
11: end for
12: Qk = Qθn
13: Append the n (si, ai) pairs to the data-set X
14: end for
15: Initialize w0 = 0d

16: for i ∈ {1, · · · , |X|} do
17: Ak(si, ai) = Qk(si, ai)−

∑
a∈A πλk

(a|si)Qk(si, a)

18: wi = wi−1 − βi,k

(
wi·∇λ log πλk

(ai|si)−Ak(si, ai)
)
∇λ log πλk

(ai|si)
19: end for
20: Update λk+1 = λk + ηw|X|
21: end for

Output: πλK+1

5 GLOBAL CONVERGENCE RESULT

5.1 ASSUMPTIONS

Before stating the main result, we formally describe the required assumptions in this subsection.

Assumption 1. For any λ1, λ2 ∈ Λ and (s, a) ∈ (S ×A) we have

∥∇log(πλ1
)(a|s)−∇log(πλ2

)(a|s)∥2 ≤ β∥λ1 − λ2∥2 (12)

where β > 0.

Such assumptions have been utilized in prior policy gradient based works such as Agarwal et al.
(2021); Liu et al. (2020b) and finite time analysis of NAC using linear critic such as Xu et al.
(2020a). This assumption is satisfied for the softmax policy parameterization

πλ(a|s) =
exp(fλ(s, a))∑

a′∈A exp(fλ(s, a
′))

(13)

where fλ(s, a) is a neural network with a smooth activation function. This is the most common form
of the policy used in practice (Wei et al., 2019; Wang et al., 2021a). This assumption is also satisfied
for Gaussian (Doya, 2000) and Boltzmann policies (Konda & Tsitsiklis, 1999). Thus our analysis is
more general than Fu et al. (2020) which is restricted to energy-based policies.

Assumption 2. For any λ ∈ Λ, let πλ be the corresponding policy, ν be the starting distribution over
the state space, and let ζπλ

ν be the corresponding stationary state action distribution. We assume
that there exists a positive integer p such that for every positive integer τ

dTV (P((sτ , aτ) ∈ ·|(s0, a0) = (s, a)), ζπλ
ν (·)) ≤ pρτ ,∀(s, a) ∈ S ×A (14)

This assumption implies that the Markov chain is geometrically mixing. Such assumption is widely
used both in the analysis of stochastic gradient descent literature such as Doan (2022); Sun et al.

5

Under review as a conference paper at ICLR 2024

(2018), as well as finite time analysis of RL algorithms such as Xu et al. (2020a). In Fu et al. (2020),
it is assumed that data can be sampled from the stationary distribution of a given policy. We note
that this is not possible in practice. Instead, we can only sample from a Markov chain which has a
stationary distribution as the desired distribution to sample from.
Assumption 3. For any fixed λ ∈ Λ and θ ∈ Θ we have

min
w

E
s,a∼ζ

πλk
ν

(
Aθ(s, a)− w⊤∇ log(πλ)(a|s)

)2 ≤ ϵbias (15)

Similar assumptions are made in Fu et al. (2020), where this error is assumed to be zero when the
critic has a linear function parameterization. In policy gradient works such as Liu et al. (2020b), the
assumption replaces the parameterised estimate of the advantage function Aθ (which is known to
us) with the true advantage function for policy πλ denoted by Aπλ (which is unknown to us). Doing
so ignores the error that is incurred due to a mismatch in the actor and critic parameterization which
is a critical aspect of a successful implementation of natural actor-critic algorithms. In Xu et al.
(2020a), this assumption is implicit as this term is defined as a constant denoted by ζactorapprox.
Assumption 4. For any fixed θ ∈ Θ and λ ∈ Λ we have

min
θ1∈Θ

E
s,a∼ζ

πλk
ν

(Qθ1(s, a)− TπλQθ(s, a))
2 ≤ ϵapprox (16)

This assumption is key to the validity of the DQN step. Note that in works such as Xu et al. (2020a),
an upper bound is placed on the approximation error when the function class (in that case linear
functions) are used to approximate the unknown true value function (see term denoted as ζapproxcritic).
Our assumption is weaker as we only require the class of neural network to be able to approximate
the function obtained by applying the bellman operator to a neural network belonging to the same
class.

5.2 MAIN RESULT

Theorem 1. Suppose Assumptions 1-4 hold and we have α = Θ
(

1
poly(n,L).m

)
, βi,k = 2

µk(i+1)

where µk is the strong convexity parameter of the loss function in equation 9, η = 1√
K

and m ≥
O(K.J.δ−1) then from Algorithm 1 we obtain with probability at least 1− δ

min
k≤K

(V ∗(ν)− V πλk (ν)) ≤O
(

1√
K(1− γ)

)
+

1

K(1− γ)

K∑
k=1

(
O
(
log(J ·n)
J ·n

)
+O(γJ)

)

+
1

K(1− γ)

K∑
k=1

J−1∑
j=0

(
O
(
1− Ω

(αm
n2

))n
+O

(
1√
n

))
+

1

1− γ

(
O(ϵbias) +O(

√
ϵapprox)

)
. (17)

Hence, for K = O(ϵ−2(1− γ)−2), J = O
(
log
(
1
ϵ

))
, n = Õ

(
ϵ−2(1− γ)−2

)
, m ≥ O(ϵ−2.δ−1)

min
k≤K

(V ∗(ν)− V πλk (ν)) ≤ ϵ+
1

1− γ

(
ϵbias + (

√
ϵapprox)

)
, (18)

which implies a sample complexity of K · J · n = Õ
(
ϵ−4(1− γ)−4

)
.

Remark 1: We note that there are seven terms on the right-hand side of equation 17. The first term is
a consequence of the smoothness property of the actor parameterization. The second term is the error
incurred in estimating w∗

k. The third term is the error incurred due to the inherent randomness of the
system during each critic update step, in Farahmand et al. (2010) this was known as the statistical
error. The fourth term on the right is the error incurred in fitting the data at each fixed target in the
critic step. The fifth term on the right is the error incurred due to a lack of knowledge of the transition
matrix. The sixth term ϵbias represents the minimum possible attainable value of the loss function in
the actor step. It is also a measure of how compatible are the architecture of the actor and critic. In
Wang et al. (2019) it is shown that for an over-parameterized neural network used to represent both

6

Under review as a conference paper at ICLR 2024

the actor and critic this error is zero. The term ϵapprox is a measure of how well the class of neural
networks we use to represent the critic can approximate a function obtained by applying the bellman
operator to a function from that same class. Works such as Fan et al. (2020); Chen & Jiang (2019)
set this error to zero. The requirement on the minimum number of neurons m in each layer of the
critic network can be be thought of as a consequence of the universal approximation property which
states that sufficiently wide neural networks(even those with a single hidden layer) can approximate
any continuous function with arbitrary accuracy.

Remark 2: Our sample complexity when compared to the existing state of the art sample complex-
ity bound for natural policy gradient with non-linear policy parameterization of Õ

(
ϵ−3(1− γ)−6

)
achieved in Liu et al. (2020a) reveals a key insight. Note that our bound is worse off in terms of ϵ
by a factor of ϵ−1. This is due to the fact that we have to obtain an estimate of the critic parameters
while the natural policy gradient does not. We can see this in our result from the fifth term on the
right hand side of equation 17 which is O(n−

1
2) which is from the critic optimization step. The nat-

ural policy gradient algorithm requires on average (1− γ)−1 state action samples for every sample
of Q(s, a). This is reflected in our results as our error bounds are better in terms of (1 − γ) by a
factor of (1− γ)−2. We discuss this detail in Appendix E.

Remark 3: Note the presence of the probability term for our convergence result. This term is present
due to the fact that the optimization for the critic step is non-convex, hence convergence can only
be guaranteed with a high probability. We show in the Appendix F that if the critic is represented
by a two layer neural network with ReLU activation, using the convex reformulation as laid out in
Mishkin et al. (2022), a deterministic upper bound on the error can be obtained.

6 PROOF SKETCH OF THEOREM 1

The proof is split into two stages. In the first stage, we demonstrate how the difference in value
functions is upper bounded as a function of the errors incurred till the final step K. The second part
is to upper bound the different error components.

Upper Bounding Error in Separate Error Components: We use the smoothness property as-
sumed in Assumption 1 to obtain a bound on the expectation of the difference between our estimated
value function and the optimal value function.

min
k∈{1,··· ,K}

V ∗(ν)− V πλK (ν) ≤ log(|A|)
Kη(1− γ)

+
ηβW 2

2(1− γ)
+

1

K

K∑
k=1

errk
1− γ

, (19)

where

errk = Es∼dπ∗
ν ,a∼π∗(.|s)(|Aπλk − wk(s, a)∇log(πλk

(a|s))|), (20)

where W is a constant such that ||wk||2 ≤W ∀k, where k denotes the iteration of the outer for loop
of Algorithm 1. We split the term in equation 20 into the errors incurred due to the actor and critic
step as follows

errk = Es,a(|Aπλk − wk∇log(πλk
(a|s))|) (21)

≤ Es,a(|Aπλk −Ak,J |)︸ ︷︷ ︸
I

+Es,a(|Ak,J − wk∇log(πλk
(a|s))|)︸ ︷︷ ︸

II

. (22)

Note that I is the difference between the true Aπλk function corresponding to the policy πλk
and

Ak,J is our estimate. This estimation is carried out in the first inner for loop of Algorithm 1. Thus I
is the error incurred in the critic step. II is the error incurred in the estimation of the actor update.
This is incurred in the stochastic gradient descent steps in the second inner for loop of Algorithm 1.

Upper Bounding Error in Critic Step: For each iteration k of the Algorithm 1. We show that
minimizing I is equivalent to solving the following problem

argmin
θ∈Θ

Es,a(Q
πλk −Qθ)

2, (23)

7

Under review as a conference paper at ICLR 2024

where (s, a) ∼ ζ
πλk
ν . We recreate the result for the value function from Lemmas 2 of Munos (2003)

for the action value function Q to obtain

Es,a|Qπλk −Qk,J | ≤
J−1∑
j=1

γJ−j−1(Pπλk)J−j−1E|ϵk,j |+ γJ
(
Rmax

1− γ

)
, (24)

where ϵ = TπλkQk,j−1 −Qk,j is the Bellman error incurred at iteration j of the first inner for loop
and iteration k of the outer for loop of Algorithm 1. The first term on the right hand side is called
as the algorithmic error, which depends on how good our approximation of the Bellman error is.
The second term on the right hand side is called as the statistical error, which is the error incurred
due to the random nature of the system. Intuitively, the Bellman error depends on how much data is
collected at each iteration, how efficient our solution to the optimization step is to the true solution,
and how well our function class can approximate TπλkQk,j−1. Building upon this intuition, we split
ϵ into four different components as follows.

ϵk,j = TπλkQk,j−1 −Qk,j

= TπλkQk,j−1 −Q1
k,j︸ ︷︷ ︸

ϵ1k,j

+Q1
k,j −Q2

k,j︸ ︷︷ ︸
ϵ2k,j

+Q2
k,j −Q3

k,j︸ ︷︷ ︸
ϵ3k,j

+Q3
k,j −Qk,j︸ ︷︷ ︸

ϵ4k,j

= ϵ1k,j + ϵ2k,j + ϵ3k,j + ϵ4k,j , (25)

We now define the terms introduced above. We first define the various Q-functions which we can
approximate in decreasing order of the accuracy and then define the corresponding errors.

We start by defining the best possible approximation of the function TπλkQk,j−1 possible from the
class of neural networks with smooth activation functions, with respect to the expected square from
the true ground truth TπλkQk,j−1.
Definition 1. For iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, we define

Q1
k,j = argmin

Qθ,θ∈Θ
E(Qθ(s, a)− TπλkQk,j−1(s, a))

2, (26)

where (s, a) ∼ ζ
πλk
ν (s, a).

Note that we do not have access to the transition probability kernel P , hence we do not know Tπλk .
To alleviate this, we use the observed next state and actions instead. Using this, we define Q2

k,j as,
Definition 2. For iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, we define

Q2
k,j = argmin

Qθ,θ∈Θ
E(Qθ(s, a)− (r′(s, a) + γQk,j−1(s

′, a′))2, (27)

where (s, a) ∼ ζ
πλk
ν (s, a), s′ ∼ P (s′|s, a), r′(·|s, a) ∼ R(·|s, a) and a

′ ∼ πλk(.|s′)
To obtain Q2

k,j , we still need to compute the true expected value in Equation 27. However, we still
do not know the transition function P . To remove this limitation, we use sampling. Consider the
set of n state-action pairs sampled by starting from a state action distribution ν and following policy
πλk , using which we define Q3

k,j as,
Definition 3. For the set of n state action pairs sampled in iteration k of the outer for loop and
iteration j of the first inner for loop of Algorithm 1 we define

Q3
k,j = argmin

Qθ,θ∈Θ

1

n

n∑
i=1

(
Qθ(si, ai)−

(
r(si, ai) + γQk,j−1(si+1, ai+1)

))2
, (28)

Q3
k,j is the best possible approximation for Q-value function which minimizes the sample average

of the square loss functions with the target values as
(
r′(si, ai) + γQk,j−1(si+1, ai+1)

)
. In other

words this is the optimal solution for fitting the observed data.

We now defined the errors using theQ functions just defined. We start by defining the approximation
error which represents the difference between the function TπλkQj−1 and its best approximation
possible from the class of neural networks used for critic parametrization denoted by Q1

k,j .

8

Under review as a conference paper at ICLR 2024

Definition 4 (Approximation Error). For a given iteration k of the outer for loop and iteration j of
the first inner for loop of Algorithm 1, we define, ϵ1k,j = TπλkQk,j−1 − Q1

k,j , where Qk,j−1 is the
estimate of the Q function at iteration k of the outer for loop and iteration j− 1 of the first inner for
loop of Algorithm 1.

This error is a measure of the approximation power of the class of neural networks we use to repre-
sent the critic. We upper bound this error in lemma 3 in Appendix B.

We also define Estimation Error which denotes the error between the best approximation of
TπλkQk,j−1 possible from the class of neural networks denoted by Q1

k,j and the minimizer of the
loss function in equation 27 denoted Q2

k,j .

Definition 5 (Estimation Error). For a given iteration k of the outer for loop and iteration j of the
first inner for loop of Algorithm 1, we define, ϵ2k,j = Q1

k,j −Q2
k,j .

We demonstrate that this error is zero in lemma 4 in Appendix B.

We now define Sampling error which denotes the difference between the minimizer of expected
loss function in equation 27 denoted by Q2

k,j and the minimizer of the empirical loss function in
equation 28 denoted by Q3

k,j . We can see that intuitively, the more samples we have the closer these
two functions will be. We use Rademacher complexity results to upper bound this error.
Definition 6 (Sampling Error). For a given iteration k of the outer for loop and iteration j of the
first inner for loop of Algorithm 1, we define, ϵ3k,j = Q3

k,j −Q2
k,j .

An upper bound on this error is established in 5 in Appendix B.

Lastly, we define optimization error which denotes the difference between the minimizer of the
empirical square loss function, Qk3 , and our estimate of this minimizer that is obtained from the
gradient descent algorithm.
Definition 7 (Optimization Error). For a given iteration k of the outer for loop and iteration j of
the first inner for loop of Algorithm 1, we define, ϵ4k = Q3

k,j − Qk,j . Here Qk,j is our estimate of
the Q function at iteration k of Algorithm 1 and iteration j of the first inner loop of Algorithm 1.

The upper bound on these error terms is established in lemma 6 in Appendix B.

Upper Bounding Error in Actor Step: Note that we require the minimization of the term
Es,a(Ak,J − wk∇log(πλk

(a|s))). Here the expectation is with respect to stationary state action
distribution corresponding to πλk

. But we do not have samples of states action pairs from the sta-
tionary distribution with respect to the policy πλk

, we only have samples from the Markov chain
induced by the policy πλk

. We thus refer to the theory in Doan (2022) and Assumption 3 to upper
bound the error incurred.

For the error incurred in the actor update we define the related loss function as
Definition 8. For iteration k of the outer for loop of Algorithm 1 ,we define wk as the estimate of the
minima of the loss function given by E

(s,a)∼ζ
πλk
ν (s,a)

(Ak,J(s, a)− (w)∇log(πλk
)(a|s))2 obtained

at the end of the second inner for loop of Algorithm 1. We further define the true minima as

w∗
k = argmin

w
E
(s,a)∼ζ

πλk
ν (s,a)

(Ak,J(s, a)− (w)∇log(πλk
)(a|s))2 , (29)

For finding the estimate wk, we re-use the state action pairs sampled in the first inner for loop of
Algorithm 1. The difference between our estimate wk and the w∗

k (which is also the minimizer of
II) is then used to upper bound the difference between the value of II at our estimate wk and the
minimum possible value of II achieved at w∗

k which is upper bounded using Assumption 3. Details
of this are given in lemma 7 in Appendix B.

7 CONCLUSIONS

In this paper, we study a natural actor critic algorithm with a neural network used to represent both
the actor and the critic and find the sample complexity guarantees for the algorithm. We show
that our approach achieves a sample complexity of Õ(ϵ−4(1 − γ)−4). This demonstrates the first
approach for achieving sample complexity beyond linear MDP assumptions for the critic.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021. URL http://jmlr.org/papers/v22/19-736.html.

Abubakr O. Al-Abbasi, Arnob Ghosh, and Vaneet Aggarwal. Deeppool: Distributed model-free
algorithm for ride-sharing using deep reinforcement learning. IEEE Transactions on Intelligent
Transportation Systems, 20(12):4714–4727, 2019. doi: 10.1109/TITS.2019.2931830.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 242–252. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/allen-zhu19a.html.

Burak Bartan and Mert Pilanci. Neural Fisher discriminant analysis: Optimal neural network em-
beddings in polynomial time. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 1647–1663. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/bartan22a.html.

Patrice Bertail and François Portier. Rademacher complexity for markov chains: Applications to
kernel smoothing and metropolis–hastings. Bernoulli, 25:3912–3938, 11 2019. doi: 10.3150/
19-BEJ1115.

Trevor Bonjour, Marina Haliem, Aala Alsalem, Shilpa Thomas, Hongyu Li, Vaneet Aggarwal,
Mayank Kejriwal, and Bharat Bhargava. Decision making in monopoly using a hybrid deep
reinforcement learning approach. IEEE Transactions on Emerging Topics in Computational In-
telligence, 2022.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
In International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. arXiv preprint
arXiv:2210.09921, 2022.

Thinh T. Doan. Finite-time analysis of markov gradient descent. IEEE Transactions on Automatic
Control, pp. 1–1, 2022. doi: 10.1109/TAC.2022.3172593.

Kenji Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):
219–245, 2000.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-
learning. In Proceedings of the 2nd Conference on Learning for Dynamics and Control, volume
120 of Proceedings of Machine Learning Research, pp. 486–489. PMLR, 10–11 Jun 2020. URL
https://proceedings.mlr.press/v120/yang20a.html.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. Advances in Neural Information Processing Systems, 23, 2010.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Nan Geng, Tian Lan, Vaneet Aggarwal, Yuan Yang, and Mingwei Xu. A multi-agent reinforce-
ment learning perspective on distributed traffic engineering. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP), pp. 1–11. IEEE, 2020.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pp. 267–274,
2002.

Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2001a.

10

http://jmlr.org/papers/v22/19-736.html
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v162/bartan22a.html
https://proceedings.mlr.press/v120/yang20a.html

Under review as a conference paper at ICLR 2024

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001b.

Sajad Khodadadian, Zaiwei Chen, and Siva Theja Maguluri. Finite-sample analysis of off-policy
natural actor-critic algorithm. In International Conference on Machine Learning, pp. 5420–5431.
PMLR, 2021.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A sur-
vey. IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi:
10.1109/TITS.2021.3054625.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Dingcheng Li, Xu Li, Jun Wang, and Ping Li. Video recommendation with multi-gate mixture of
experts soft actor critic. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1553–1556, 2020.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. In Advances in Neural Information Process-
ing Systems, volume 33, pp. 7624–7636. Curran Associates, Inc., 2020a.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods. Advances in Neural Information Processing
Systems, 33:7624–7636, 2020b.

Aaron Mishkin, Arda Sahiner, and Mert Pilanci. Fast convex optimization for two-layer ReLU
networks: Equivalent model classes and cone decompositions. In Proceedings of the 39th In-
ternational Conference on Machine Learning, volume 162 of Proceedings of Machine Learning
Research, pp. 15770–15816. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/mishkin22a.html.

Andrew S Morgan, Daljeet Nandha, Georgia Chalvatzaki, Carlo D’Eramo, Aaron M Dollar, and Jan
Peters. Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforcement
learning. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6672–
6678. IEEE, 2021.

Rémi Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pp. 560–567,
2003.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In Machine Learning:
ECML 2005: 16th European Conference on Machine Learning, Porto, Portugal, October 3-7,
2005. Proceedings 16, pp. 280–291. Springer, 2005.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time con-
vex optimization formulations for two-layer networks. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
7695–7705. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
pilanci20a.html.

Magnus Rattray, David Saad, and Shun-ichi Amari. Natural gradient descent for on-line learning.
Physical review letters, 81(24):5461, 1998.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.

11

https://proceedings.mlr.press/v162/mishkin22a.html
https://proceedings.mlr.press/v162/mishkin22a.html
https://proceedings.mlr.press/v119/pilanci20a.html
https://proceedings.mlr.press/v119/pilanci20a.html

Under review as a conference paper at ICLR 2024

Arda Sahiner, Tolga Ergen, Batu Ozturkler, John Pauly, Morteza Mardani, and Mert Pilanci. Un-
raveling attention via convex duality: Analysis and interpretations of vision transformers. In
Proceedings of the 39th International Conference on Machine Learning, volume 162 of Pro-
ceedings of Machine Learning Research, pp. 19050–19088. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/sahiner22a.html.

Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: Analysis and
efficient estimation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 3839–3848, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. Advances in neural
information processing systems, 31, 2018.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in Neural Information
Processing Systems 12, [NIPS Conference, Denver, Colorado, USA, November 29 - December 4,
1999], pp. 1057–1063. The MIT Press, 1999.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John P. Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy P. Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. Starcraft II: A new challenge for reinforcement
learning. CoRR, abs/1708.04782, 2017. URL http://arxiv.org/abs/1708.04782.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Ruijie Wang, Junhuai Li, Kan Wang, Xuan Liu, and Xuan Lit. Service function chaining in nfv-
enabled edge networks with natural actor-critic deep reinforcement learning. In 2021 IEEE/CIC
International Conference on Communications in China (ICCC), pp. 1095–1100, 2021a. doi:
10.1109/ICCC52777.2021.9580255.

Yifei Wang, Jonathan Lacotte, and Mert Pilanci. The hidden convex optimization landscape of reg-
ularized two-layer relu networks: an exact characterization of optimal solutions. In International
Conference on Learning Representations, 2021b.

Yifei Wei, F. Richard Yu, Mei Song, and Zhu Han. Joint optimization of caching, computing, and
radio resources for fog-enabled iot using natural actor–critic deep reinforcement learning. IEEE
Internet of Things Journal, 6(2):2061–2073, 2019. doi: 10.1109/JIOT.2018.2878435.

Ronald J Williams and LC Baird. A mathematical analysis of actor-critic architectures for learning
optimal controls through incremental dynamic programming. In Proceedings of the Sixth Yale
Workshop on Adaptive and Learning Systems, pp. 96–101. Citeseer, 1990.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-
critic algorithms. Advances in Neural Information Processing Systems, 33:4358–4369, 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale
(natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020b.

Rui Yuan, Simon S Du, Robert M Gower, Alessandro Lazaric, and Lin Xiao. Linear convergence of
natural policy gradient methods with log-linear policies. arXiv preprint arXiv:2210.01400, 2022.

Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-
timescale off-policy actor-critic with function approximation. In International Conference on
Machine Learning, pp. 11204–11213. PMLR, 2020.

Hanjing Zhu and Jiaming Xu. One-pass stochastic gradient descent in overparametrized two-layer
neural networks. In International Conference on Artificial Intelligence and Statistics, pp. 3673–
3681. PMLR, 2021.

12

https://proceedings.mlr.press/v162/sahiner22a.html
http://arxiv.org/abs/1708.04782

Under review as a conference paper at ICLR 2024

APPENDIX

A SUPPLEMENTARY LEMMAS

Here we provide some definitions and results that will be used to prove the lemmas stated in the
paper.

Definition 9. For a given set Z ⊂ Rn, we define the Rademacher complexity of the set Z as

Rad(Z) = E

(
sup
z∈Z

1

n

d∑
i=1

Ωizi

)
(30)

where Ωi is random variable such that P (Ωi = 1) = 1
2 , P (Ωi = −1) = 1

2 and zi are the co-
ordinates of z which is an element of the set Z

Lemma 1. Consider a set of observed data denoted by z = {z1, z2, · · · zn} ∈ Rn, a parameter
space Θ, a loss function {l : R × Θ → R} where 0 ≤ l(θ, z) ≤ 1 ∀(θ, z) ∈ Θ × R. The
empirical risk for a set of observed data as R(θ) = 1

n

∑n
i=1 l(θ, zi) and the population risk as

r(θ) = El(θ, z̃i), where z̃i is a co-ordinate of z̃ sampled from some distribution over Z.

We define a set of functions denoted by L as

L = {z ∈ Z → l(θ, z) ∈ R : θ ∈ Θ} (31)

Given z = {z1, z2, z3 · · · , zn} we further define a set L ◦ z as

L ◦ z = {(l(θ, z1), l(θ, z2), · · · , l(θ, zn)) ∈ Rn : θ ∈ Θ} (32)

Then, we have

E sup
θ∈Θ

|{r(θ)−R(θ)}| ≤ 2E (Rad(L ◦ z)) (33)

If the data is of the form zi = (xi, yi), x ∈ X, y ∈ Y and the loss function is of the form l(aθ(x), y),
is L lipschitz and aθ : Θ×X → R, then we have

E sup
θ∈Θ

|{r(θ)−R(θ)}| ≤ 2LE (Rad(A ◦ {x1, x2, x3, · · · , xn})) (34)

where
A ◦ {x1, x2, · · · , xn} = {(a(θ, x1), a(θ, x2), · · · , a(θ, xn)) ∈ Rn : θ ∈ Θ} (35)

The detailed proof of the above statement is given in (Rebeschini, 2022)2. The upper bound for
E supθ∈Θ({r(θ) − R(θ)}) is proved in the aformentioned reference. However, without loss of
generality the same proof holds for the upper bound for E supθ∈Θ({R(θ)−r(θ)}). Hence the upper
bound for E supθ∈Θ |{r(θ)−R(θ)}| can be established.

Lemma 2. Consider three random random variable x ∈ X and y, y
′ ∈ Y . Let Ex,y,Ex and Ey|x,

Ey′ |x denote the expectation with respect to the joint distribution of (x, y), the marginal distribution

of x, the conditional distribution of y given x and the conditional distribution of y
′

given x respec-
tively . Let fθ(x) denote a bounded measurable function of x parameterised by some parameter θ
and g(x, y) be bounded measurable function of both x and y.

Then we have

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(36)

2Algorithmic Foundations of Learning [Lecture Notes].https://www.stats.ox.ac.uk/∼rebeschi/teaching/AFoL/22/

13

Under review as a conference paper at ICLR 2024

Proof. Denote the left hand side of Equation equation 36 as Xθ, then add and subtract
Ey|x(g(x, y)|x) to it to get

Xθ =argmin
fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x) + Ey′ |x(g(x, y

′
)|x)− g(x, y)

)2)
(37)

=argmin
fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2
+ Ex,y

(
y − Ey′ |x(g(x, y

′
)|x)

)2
− 2Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

))
. (38)

Consider the third term on the right hand side of Equation equation 38

2Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
=2ExEy|x

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
(39)

=2Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)
Ey|x

(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
(40)

=2Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
Ey|x(g(x, y))− Ey|x

(
Ey′ |x(g(x, y

′
)|x)

))
(41)

=2Ex (fθ(x)− E(y|x))
(
Ey|x(g(x, y))− Ey′ |x(g(x, y

′
)|x)

)
(42)

=0 (43)

Equation equation 39 is obtained by writing Ex,y = ExEy|x from the law of total expectation.
Equation equation 40 is obtained from equation 39 as the term fθ(x) − Ey′ |x(g(x, y

′
)|x) is not a

function of y. Equation equation 41 is obtained from equation 40 as Ey|x

(
Ey′ |x(g(x, y

′
)|x)

)
=

Ey′ |x(g(x, y
′
)|x) because Ey′ |x(g(x, y

′
)|x) is not a function of y hence is constant with respect to

the expectation operator Ey|x.

Thus plugging in value of 2Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)
in

Equation equation 38 we get

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
=argmin

fθ

(Ex,y

(
fθ(x)− Ex,y′ (g(x, y

′
)|x)

)2
+ Ex,y

(
g(x, y)− Ey′ |x(g(x, y

′
)|x)

)2
). (44)

Note that the second term on the right hand side of Equation equation 44 des not depend on fθ(x)
therefore we can write Equation equation 44 as

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(45)

Since the right hand side of Equation equation 45 is not a function of y we can replace Ex,y with Ex

to get

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex

(
fθ(x)− Ey′ |x(g(x, y

′
)|x)

)2)
(46)

B SUPPORTING LEMMAS

We will now state the key lemmas that will be used for finding the sample complexity of the proposed
algorithm.

14

Under review as a conference paper at ICLR 2024

Lemma 3. For a given iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, the approximation error denoted by ϵ1k,j in Definition 4, we have

E
(
|ϵ1k,j |

)
≤ √

ϵapprox, (47)

Where the expectation is with respect to and (s, a) ∼ ζ
πλk
ν (s, a)

Proof Sketch: We use Assumption 4 and the definition of the variance of a random variable to obtain
the required result. The detailed proof is given in Appendix D.1.
Lemma 4. For a given iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, Q1

k,j = Q2
k,j , or equivalently ϵ2k,j = 0

Proof Sketch: We use Lemma 2 in Appendix A and use the definitions of Q1
k,j and Q2

k,j to prove
this result. The detailed proof is given in Appendix D.2.
Lemma 5. For a given iteration k of the outer for loop and iteration j of the first inner for loop
of Algorithm 1, if the number of state action pairs sampled are denoted by nk,j , then the error ϵ3k,j
defined in Definition 6 is upper bounded as

E
(
|ϵ3k,j |

)
≤ Õ

(
1√
n

)
, (48)

Where the expectation is with respect to and (s, a) ∼ ζ
πλk
ν (s, a)

Proof Sketch: First we note that For a given iteration k of Algorithm 1 and iteration j of the first
for loop of Algorithm 1, E(RXk,j ,Qk,j−1

(θ)) = LQj,k−1
(θ) where RXk,j ,Qj,k−1

(θ) and LQj,k−1
(θ)

are defined in Appendix D.3. We use this to get a probabilistic bound on the expected value of
|(Q2

j,k)−(Q3
j,k)| using Rademacher complexity theory when the samples are drawn from an ergodic

Markov chain. The detailed proof is given in Appendix D.3. Note the presence of the log(log(nk,j))
term is due to the fact that the state action samples belong to a Markov Chain.
Lemma 6. For a given iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, let the number of steps of the gradient descent performed by Algorithm 1, denoted by
Tk,j , the minimum number of neurons m satisfy m ≥ O(δ−1) and the gradient descent step size α
satisfy

α = Θ

(
1

poly(n,L).m

)
, (49)

Then with probability at least 1− δ the error ϵk4 defined in Definition 7 is upper bounded as

E(|ϵ4k,j |) ≤ O
(
1− Ω

(αm
n2

))Tk,j

, (50)

Where the expectation is with respect to (s, a) ∼ ζ
πλk
ν (s, a).

Proof Sketch: We use This is Theorem 5 from Zhu & Xu (2021) to prove this lemma. The detailed
proof is given in Appendix D.4.
Lemma 7. For a given iteration k of the outer for loop of Algorithm 1, if the number of samples of
the state action pairs sampled at each iteration of the first inner for loop are denoted by n and βi be
the step size in the gradient descent at iteration i of the second inner for loop of Algorithm 1 which
satisfies

βi =
2

µk(i+ 1)
, (51)

where µk is the strong convexity parameter of the loss function Fk = E
s,a∼ζ

πλk
ν (s,a)

(Ak,J −
wk∇log(πλk(a|s)))2. Then, after J.n iterations of gradient descent it holds that,

(Fk(wi)) ≤ Õ
(
log(J.n)

J.n

)
+ F ∗

k . (52)

where F ∗
k = argminw Fk(w).

15

Under review as a conference paper at ICLR 2024

Proof Sketch: Note that we don not have access to state action samples belonging to the stationary
state action distribution corresponding to the policy πλk

. We only have access to samples from
Markov chain with the same stationary state action distribution. To account for this, we use the
results in Doan (2022) and obtain the difference between the optimal loss function and the loss
function obtained by performing stochastic gradient descent with samples from a Markov chain.
The detailed proof is given in Appendix

C PROOF OF THEOREM 1

Proof. From Assumption 1, we have

log
πλk+1

(a|s)
πλk

(a|s)
≥ ∇λk

log πλk
(a|s)·(λk+1 − λk)− β

2
||λk+1 − λk||22 (53)

= η log πλk
(a|s)·wk − η2

β

2
||wk||22 (54)

From the definition of KL divergence and from the performance difference lemma from (Kakade &
Langford, 2002) we have

Es∼dπ∗
ν

(
KL(π∗||πλk)− π∗||πλk+1)

)
=Es∼dπ∗

ν
Ea∼π∗(.|s)

[
log

πλk+1(a|s)
πλk

(a|s)

]
(55)

≥ηEs∼dπ∗
ν
Ea∼π∗(.|s)

[
∇λk

log πλk
(a|s)·wk

]
− η2

β

2
||wk||22

(56)

=ηEs∼dπ∗
ν
Ea∼π∗(.|s)

[
Aπλk

]
− η2

β

2
||wk||22

+ ηEs∼dπ∗
ν
Ea∼π∗(.|s)

[
∇λk

log πλk
(a|s)·wk −Aπλk

(s, a)
]

(57)

=(1− γ)η
(
V π∗

(ν)− V k(ν)
)
− η2

β

2
||wk||22 − η·errk.

(58)

Equation equation 58 is obtained from Equation equation 58 using the performance difference
lemma form (Kakade & Langford, 2002) whereAπλk is the advantage function to the corresponding
to the policy πλk .

Rearranging, we get

(
V π∗

(ν)− V k(ν)
)

≤ 1

1− γ

(
1

η
Es∼dπ∗

ν

(
KL(π∗||πλk)−KL(π∗||πλk+1)

)
+ η2

β

2
·W 2 + η·errk

)
(59)

16

Under review as a conference paper at ICLR 2024

Summing from 1 to K and dividing by K we get

1

K

K∑
k=1

(
V π∗

(ν)− V k(ν)
)
≤
(

1

1− γ

)
1

K

K∑
k=1

(
Es∼dπ∗

ν

(
KL(π∗||πλk)−KL(π∗||πλk+1)

)
+ η·errk

)
+

(
1

1− γ

)
η2
β

2
·W 2 (60)

≤ 1

η(1− γ)

1

K
Es∼d̃

(
KL(π∗||πλ0)

)
+

ηβ·W 2

2(1− γ)
+

1

K(1− γ)

K∑
k=1

errk

(61)

≤ log(|A|)
Kη(1− γ)

+
η2β·W 2

2(1− γ)
+

1

K(1− γ)

K∑
k=1

errk (62)

If we set η = 1√
K

in Equation equation 62 we get

1

K

K∑
k=1

(
V π∗

(ν)− V k(ν)
)

≤ 1√
K

(
2 log(|A|) + β·W 2

2(1− γ)

)
+

1

K(1− γ)

K∑
k=1

errk (63)

Now we can redefine the term errk as errk = Es,a(|Aπλk −wk∇log(πθk(a|s))|) and the above in-
equality will still hold as E(x) ≤ E(|x|) for any random variable x. Now as in Equation equation 22
we have

errk = Es,a(|Aπλk − wk∇log(πθk(a|s))|) (64)

≤ Es,a(|Aπλk −Ak,J |) + Es,a(|Ak,J − wk∇log(πθk(a|s)|))
≤ Es,a(|Aπλk −Ak,J |)︸ ︷︷ ︸

I

+Es,a(|Ak,J − wk∇log(πθk(a|s))|)︸ ︷︷ ︸
II

(65)

whereAk,j is the estimate ofAπλk obtained at the kth iteration of Algorithm 1 and s ∼ dπ
∗

ν , a ∼ π∗.

We first derive bounds on I . From the definition of advantage function we have

E(|Aπλk (s, a)−Ak,J(s, a)|) = Es∼dπ∗
ν ,a∼π∗ |Qπλk (s, a)− Eai+1∼πλkQ

πλk (s, ai+1)

−Qk,J(s, a) + Eai+1∼πλkQk,J(s, ai+1)| (66)

= Es∼dπ∗
ν ,a∼π∗ |Qπλk (s, a)− Eai+1∼πλkQ

πλk (s, ai+1)

−Qk,J(s, a) + Eai+1∼πλkQk,J(s, ai+1)| (67)

≤ Es∼dπ∗
ν ,a∼π∗ |Qπλk (s, a)−Qk,J(s, a)|

+ |Es∼dπ∗
ν ,ai+1∼πλk |Qπλk (s, a)−Qk,J(s, a)| (68)

We write the second term on the right hand side of Equation equation 68 as
∫
(|(Qπλk (s, a) −

Qk,J|(s, a))d(µk) where µk is the measure associated with the state action distribution given by
s ∼ dπ

∗

ν , a ∼ πλk . Then we have

∫
|Qπλk (s, a)−Qk,J(s, a)|d(µk) ≤

∣∣∣∣∣
∣∣∣∣∣dµk

dµ∗

∣∣∣∣∣
∣∣∣∣∣
∞

∫
|Qπλk (s, a)−Qk,J(s, a)|d(µ∗) (69)

where µ∗ is the measure associated with the state action distribution given by s ∼ dπ
∗

ν , ai+1 ∼ π∗.

Now before we proceed further, we would like to introduce some notation for convenience, for two

probability measures µ1 and µ2 on we define

∣∣∣∣∣
∣∣∣∣∣dµ1

dµ2

∣∣∣∣∣
∣∣∣∣∣
∞

= ϕµ1,µ2

17

Under review as a conference paper at ICLR 2024

Thus Equation equation 69 becomes

∫
|Qπλk (s, a)−Qk,J(s, a)|d(µk) ≤ (ϕµk,µ∗)

∫
|Qπλk (s, a)−Qk,J(s, a)|d(µ∗) (70)

Since
∫
|Qπλk (s, a)−Qk,J(s, a)|d(µ∗) = Es∼dπ∗

ν ,ai+1∼π∗ |Qπλk (s, a)−Qk,J(s, a)|

Equation equation 68 now becomes.

E|Aπλk (s, a)−Ak,J(s, a)| ≤ (1 + ϕµk,µ∗)Es∼dπ∗
ν ,a∼π∗ |Qπλk (s, a)−Qk,J(s, a)|

(71)

Therefore minimizing |Aπλk (s, a) − Ak,J(s, a)| is equivalent to minimizing |Qπλk (s, a) −
Qk,J(s, a)|.
In order to prove the bound on Es∼dπ∗

ν ,a∼π∗ |Qπλk (s, a)−Qk,J(s, a)| we first define some notation,
let Q1, Q2 be two real valued functions on the state action space. The expression Q1 ≥ Q2 implies
Q1(s, a) ≥ Q2(s, a) ∀(s, a) ∈ S ×A.

Let Qk,j denotes our estimate of the action value function at iteration k of Algorithm 1 and iteration
j of the first for loop of Algorithm 1. Qπλk denotes the action value function induced by the policy
πλk

.

Consider ϵk,j+1 = TπλkQk,j −Qk,j+1.

Thus we get,
Qπλk −Qk,j+1 =TπλkQπλk −Qk,j+1 (72)

=TπλkQπλk − TπλkQk,j + TπλkQk,j

−Qk,j+1 (73)
=γ(Pπλk (Qπλk −Qk,j)) + ϵk,j+1 (74)

|Qπλk −Qk,j+1| ≤γ(Pπλk (|Qπλk −Qk,j |)) + |ϵk,j+1| (75)

Right hand side of Equation equation 72 is obtained by writing Qπλk = TπλkQπλk . This is because
the function Qπλk is a stationary point with respect to the operator Tπλk . Equation equation 73 is
obtained from equation 72 by adding and subtracting Tπλk . We get equation 75 from equation 74 by
taking the absolute value on both sides and applying the triangle inequality on the right hand side.

By recursion on k, we get,

|Qπλk −Qk,J | ≤
J−1∑
j=0

γJ−j−1(Pπλk)J−j−1|ϵk,j+1|+ γJ(Pπλk)J(|Qπλk −Q0|) (76)

From this we obtain

Es∼dπ∗
ν ,a∼π∗ |Qπλk −Qk,J | ≤

J−1∑
k=0

γJ−j−1Es∼dπ∗
ν ,a∼π∗((Pπλk)K−J−1|ϵk,j+1|)

+ γJEs∼dπ∗
ν ,a∼π∗(Pπλk)J(|Qπλk −Q0|) (77)

For a fixed j consider the term Es∼dπ∗
ν ,a∼π∗((Pπλk)J−j−1|ϵk,j+1|). We then write

Es∼dπ∗
ν ,a∼πj

((Pπλk)J−j−1|ϵk,j+1|) ≤

∣∣∣∣∣
∣∣∣∣∣d(Pπλk)J−j−1µj

dµ
′
k

∣∣∣∣∣
∣∣∣∣∣
∞

∫
|ϵk,j+1| dµ

′

k (78)

≤ (ϕµ′
k,µj

)E
(s,a)∼ζ

πλk
ν (s,a)

(|ϵk,j+1|)| (79)

18

Under review as a conference paper at ICLR 2024

Here µj is the measure associated with the state action distribution given by sampling from s ∼
dπ

∗

ν , ai+1 ∼ π∗ and then applying the operator Pπλk , J − j − 1 times. µj is the measure associated
with the steady state action distribution given by (s, a) ∼ ζ

πλk
ν (s, a). Thus Equation equation 77

becomes

Es∼dπ∗
ν ,a∼π∗ |Qπλk −Qk,J | ≤

J−1∑
k=0

γJ−j−1(ϕµ′
k,µj

)E
(s,a)∼ζ

πλk
ν (s,a)

(|ϵk,j+1|)|+ γJ
(
Rmax

1− γ

)
(80)

We get the second term on the right hand side by noting that (Qπλk −Q0) ≤ Rmax

1−γ . Now splitting
ϵk,j+1 as was done in Equation equation 25 we obtain

Es∼dπ∗
ν ,a∼π∗ |Qπλk −Qk,J | ≤

J−1∑
j=0

γJ−j−1
(
(ϕµ′

k,µj
)E|ϵ1k,j+1|+ (ϕµ′

k,µj
)E|ϵ2k,j+1|

+ (ϕµ′
k,µj

)E|ϵ3k,j+1|+ (ϕµ′
k,µj

)E|ϵ4k,j+1|
)
+ γJ

(
Rmax

1− γ

)
(81)

Now using Lemmas 3, 4, 5, 6 we have for m ≥ O(K.J.δ−1) with probability at-least 1− δ we have

Es∼dπ∗
ν ,a∼π∗(Qπλk −Qk,j) ≤

J−1∑
j=0

(
O
(

1√
n

)
+O(

√
ϵapprox) +O

(
1− Ω

(αm
n2

))n
+ O(γJ)

)
(82)

Note we had to increase the requirement of m from m ≥ O(δ−1) to m ≥ O(K.J.δ−1) as we want
the probability statement of lemma 6 to hold for all iterations of the outer for loop and the first inner
for loop. Also note that for lemma 5 the number of iterations of gradient descent is n, so we replace
Tk,j to n.

From Equation equation 71 we get that for we have for m ≥ O(K.J.δ−1) with probability at-least
1− δ we have

Es∼dπ∗
ν ,a∼π∗(Aπλk −Ak,j) ≤

J−1∑
j=0

(
O
(

1√
n

)
+O(

√
ϵapprox) +O

(
1− Ω

(αm
n2

))n
+ O(γJ)

)
(83)

We now derive bounds on II . Note that II can be upper bounded as

Es∼dπ∗
ν ,a∼π∗(|Ak,J − wk∇log(πθk(a|s))| ≤ (ϕαk,µ∗)E

s,a∼ζ
πλk
ν

(|Ak,J − wk∇log(πθk(a|s)|) (84)

Here αk is the measure corresponding to s, a ∼ ζ
πλk
ν (s, a) and µ∗ is as defined previously.

Now from lemma if we have βi,k = 2
µk(i+1) , where µk is the strong convexity parameter for the loss

function in Fk(w) = Es,a∼ζν
π
(|Ak,J − wk∇log(πθk(a|s))|)2, we obtain from lemma 7 that

19

Under review as a conference paper at ICLR 2024

||wk − w∗
k||2 ≤ O

(
log(n)

n

)
(85)

Now define the function . From this definition and the fact that w∗
k is also the minimizer of II we

obtain

Fk(wk)− Fk(w
∗) ≤ lFk

||wk − w∗||2 ≤ O
(
log(n)

n

)
(86)

where lFk
is lipschitz constant of Fk(w). Thus we obtain

Fk(wk)− Fk(w
∗) ≤ O

(
log(n)

n

)
(87)

which gives us

Fk(wk) ≤ O
(
log(n)

n

)
+ ϵbias (88)

We get equation 88 from equation 87 by using assumption 4.

Now from equation 84 we get

II ≤ O
(
log(n)

n

)
+O(ϵbias) (89)

Plugging Equations equation 88 and equation 83 in Equation equation 63 we get for m ≥
O(K.J.δ−1) with probability at-least 1− δ we have

min
k≤K

(V ∗(ν)− V πλK (ν)) ≤ 1

K

K∑
k=1

(V ∗(ν)− V πλK (ν)) (90)

≤O
(

1√
K(1− γ)

)
+

1

K(1− γ)

K∑
k=1

(
O
(
log(J.n)

J.n

)
+O(γJ)

)

+
1

K(1− γ)

K∑
k=1

J−1∑
j=0

(
O
(
1− Ω

(αm
n2

))n
+O

(
1√
n

))
+

1

1− γ

(
O(ϵbias) +O(

√
ϵapprox)

)
. (91)

D PROOF OF SUPPORTING LEMMAS

D.1 PROOF OF LEMMA 3

Proof. Using Assumption 3 and the definition of Qkj1 for some iteration k of Algorithm 1 we have

Es,a(T
πλkQk,j−1 −Q1

k,j)
2 ≤ ϵapprox (92)

where (s, a) ∼ ζ
πλk
ν (s, a).

20

Under review as a conference paper at ICLR 2024

Since |a|2 = a2 we obtain

E(|TπλkQk,j−1 −Q1
k,j |)2 ≤ ϵapprox (93)

We have for a random variable x, V ar(x) = E(x2) − (E(x))2 hence E(x) =
√
E(x2)− V ar(x),

Therefore replacing x with |TπλkQπλk −Qk1| we get

using the definition of the variance of a random variable we get

E(|TπλkQk,j−1 −Q1
k,j |) =

√
E(|TπλkQk,j−1 −Q1

k,j |)2 − V ar(|TπλkQk,j−1 −Q1
k,j |)

(94)

≤
√
E(|TπλkQk,j−1 −Q1

k,j |)2 (95)

Therefore by definition of Q1
k,j and assumption 4 we have

E(TπλkQk,j−1 −Q1
k,j |) ≤

√
ϵapprox (96)

Since ϵk1
= TπλkQπλk −Qk1 we have

E(|ϵk,j1 |) ≤
√
ϵapprox (97)

D.2 PROOF OF LEMMA 4

Proof. From Lemma 2, we have

argmin
fθ

Ex,y (fθ(x)− g(x, y))
2
= argmin

fθ

(
Ex,y

(
fθ(x)− E(g(y

′
, x)|x)

)2)
(98)

We label x to be the state action pair (s, a), y is the next state action pair denoted by (s
′
, ai+1). The

function fθ(x) to be Qθ(s, a) and g(x, y) to be the function r
′
(s, a) + γQk,j−1(s

′
, ai+1)

Then the loss function corresponding to Equation equation 36 becomes

E(Qθ(s, a)− (r(s, a) + γEQk,j−1(s
′
, ai+1)))

2 (99)

where (s, a) ∼ ζ
πλk
ν (s, a), s

′ ∼ P (.|(s, a)), ai+1 ∼ πλk(.|s′) and r(s, a) ∼ R(.|s, a).
Therefore by Lemma 2, we have that the function Qθ(s, a) which minimizes Equation equation 99
it will be minimizing

E
s∼d

πλk
ν ,a∼πλk

(Qθ(s, a)− Es′∼P (s′ |s,a),r∼R(.|s,a))(r(s, a) + γEQk,j−1(s
′
, ai+1)|s, a))2 (100)

But we have from Equation that

Es′∼P (s′ |s,a),r∼R(.|s,a))(r(s, a) + γEQk,j−1(s
′
, ai+1)|s, a) = TπλkQk,j−1 (101)

Combining Equation equation 99 and equation 101 we get

argmin
Qθ

E(Qθ(s, a)− (r(s, a) + γQk,j−1(s
′
, ai+1)))

2 = argmin
Qθ

E(Qθ(s, a)− TπλkQk,j−1)
2

(102)

21

Under review as a conference paper at ICLR 2024

The left hand side of Equation equation 102 is Q2
k,j as defined in Definition 2 and the right hand

side is Q1
k,j as defined in Definition 1, which gives us

Q2
k,j = Q1

k,j (103)

D.3 PROOF OF LEMMA 5

Proof. We define RXk,j ,Qk,j−1
(θ) as

RXk,j ,Qk,j−1
(θ) =

1

n

∑
(si,ai)∈Xk,j

(
Qθ(si, ai)−

(
r
′
(si, ai) + γQk,j−1(si+1, ai+1)

))2

,

Here, where s, a are sampled from a Markov chain whose stationary distribution is, (s, a) ∼
ζ
πλk
ν (s, a). Qθ is is the neural network corresponding to the parameter θ and Qk,j−1 is the esti-

mate of the Q function obtained at iteration k of the outer for loop and iteration j − 1 of the first
inner for loop of Algorithm 1.

We also define the term

LQk,j−1
(Qθ) = E(Qθ(s, a)− (r′(s, a) + γQk,j−1(s

′, a′))2 (104)

where (s, a) ∼ ζνπλk
, r′(·|s, a) ∼ R(·|s, a), ai+1 ∼ πλk

We denote by θ2k,j , θ
3
k,j the parameters of the neural networks Q2

k,j , Q
3
k,j respectively. Q2

k,j , Q
3
k,j

are defined in Definition 2 and 3 respectively.

We then obtain,

RXk,j ,Qk,j−1
(θ2k,j)−RXk,j ,Qk,j−1

(θ3k,j) ≤ RXk,j ,Qk,j−1
(θ2k,j)−RXk,j ,Qk,j−1

(θ3k,j)

+LQk,j−1
(θ2k,j)− LQk,j−1

(θ3k,j)

(105)
= RXk,j ,Qk,j−1

(θ2k,j)− LQk,j−1
(θ2k,j)

−RXk,j ,Qk,j−1
(θ3k,j) + LQk,j−1

(θ2k,j)

(106)
≤ |RXk,j ,Qk,j−1

(θ2k,j)− LQk,j−1
(θ2k,j)|︸ ︷︷ ︸

I

+ |RXk,j ,Qk,j−1
(θ3k,j)− LQk,j−1

(θ3k,j)|︸ ︷︷ ︸
II

(107)

We get the inequality in Equation equation 105 because LQk,j−1
(θ3k,j)−LQk,j−1

(θ2k,j) > 0 as Q2
k,j

is the minimizer of the loss function LQk,j−1
(Qθ).

Consider Lemma 1. The loss function RXk,j ,Qk,j−1
(θ3k,j) can be written as the mean of loss func-

tions of the form l(aθ(si, ai, si+1, ai+1), yi) where l is the square function. aθ(si, ai, si+1, ai+1) =

Qθ(si, ai) and yi =
(
r
′
(si, ai) + γQk,j−1(si+1, ai+1)

)
. Thus we have

E supθ∈Θ′ |RXk,j ,Qk,j−1
(θ)− LQk,j−1

(θ)| ≤ (108)

2η
′E (Rad(A ◦ {(s1, a1, s2, a2), (s2, a2, s3, a3), · · · , (sn−1, an−1, sn, an)}))

22

Under review as a conference paper at ICLR 2024

Note that the expectation is over all (si, ai) and that the set Θ
′
= {Qθ2

k,j
, Qθ3

k,j
}. We use this

set because we only need this inequality to hold for Qθ2
k,j

and Qθ3
k,j

. Where n = |Xk,j |, (A ◦
{(s1, a1), (s2, a2), (s3, a3), · · · , (sn, an)} = {Qθ(s1, a1), Qθ(s2, a2), · · · , Qθ(sn, an)} and ηi+1

is the Lipschitz constant for the square function over the state action space [0, 1]d. The expectation
is with respect to (s, a) ∼ ζνπλk

,s
′

i ∼ P (s
′ |s, a) ri ∼ R(.|si, ai)i∈(1,··· ,n),.

Now from theorem 5 and theorem 1 of Bertail & Portier (2019) we have that

(Rad(A ◦ {(s1, a1, s2, a2), (s2, a2, s3, a3), · · · , (sn−1, an−1, sn, an)})) ≤ Ck
1√
n

(109)

Note that in Bertail & Portier (2019) a factor of log log(n) in the numerator is introduced in later
theorems, we ignore that factor due to the fact that it is practically constant and the we will have a
factor of log(n) from the error incurred in the actor step.

We use this result as the state action pairs are drawn not from the stationary state of the policy πλk

but from a Markov chain with the same steady state distribution. Thus we have

E|(RXk,j ,Qk,j−1
(θ2k,j))− LQk,j−1

(θ2k,j)| ≤ Ck
1√
n

(110)

The same argument can be applied for Q3
k,j to get

E|(RXk,j ,Qk,j−1
(θ3k,j))− LQk,j−1

(θ3k,j)| ≤ Ck
1√
n

(111)

Then we have
E
(
RXk,j ,Qk,j−1

(θ2k,j)−RXk,j ,Qk,j−1
(θ3k,j)

)
≤ Ck

1√
n

(112)

Plugging in the definition of RXk,j ,Qk,j−1
(θ2k,j), RXk,j ,Qk,j−1

(θ3k,j) in equation equation 112 and
denoting Ck

1√
n

as ϵ we get

1

n

n∑
i=1

(
E(Q2

k,j(si, ai)− (r
′
(si, ai) + γQ2

k,j(si+1, ai+1)))
2

−E(Q3
k,j(si, ai)− (r

′
(si, ai) + γQ3

k,j(si+1, ai+1)))
2
)
≤ ϵ (113)

Now for a fixed i consider the term αi defined as.

Esi+1∼P (.|si,ai)(Q
2
k,j(si, ai)− (r

′
(si, ai) + γQ2

k,j(si+1, ai+1)))
2

−Esi+1∼P (.|si,ai)(Q
3
k,j(si, ai)− (r

′
(si, ai) + γQ3

k,j(si+1, ai+1)))
2 (114)

where si, ai, si+1, ai+1 are drawn from the state action distribution at the ith step of the Markov
chain induced by following the policy πλk

.

Now for a fixed i consider the term βi defined as.

Esi+1∼P (.|si,ai)(Q
2
k,j(si, ai)− (r

′
(si, ai) + γQ2

k,j(si+1, ai+1)))
2

−Esi+1∼P (.|si,ai)(Q
3
k,j(si, ai)− (r

′
(si, ai) + γQ3

k,j(si+1, ai+1)))
2 (115)

where si, ai, si+1, ai+1 are drawn from the steady state action distribution with (s, a) ∼ ζνπλk
. Note

here that αi and βi are the same function with only the state action pairs being drawn from different
distributions.

23

Under review as a conference paper at ICLR 2024

Using these definitions we obtain

|E(αi)− E(βi)| ≤ sup
(si,ai)

|2.max(αi, βi)|(κi) (116)

≤
(
4

R

1− γ

)2

pρi (117)

We obtain Equation equation 116 by using the identity |
∫
fdµ −

∫
fdν| ≤

|maxS×A(f)| supS×A
∫
(dµ − dν)| ≤ |maxS×A(f)|dTV (µ, ν)|, where µ and ν are two σ

finite state action probability measures and f is a bounded measurable function. We have used κi
to represent the total variation distance between the state action measures of the steady state action
distribution denoted by (s, a) ∼ ζνπλk

and the state action distribution at the ith step of the Markov
chain induced by following the policy πλk . The expectation is with respect to (si, ai). We obtain
Equation equation 117 from Equation equation 116 by using Assumption 2 and the fact that αi and

βi are upper bounded by
(
4 R
1−γ

)2
From equation equation 117 we get

E(αi) ≥ E(βi)− 4

(
R

1− γ

)2

pρi (118)

We get Equation equation 118 from Equation equation 117 using the fact that |a − b| ≤ c implies
that (−c ≥ (a− b) ≤ c) which in turn implies a ≥ b− c.

Using Equation equation 118 in equation equation 115 we get

1

n

n∑
i=1

(
E(Q2

k,j(si, ai)− (r
′
(si, ai) + γQ2

k,j(si+1, ai+1)))
2

−E(Q3
k,j(si, ai)− (r

′
(si, ai) + γQ3

k,j(si+1, ai+1)))
2
)

≤ ϵ+
1

n

n∑
i=1

4

(
R

1− γ

)2

pρi

≤ ϵ+
1

n
4

(
R

1− γ

)2

p
1

1− ρ

(119)

In Equation equation 119 (si, ai) are now drawn from (s, a) ∼ ζνπλk
for all i.

We ignore the second term on the right hand side as it is Õ
(
1
n

)
as compared to the first term

which is Õ
(

1√
n

)
. Additionally the expectation in Equation equation 119 is with respect to

(s, a) ∼ ζνπλk
, r′(·|s, a) ∼ R(·|s, a), si+1 ∼ P (.|si, ai), ai+1 ∼ πλk

Since now we have (s, a) ∼ ζνπλk
for all i, Equation equation 119 is equivalent to,

E (Q2
k,j(s, a)−Q3

k,j(s, a))︸ ︷︷ ︸
A1

(Q2
k,j(s, a) +Q3

k,j(s, a)− 2(r
′
(s, a)) + γQk,j−1(s

′
, ai+1))︸ ︷︷ ︸

A2

≤ ϵ

(120)

24

Under review as a conference paper at ICLR 2024

Where the expectation is now over (s, a) ∼ ζνπλk
, r

′
(s, a) ∼ R(.|s, a) and s

′ ∼ P (.|s, a), ai+1 ∼
πλk

. We re-write Equation equation 120 as∫
(Q2

k,j(s, a)−Q3
k,j(s, a))︸ ︷︷ ︸

A1

×

× (Q2
k,j(s, a) +Q3

k,j(s, a)− 2(r
′
(s, a)) + γmax

a∈A
Qk,j−1(s

′
, a))︸ ︷︷ ︸

A2

×

× dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1) ≤ ϵ. (121)

Where µ1 is the state action distribution (s, a) ∼ ζνπλk
, µ2, µ3, µ4 are the measures with respect to

(s, a), r
′
, s

′
and ai+1 respectively.

Now for the integral in Equation equation 121 we split the integral into four different integrals. Each
integral is over the set of (s, a), r

′
, s

′
, ai+1 corresponding to the 4 different combinations of signs

of A1, A2. ∫
{(s,a),r′ ,s′}:A1≥0,A2≥0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1)

+

∫
{(s,a),r′ ,s′}:A1<0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1)

+

∫
{(s,a),r′ ,s′}:A1≥0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dν3(s
′
)dµ4(ai+1)

+

∫
{(s,a),r′ ,s′}:A1<0,A2≥0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1) ≤ ϵ (122)

Now note that the first 2 terms are non-negative and the last two terms are non-positive. We then
write the first two terms as∫

{(s,a),r′ ,s′}:A1≥0,A2≥0

(A1)(A2)d(s, a)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1)

= Ck,j1

∫
|Q2

k,j −Q3
k,j |dµ1

= Ck,j1E(|Q
2
k,j −Q3

k,j |)µ1

(123)∫
{(s,a),r′ ,s′}:A1<0,A2<0

(A1)(A2)d(s, a)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1)

= Ck,j2

∫
|Q2

k,j −Q3
k,j |dν

= Ck,j2E(|Q
2
k,j −Q3

k,j |)µ1

(124)

We write the last two terms as∫
{(s,a),r′ ,s′}:A1≥0,A2<0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1) = Ck,j3ϵ (125)∫

{(s,a),r′ ,s′}:A1<0,A2≥0

(A1)(A2)dµ1(s, a)dµ2(r)dµ3(s
′
)dµ4(ai+1) = Ck,j4ϵ (126)

Here Ck,j1 , Ck,j2 , Ck,j4 and Ck,j4 are positive constants. Plugging Equations equation 123, equa-
tion 124, equation 125, equation 126 into Equation equation 121.

(Ck,j1 + Ck,j2)E(|Q
2
k,j −Q3

k,j |)µ1
− (Ck,j3 + Ck,j4)ϵ ≤ ϵ (127)

(128)

25

Under review as a conference paper at ICLR 2024

which implies

E(|Q2
k,j −Q3

k,j |)µ1 ≤
(
1 + Ck,j3 + Ck,j4

Ck,j1 + Ck,j2

)
ϵ (129)

(130)

Thus we have

E(|Q2
k,j −Q3

k,j |)µ1 ≤
(
1 + Ck,j3 + Ck,j4

Ck,j1 + Ck,j2

)
Ck

1√
n

(131)

(132)

which implies

E(|Q2
k,j −Q3

k,j |)µ1 ≤ Õ
(

1√
n

)
(133)

(134)

D.4 PROOF OF LEMMA 6

Proof. Note that from theorem 5 of Allen-Zhu et al. (2019) we have that for a neural network with
at least m neurons in every layer, sample size of n, we have after Tk,j steps of the gradient descent
algorithm with step size α we have with probability at least 1− exp(−Ω(log(m)))

F (θT) ≤
(
1− Ω

(αm
n2

))Tk,j

F (θ0) (135)

Where F is the loss function to be minimized. The specific form of F (θT) is obtained in the proof
of theorem 1 in the appendix. Note that we have ignored the minimum euclidean distance between
training samples denoted as δ in Allen-Zhu et al. (2019). It is to be noted that this is non-zero for
our case as for any two separate s, a pairs the target function will be different for a non-zero neural
network.

Now plug gin in m ≥ O(δ−1) we obtain with probability at least 1− δ

F (θTk,j) ≤ O
(
1− Ω

(αm
n2

))Tk,j

(136)

Now choose a constant C
′

k,j such that

C
′

k,j |θTk,j − θ∗| ≤ F (θT) ≤ O
(
1− Ω

(αm
n2

))Tk,j

(137)

where θ∗ is the global minima for the loss function F . Now using the Lipschitz property of neural
networks with respect to the parameters as discussed in Reddi et al. (2019) we have

|QθT (s, a)−Qθ∗(s, a)| ≤ (Lk,j)(C
′

k,j)(θ
T − θ∗) ≤ (Lk,j)F (θ

T) ≤ O
(
1− Ω

(αm
n2

))Tk,j

(138)

for all (s, a) ∈ S×A. Note that by definition QθT (s, a) is Qk,j and Qθ∗(s, a) is Q3
k,j , thus we have

with probability at least 1− δ

|QθT (s, a)−Qθ∗(s, a)| ≤ O
(
1− Ω

(αm
n2

))Tk,j

(139)

Now taking expectation on both side with respect to (s, a) ∼ ζν
πλk

gives us the required result.

26

Under review as a conference paper at ICLR 2024

D.5 PROOF OF LEMMA 7

Proof. Note that this lemma is a direct application of theorem 1 from Doan (2022). Note that in the
second inner for loop of Algorithm 1 we perform an iterations for every state action pair sampled in
the first inner for loop for a total of J ·n samples and noting that we are taking a steps of gradient
descent for each sample gives us the required result.

E COMPARISON OF SAMPLE COMPLEXITY ANALYSIS WITH NATURAL
POLICY GRADIENT

For natural policy gradient (NPG) (Agarwal et al., 2021), to derive the sample complexity result, the
average error in estimation till iteration K is given by

argmin
k∈{1,··· ,K}

V ∗(ν)− V πK (ν) ≤

(
log(|A|)
Kη(1− γ)

+
ηβkW

2

2(1− γ)
+

1

K

K∑
i=k

errk
1− γ

)
, (140)

where errk in the last term on the right-hand side of equation 140 is

errk = Es,a(A
πλK − wk∇log(πλk

(a|s))) (141)

where s ∼ dπ
∗

ν , a ∼ π∗(.|s), wk is our estimate of the NPG gradient update term and λk is the
policy parameter.

The term errk is then decomposed in the following manner

Es,a(A
πλK − wk∇log(πλk

(a|s))) = Es,a(A
πλK − w∗∇log(πλk

(a|s)))
+(w∗ − wk)∇log(πλk

(a|s))) (142)

where w∗ = argminw Es,a(Q
πλK − w∇log(πλk

(a|s))) where s ∼ dπ
λk

ν , a ∼ πλk(.|s).
For ease of notation we define

Es∼dπ
ν ,a∼π(.|s)(Q

πλ − w∇log(πλ(a|s)))2 = L(w, λ, dπν). (143)

Equation equation 142 is then be upper bounded as

Es,a(Q
πλK − wk∇log(πλk

(a|s))) ≤
√
L(w∗, λk, dπ

∗
ν)

+ϕk

√
L(wk, λk, d

πλk
ν)− L(w∗, λk, d

πλk
ν) (144)

where ϕk is a constant which represents the change in expectation from dπ
∗

ν to d
πλk
ν .

Assumption 6.1 and 6.2 in (Agarwal et al., 2021) are as follows

L(wk, λk, d
πλk
ν)− L(w∗, λk, d

πλk
ν) ≤ ϵstat (145)

L(w∗;λk, d
π∗
ν) ≤ ϵbias (146)

∀k ∈ {1, · · · ,K}, where K is the total number of iterations of the NPG algorithm.

The assumption in Equation equation 145 is known as the excess risk assumption and places an
upper bound on the error incurred due to the difference between the obtained estimate wk and the
optimal solution w∗ which minimizes L(w, λk, d

πλk
ν). It is a measure of uncertainty in estimating

the natural gradient update.

The assumption in Equation equation 146 is known as the transfer error assumption and places
an upper bound on the loss function L(w, λk, dπ

∗

ν) evaluated at the minima of the loss function
L(w;λk, d

πλk
ν). This is a measure of how similar the policy πλk is to the optimal policy π∗.

27

Under review as a conference paper at ICLR 2024

In the analysis of Agarwal et al. (2021), using results of stochastic gradient descent on a convex
loss function, ϵstat is assumed to be upper bounded as Õ

(
1√
nk

)
where nk is the number of state

action samples at iteration k. Further, ϵbias is directly assumed as a constant while it depends on the
accurate estimation of Aπλk .

Comparison. We note that the analysis in Equation equation 145-equation 146 does not consider (i)
the extra

(
1

1−γ

)
state action samples required to obtain Monte Carlo estimateAπλk . This is because

each Monte Carlo estimate of Aπλk requires on average
(

1
1−γ

)
state action samples; (ii) the error

incurred due to gap between the Monte Carlo estimate Aπλk and the actual Q-function. In Agarwal
et al. (2021), Monte Carlo estimate is only shown to be an unbiased estimate of Aπλk and no error
bound for the estimate is given. This error bound will require additional samples to be very close
such that the obtained value function for the policy is ϵ-close. This is the key gap due to which our
algorithm gets additional 1/ϵ in the sample complexity.

Our analysis considers the number of samples required to estimate Aπλk to a given accuracy in our
sample complexity analysis. In order to account for the difference between the optimal policy π∗and
the policy estimate πλk

, which has been used and verified in prior works such as Farahmand et al.
(2010).

The authors in (Liu et al., 2020b) also perform a similar analysis but only has an Assumption similar
to Equation equation 146. This assumption also suffers from the same drawback described above.

F SAMPLE COMPLEXITY USING CONVEX REFORMULATION WITH
TWO-LAYER NEURAL NETWORKS

We now demonstrate how the error bound in Theorem 1 can be made deterministic if we use a 2
layer neural network with ReLU activation functions.

This part of the Appendix will first go into detail as to how a 2 layer neural network can be reformu-
lated as a convex problem. We then prove the supplementary lemmas and additional assumptions
required to prove a deterministic version of Theorem 1.

A 2-layer ReLU Neural Network with input x ∈ Rd is defined as f(x) =
∑m

i=1 σ
′(xTui)αi, where

m ≥ 1 is the number of neurons in the neural network, the parameter space is Θm = Rd×m × Rm

and θ = (U,α) is an element of the parameter space, where ui is the ith column of U , and αi is the
ith coefficient of α. The function σ′ : R → R≥0 is the ReLU or restricted linear function defined
as σ′(x) ≜ max(x, 0). In order to obtain parameter θ for a given set of data X ∈ Rn×d and the
corresponding response values y ∈ Rn×1, we desire the parameter that minimizes the squared loss,
given by

L(θ) =

∥∥∥∥∥
m∑
i=1

σ(Xui)αi − y

∥∥∥∥∥
2

2

. (147)

In equation 147, we have the term σ(Xui) which is a vector {σ′((xj)
Tui)}j∈{1,··· ,n}, where xj

is the jth row of X . It is the ReLU function applied to each element of the vector Xui. We
note that the optimization in Equation equation 147 is non-convex in θ due to the presence of the
ReLU activation function. In Wang et al. (2021b), it is shown that this optimization problem has an
equivalent convex form, provided that the number of neuronsm goes above a certain threshold value.
This convex problem is obtained by replacing the ReLU functions in the optimization problem with
equivalent diagonal operators. The convex problem is given as

L
′

β(p) :=

∥∥∥∥∥ ∑
Di∈DX

Di(Xpi)− y

∥∥∥∥∥
2

2

, (148)

where p ∈ Rd×|DX |. DX is the set of diagonal matricesDi which depend on the data-setX . Except
for cases of X being low rank, it is not computationally feasible to obtain the set DX . We instead
use D̃ ∈ DX to solve the convex problem in equation 148 where p now would lie in p ∈ Rd×|D̃|.

28

Under review as a conference paper at ICLR 2024

For a set of parameters θ = (u, α) ∈ Θ, we denote neural network represented by these parameters
as

Qθ(s, a) =

m∑
i=1

σ′((s, a)Tui)αi. (149)

For representing the action value function, we will use a 2 layer ReLU neural network. In this sec-
tion, we first lay out the theory behind the convex formulation of the 2 layer ReLU neural network.
In the next section it will shown how it is utilised for the FQI algorithm.

In order to obtain parameter θ for a given set of data X ∈ Rn×d and the corresponding response
values y ∈ Rn×1, we desire the parameter that minimizes the squared loss (with a regularization
parameter β ∈ [0, 1]), given by

L(θ) =

∥∥∥∥∥
m∑
i=1

σ(Xui)αi − y

∥∥∥∥∥
2

2

. (150)

Here, we have the term σ(Xui) which is a vector {σ′((xj)
Tui)}j∈{1,··· ,n} where xj is the jth row of

X . It is the ReLU function applied to each element of the vectorXui. We note that the optimization
in Equation equation 147 is non-convex in θ due to the presence of the ReLU activation function.
In Wang et al. (2021b), it is shown that this optimization problem has an equivalent convex form,
provided that the number of neurons m goes above a certain threshold value. This convex problem
is obtained by replacing the ReLU functions in the optimization problem with equivalent diagonal
operators. The convex problem is given as

L
′

β(p) :=

∥∥∥∥∥ ∑
Di∈DX

Di(Xpi)− y

∥∥∥∥∥
2

2

(151)

where p ∈ Rd×|DX |. DX is the set of diagonal matricesDi which depend on the data-setX . Except
for cases of X being low rank it is not computationally feasible to obtain the set DX . We instead
use D̃ ∈ DX to solve the convex problem

L
′

β(p) :=

∥∥∥∥∥ ∑
Di∈D̃

Di(Xpi)− y

∥∥∥∥∥
2

2

, (152)

where p ∈ Rd×|D̃|. In order to understand the convex reformulation of the squared loss optimization
problem, consider the vector σ(Xui)

σ(Xui) =


{σ′

((x1)
Tui)}

{σ′
((x2)

Tui)}
...

{σ′
((xn)

Tui)}.

 (153)

Now for a fixed X ∈ Rn×d, different ui ∈ Rd×1 will have different components of σ(Xui) that are
non zero. For example, if we take the set of all ui such that only the first element of σ(Xui) are non
zero (i.e, only (x1)

Tui ≥ 0 and (xj)
Tui < 0 ∀j ∈ [2, · · · , n]) and denote it by the set K1, then we

have
σ(Xui) = D1(Xui) ∀ui ∈ K1, (154)

where D1 is the n×n diagonal matrix with only the first diagonal element equal to 1 and the rest 0.
Similarly, there exist a set of u′s which result in σ(Xu) having certain components to be non-zero
and the rest zero. For each such combination of zero and non-zero components, we will have a
corresponding set of u′is and a corresponding n× n Diagonal matrix Di. We define the possible set
of such diagonal matrices possible for a given matrix X as

DX = {D = diag(1(Xu ≥ 0)) : u ∈ Rd , D ∈ Rn×n}, (155)

29

Under review as a conference paper at ICLR 2024

where diag(1(Xu ≥ 0)) represents a matrix given by

Dk,j =

{
1(xTj u), for k = j
0 for k ̸= j

, (156)

where 1(x) = 1 if x > 0 and 1(x) = 0 if x ≤ 0. Corresponding to each such matrixDi, there exists
a set of ui given by

Ki = {u ∈ Rd : σ(Xui) = DiXui, Di ∈ DX} (157)

where I is the n × n identity matrix. The number of these matrices Di is upper bounded by 2n.
From Wang et al. (2021b) the upper bound is O

(
r
(
n
r

)r)
where r = rank(X). Also, note that the

sets Ki form a partition of the space Rd×1. Using these definitions, we define the equivalent convex
problem to the one in Equation equation 147 as

Lβ(v, w) :=

(∥∥∥∥∥ ∑
Di∈DX

Di(X(vi − wi))− y

∥∥∥∥∥
2

2

)
, (158)

where v = {vi}i∈1,··· ,|DX |, w = {wi}i∈1,··· ,|DX |, vi, wi ∈ Ki, note that by definition, for any fixed
i ∈ {1, · · · , |DX |} at-least one of vi or wi are zero. If v∗, w∗ are the optimal solutions to Equation
equation 158, the number of neurons m of the original problem in Equation equation 147 should be
greater than the number of elements of v∗, w∗, which have at-least one of v∗i or w∗

i non-zero. We
denote this value as m∗

X,y , with the subscript X denoting that this quantity depends upon the data
matrix X and response y.

We convert v∗, w∗ to optimal values of Equation equation 147, denoted by θ∗ = (U∗, α∗), using a
function ψ : Rd × Rd → Rd × R defined as follows

ψ(vi, wi) =

{
(vi, 1), if wi = 0
(wi,−1), if vi = 0
(0, 0), if vi = wi = 0

(159)

where according to Pilanci & Ergen (2020) we have (u∗i , α
∗
i) = ψ(v∗i , w

∗
i), for all i ∈

{1, · · · , |DX |} where u∗i , α
∗
i are the elements of θ∗. Note that restriction of αi to {1,−1, 0} is

shown to be valid in Mishkin et al. (2022). For i ∈ {|DX |+ 1, · · · ,m} we set (u∗i , α
∗
i) = (0, 0).

Since DX is hard to obtain computationally unless X is of low rank, we can construct a subset
D̃ ∈ DX and perform the optimization in Equation equation 158 by replacing DX with D̃ to get

Lβ(v, w) :=

(∥∥∥∥∥ ∑
Di∈D̃

Di(X(vi − wi))− y

∥∥∥∥∥
2

2

)
(160)

where v = {vi}i∈1,··· ,|D̃|, w = {wi}i∈1,··· ,|D̃|, vi, wi ∈ Ki, by definition, for any fixed i ∈
{1, · · · , |D̃|} at-least one of vi or wi are zero.

The required condition for D̃ to be a sufficient replacement for DX is as follows. Suppose (v, w) =
(v̄i, w̄i)i∈(1,··· ,|D̃|) denote the optimal solutions of Equation equation 160. Then we require

m ≥
∑

Di∈D̃

|{v̄i : v̄i ̸= 0} ∪ {w̄i : w̄i ̸= 0}|. (161)

Or, the number of neurons in the neural network are greater than the number of indices i for which
at-least one of v∗i or w∗

i is non-zero. Further,

diag(Xu∗i ≥ 0 : i ∈ [m]) ∈ D̃. (162)

In other words, the diagonal matrices induced by the optimal u∗i ’s of Equation equation 147 must be
included in our sample of diagonal matrices. This is proved in Theorem 2.1 of Mishkin et al. (2022).

A computationally efficient method for obtaining D̃ and obtaining the optimal values of the Equation
equation 147, is laid out in Mishkin et al. (2022). In this method we first get our sample of diagonal
matrices D̃ by first sampling a fixed number of vectors from a d dimensional standard multivariate

30

Under review as a conference paper at ICLR 2024

distribution, multiplying the vectors with the data matrix X and then forming the diagonal matrices
based of which co-ordinates are positive. Then we solve an optimization similar to the one in
Equation equation 158, without the constraints, that its parameters belong to sets of the form Ki as
follows.

L
′

β(p) :=

(∥∥∥∥∥ ∑
Di∈D̃

Di(Xpi)− y

∥∥∥∥∥
2

2

)
, (163)

where p ∈ Rd×|D̃| . In order to satisfy the constraints of the form given in Equation equa-
tion 158, this step is followed by a cone decomposition step. This is implemented through a function
{ψ′

i}i∈{1,··· ,|D̃|}. Let p∗ = {p∗i }i∈{1,··· ,|D̃|} be the optimal solution of Equation equation 163. For

each i we define a function ψ
′

i : Rd → Rd × Rd as

ψ
′

i(pi) = (vi, wi) (164)
such that p = vi − wi, and vi, wi ∈ Ki

Then we obtain ψ(p∗i) = (v̄i, w̄i). As before, at-least one of vi, wi is 0. Note that in practice we
do not know if the conditions in Equation equation 161 and equation 162 are satisfied for a given
sampled D̃. We express this as follows. If D̃ was the full set of Diagonal matrices then we would
have (v̄i, w̄i) = v∗i , w

∗
i and ψ(v̄i, w̄i) = (u∗i , α

∗
i) for all i ∈ (1, · · · , |DX |). However, since that is

not the case and D̃ ∈ DX , this means that {ψ(v̄i, w̄i)}i∈(1,··· ,|D̃|) is an optimal solution of a non-
convex optimization different from the one in Equation equation 147. We denote this non-convex
optimization as L|D̃|(θ) defined as

L|D̃|(θ) =

∥∥∥∥∥
m

′∑
i=1

σ(Xui)αi − y

∥∥∥∥∥
2

2

, (165)

where m
′
= |D̃| or the size of the sampled diagonal matrix set. In order to quantify the error

incurred due to taking a subset of DX , we assume that the expectation of the absolute value of the
difference between the neural networks corresponding to the optimal solutions of the non-convex
optimizations given in Equations equation 165 and equation 147 is upper bounded by a constant
depending on the size of D̃. The formal assumption and its justification is given in Assumption 5.

F.1 PROPOSED NATURAL ACTOR CRITIC ALGORITHM WITH 2-LAYER CRITIC
PARAMETRIZATION (NAC2L)

We summarize the proposed approach in Algorithm 2. Algorithm 2 has an outer for loop with two
inner for loops. At a fixed iteration k of the outer for loop and iteration j of the first inner for loop,
we obtain a sequence of state action pairs and the corresponding state and reward by following the
estimate of the policy at the start of the iteration. In order to perform the critic update, the state action
pairs and the corresponding target Q values are stored in matrix form and passed to Algorithm 3, as
the input and output values respectively to solve the following optimization problem.

argmin
θ∈Θ

1

n

n∑
i=1

(
Qθ(si, ai)− r(si, ai)− γQk,j−1(si+1, ai+1)

)2

, (167)

where Qk,j−1 is the estimate of the Q function at the kth iteration of the outer for loop and the
(j − 1)th iteration of the first inner for loop of Algorithm 2. Qθ is a neural network defined as in
equation 149 and n is the number of state action pairs sampled at the kth iteration of the outer for
loop and the jth iteration of the first inner for loop of Algorithm 2. This is done at each iteration of
the first inner for loop to perform what is known as a Fitted Q-iteration step to obtain the estimate
of the critic.

Algorithm 3 first samples a set of diagonal matrices denoted by D̃ in line 2 of Algorithm 3. The
elements of D̃ act as the diagonal matrix replacement of the ReLU function. Algorithm 3 then solves
an optimization of the form given in Equation equation 167 by converting it to an optimization of
the form equation 152. This convex optimization is solved in Algorithm 3 using the projected

31

Under review as a conference paper at ICLR 2024

Algorithm 2 Natural Actor Critic with 2-Layer Critic Parametrization (NAC2L)
Input: Input: S, A, γ, Time Horizon K ∈ Z , Updates per time step J ∈ Z ,starting state sam-
pling distribution ν, Actor step sizes βi,k,∀k ∈ {1, · · · ,K}, i ∈ {1, · · · , n.J}, Critic step size
α, policy gradient step size η, Number of convex optimization steps Tk,j , k ∈ {1, · · · ,K}, j ∈
{1, · · · , J},

1: Initialize: λ0 = {0}d
2: for k ∈ {1, · · · ,K} do
3: Xk = ∅
4: for j ∈ {1, · · · , J} do
5: Take n state action pairs sampled from ν as the starting state distribution and then following

policy πλk
.

6: Set yi = ri + γQk,j−1(si+1, ai+1), where i ∈ {1, · · · , n}
7: Set Xj , Yj as the matrix of the sampled state action pairs and vector of estimated Q values

respectively
8: Xk = Xk ∪Xj

9: Call Algorithm 3 with input (X = Xj , y = Yj , T = Tk,j) and return parameter θ
10: Qk,j = Qθ

11: end for
12: w0 = 0d

13: for i ∈ {1, · · · , |Xk|} do
14: Ak,J(si, ai) = Qk,J(si, ai)−

∑
a∈A πλk

(a|si)Qk,J(si, a)

15: wi = wi − βi

(
wi·∇λ log πλk

(ai|si)−Ak,J(si, ai)
)
∇λ log πλk

(ai|si)
16: end for
17: Update λk+1 = λk + η

(
1

1−γ

)
w|Xk|

18: end for
Output: πλK+1

Algorithm 3 Neural Network Parameter Estimation
1: Input: data (X, y, T)

2: Sample: D̃ = diag(1(Xgi > 0)) : gi ∼ N (0, I), i ∈ [|D̃|]
3: Initialize y1 = 0, u1 = 0

Initialize g(u) = ∥
∑

Di∈D̃DiXui − y∥22
4: for i ∈ {0, · · · , T} do
5: ui+1 = yi − αi∇g(yi)
6: yi+1 = argminy:|y|1≤Rmax

1−γ
∥ui+1 − y∥22

7: end for
8: Set uT+1 = u∗

9: Solve Cone Decomposition:
v̄, w̄ ∈ u∗i = vi − wi, i ∈ [d]} such that vi, wi ∈ Ki and at-least one vi, wi is zero.

10: Construct (θ = {ui, αi}) using the transformation

ψ(vi, wi) =

{
(vi, 1), if wi = 0
(wi,−1), if vi = 0
(0, 0), if vi = wi = 0

(166)

for all i ∈ {1, · · · ,m}
11: Return θ

gradient descent algorithm. After obtaining the optima for this convex program, denoted by u∗ =
{u∗i }i∈{1,··· ,|D̃|}, in line 10, we transform them into an estimate of the solutions for the optimization
given in equation 167, which are then passed back to Algorithm 2. The procedure is described in
detail along with the relevant definitions in Appendix F.

The estimate ofw∗
k is obtained in the second inner for loop of Algorithm equation 2 where a gradient

descent is performed for the loss function of the form given in Equation equation 9 using the state

32

Under review as a conference paper at ICLR 2024

action pairs sampled in the first inner for loop. Note that we do not have access to the trueQ function
that is required for the critic update. Thus we use the estimate of the Q function obtained at the end
of the first inner for loop. After obtaining our estimate of the minimizer of Equation equation 9,
we update the policy parameter using the stochastic gradient update step. Here the state action pairs
used are the same we sampled in the first inner for loop.

Now since we do not know the exact convex reformulation but instead use an approximation, we
have the following additional assumption.

Assumption 5. Let θ∗ ≜ argminθ∈Θ L(θ), where L(θ) is defined in equation 147 and we denote
Qθ∗(·) as Qθ(·) as defined in equation 149 for θ = θ∗. Also, let θ∗

D̃
≜ argminθ∈Θ L|D̃|(θ), where

LD̃(θ) is the loss function L(θ) with the set of diagonal matrices D replaced by D̃ ∈ D. Further,
we denote Qθ∗

|D̃|
(·) as Qθ(·) as defined in equation 149 for θ = θ∗|D̃|. Then we assume

Es,a(|Qθ∗ −Qθ∗
|D̃|

|)ν ≤ ϵ|D̃|, (168)

for any (s, a) ∼ ζν
πλk

.

Thus, ϵ|D̃| is a measure of the error incurred due to taking a sample of diagonal matrices D̃ and
not the full set DX . In practice, setting |D̃| to be the same order of magnitude as d (dimension
of the data) gives us a sufficient number of diagonal matrices to get a reformulation of the non
convex optimization problem which performs comparably or better than existing gradient descent
algorithms, therefore ϵ|D̃| is only included for theoretical completeness and will be negligible in
practice. This has been practically demonstrated in Mishkin et al. (2022); Bartan & Pilanci (2022);
Sahiner et al. (2022).

Before proceeding with the proof further, we would like to prove two supplementary lemmas
Lemma 8. Consider an optimization of the form given in Equation equation 160 denoted by L|D̃|
and it’s convex equivalent denoted by L0. Then the value of these two loss functions evaluated at
(v, w) = (vi, wi)i∈{1,··· ,|D̃|} and θ = ψ(vi, wi)i∈{1,··· ,|D̃|} respectively are equal and thus we have

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = L0((vi, wi)i∈{1,··· ,|D̃|}) (169)

Proof. Consider the loss functions in Equations equation 158, equation 163 are as follows

L0((vi, wi)i∈{1,··· ,|D̃|}) = ||
∑

Di∈D̃

Di(X(vi − wi))− y||22 (170)

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = ||
|D̃|∑
i=1

σ(Xψ(vi, wi)1)ψ(vi, wi)2 − y||22, (171)

where ψ(vi, wi)1, ψ(vi, wi)2 represent the first and second coordinates of ψ(vi, wi) respectively.

For any fixed i ∈ {1, · · · , |D̃|} consider the two terms

Di(X(vi − wi)) (172)
σ(Xψ(vi, wi)1)ψ(vi, wi)2 (173)

For a fixed i either vi orwi is zero. In case both are zero, both of the terms in Equations equation 172
and equation 173 are zero as ψ(0, 0) = (0, 0). Assume that for a given i wi = 0. Then we have
ψ(vi, wi) = (vi, 1). Then equations equation 172, equation 173 are.

Di(X(vi) (174)
σ(X(vi)) (175)

33

Under review as a conference paper at ICLR 2024

But by definition of vi we have Di(X(vi) = σ(X(vi)), therefore Equations equation 174, equa-
tion 175 are equal. Alternatively if for a given i vi = 0, then ψ(vi, wi) = (wi,−1), then the terms
in equation 172, equation 173 become.

−Di(X(wi) (176)
−σ(X(wi)) (177)

By definition of wi we have Di(X(wi) = σ(X(wi)), then the terms in equation 176, equation 176
are equal. Since this is true for all i, we have

L|D̃|(ψ(vi, wi)i∈{1,··· ,|D̃|}) = L0((vi, wi)i∈{1,··· ,|D̃|}) (178)

Lemma 9. The functionQθ(x) defined in equation equation 149 is Lipschitz continuous in θ, where
θ is considered a vector in R(d+1)m with the assumption that the set of all possible θ belong to the
set B = {θ : |θ∗ − θ|1 < 1}, where θ∗ is some fixed value.

Proof. First we show that for all θ1 = {ui, αi}, θ2 = {u′

i, α
′

i} ∈ B we have αi = α
′

i for all
i ∈ (1, · · · ,m)

Note that

|θ1 − θ2|1 =

m∑
i=1

|ui − u
′

i|1 +
m∑
i=1

|αi − α
′

i|, (179)

where |ui − u
′

i|1 =
∑d

j=1 |uij − u
′

ij
| with uij , u

′

ij
denote the jth component of ui, u

′

i respectively.

By construction αi, α
′

i can only be 1, −1 or 0. Therefore if αi ̸= α
′

i then |αi − α
′

i| = 2 if both non
zero or |αi − α

′

i| = 1 if one is zero. Therefore |θ1 − θ2|1 ≥ 1. Which leads to a contradiction.

Therefore αi = α
′

i for all i and we also have

|θ1 − θ2|1 =

m∑
i=1

|ui − u
′

i|1 (180)

Qθ(x) is defined as

Qθ(x) =

m∑
i=1

σ
′
(xTui)αi (181)

From Proposition 1 in Scaman & Virmaux (2018) the function Qθ(x) is Lipschitz continuous in x,
therefore there exist l > 0 such that

|Qθ(x)−Qθ(y)| ≤ l|x− y|1 (182)

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(yTui)αi| ≤ l|x− y|1 (183)

If we consider a single neuron of Qθ, for example i = 1, we have l1 > 0 such that

|σ
′
(xTu1)αi − σ

′
(yTu1)αi| ≤ l1|x− y|1 (184)

34

Under review as a conference paper at ICLR 2024

Now consider Equation equation 184, but instead of considering the left hand side a a function of
x, y consider it a function of u where we consider the difference between σ

′
(xTu)αi evaluated at

u1 and u
′

1 such that

|σ
′
(xTu1)αi − σ

′
(xTu

′

1)αi| ≤ lx1 |u1 − u
′

1|1 (185)

for some lx1 > 0.

Similarly, for all other i if we change ui to u
′

i to be unchanged we have

|σ
′
(xTui)αi − σ

′
(xTu

′

i)αi| ≤ lxi |ui − u
′

i|1 (186)

for all x if both θ1, θ2 ∈ B.

Therefore we obtain

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤
m∑
i=1

|σ
′
(xTui)αi − (xTu

′

i)αi| (187)

≤
m∑
i=1

lxi |ui − u
′

i|1 (188)

≤ (sup
i
lxi)

m∑
i=1

|ui − u
′

i|1 (189)

≤ (sup
i
lxi)|θ1 − θ2| (190)

This result for a fixed x. If we take the supremum over x on both sides we get

sup
x

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤ (sup
i,x

lxi)|θ1 − θ2| (191)

Denoting (supi,x l
x
i) = l, we get

|
m∑
i=1

σ
′
(xTui)αi −

m∑
i=1

σ
′
(xTu

′

i)αi| ≤ l|θ1 − θ2|1 (192)

∀x ∈ Rd (193)

Now since the critic step becomes a convex optimization Lemma 6 now becomes

Lemma 10. For a given iteration k of Algorithm 2 and iteration j of the first for loop of Algorithm
2, let the number of steps of the projected gradient descent performed by Algorithm 3, denoted by
Tk,j , and the gradient descent step size αk,j satisfy

αk,j =
||u∗k,j ||2

Lk,j

√
Tk,j + 1

, (194)

for some constants Lk,j and || (u∗k) ||2. Then the error ϵk4
defined in Definition 7 is upper bounded

as

E(|ϵ4k,j |) ≤ Õ

(
1√
Tk,j

)
+ ϵ|D̃|, (195)

35

Under review as a conference paper at ICLR 2024

Proof. For a given iteration k of Algorithm 1 and iteration j of the first inner for loop, the optimiza-
tion problem to be solved in Algorithm 3 is the following

L(θ) = 1

n

n∑
i=1

(
Qθ(si, ai)−

(
r(si, ai) + γ max

a′∈A
γQk,j−1(s

′
, a

′
)

))2

(196)

Here, Qk,j−1 is the estimate of the Q function from the iteration j − 1 and the state action pairs
(si, ai)i={1,··· ,n} have been sampled from a distribution over the state action pairs denoted by ν.
Since minθ L(θ) is a non convex optimization problem we instead solve the equivalent convex prob-
lem given by

u∗k,j = argmin
u

gk,j(u) = argmin
u

||
∑

Di∈D̃

DiXk,jui − yk||22 (197)

subject to|u|1 ≤ Rmax

1− γ
(198)

Here,Xk,j ∈ Rn×d is the matrix of sampled state action pairs at iteration k, yk ∈ Rn×1 is the vector
of target values at iteration k. D̃ is the set of diagonal matrices obtained from line 2 of Algorithm 3
and u ∈ R|D̃d|×1 (Note that we are treating u as a vector here for notational convenience instead of
a matrix as was done in Section 4).

The constraint in Equation equation 198 ensures that the all the co-ordinates of the vector∑
Di∈D̃DiXk,jui are upper bounded by Rmax

1−γ (since all elements of Xk,j are between 0 and 1).
This ensures that the corresponding neural network represented by Equation equation 149 is also
upper bounded by Rmax

1−γ . We use the a projected gradient descent to solve the constrained convex
optimization problem which can be written as.

u∗k,j = argmin
u:|u|1≤Rmax

1−γ

gk,j(u) = argmin
u:|u|1≤Rmax

1−γ

||
∑

Di∈D̃

DiXk,jui − yk||22 (199)

From Ang, Andersen(2017). “Continuous Optimization” [Notes]. https://angms.science/doc/CVX
we have that if the step size α =

||u∗
k,j ||2

Lk,j

√
Tk,j+1

, after Tk,j iterations of the projected gradient descent

algorithm we obtain

(gk,j(uTk,j
)− gk,j(u

∗)) ≤ Lk,j

||u∗k,j ||2√
Tk,j + 1

(200)

Where Lk,j is the lipschitz constant of gk,j(u) and uTk,j
is the parameter estimate at step Tk,j .

Therefore if the number of iteration of the projected gradient descent algorithm Tk,j and the step-size
α satisfy

Tk,j ≥ L2
k,j ||u∗k,j ||22ϵ−2 − 1, (201)

α =
||u∗k,j ||2

Lk,j

√
Tk,j + 1

, (202)

we have

(gk,j(uTk,j
)− gk,j(u

∗)) ≤ ϵ (203)

36

Under review as a conference paper at ICLR 2024

Let (v∗i , w
∗
i)i∈(1,··· ,|D̃|), (v

Tk,j

i , w
Tk,j

i)i∈(1,··· ,|D̃|) be defined as

(v∗i , w
∗
i)i∈(1,··· ,|D̃|) = ψ

′

i(u
∗
i)i∈(1,··· ,|D̃|) (204)

(v
Tk,j

i , w
Tk,j

i)i∈(1,··· ,|D̃|) = ψ
′

i(u
Tk,j

i)i∈(1,··· ,|D̃|) (205)

where ψ
′

is defined in Equation equation 164.

Further, we define θ∗|D̃| and θTk,j as

θ∗|D̃| = ψ(v∗i , w
∗
i)i∈(1,··· ,|D̃|) (206)

θTk,j = ψ(v
Tk,j

i , w
Tk,j

i)i∈(1,··· ,|D̃|) (207)

where ψ is defined in Equation equation 159, θ∗|D̃| = argminθ L|D̃|(θ) for L|D̃|(θ) defined in
Appendix F.

Since (g(uTk,j
)− g(u∗)) ≤ ϵ, then by Lemma 8, we have

L|D̃|(θ
Tk,j)− L|D̃|(θ

∗
|D̃|) ≤ ϵ (208)

Note that L|D̃|(θ
Tk,j)−L|D̃|(θ

∗
|D̃|) is a constant value. Thus we can always find constant C

′

k,j such
that

C
′

k|θTk,j − θ∗|D̃||1 ≤ L|D̃|(θ
Tk,j)− L|D̃|(θ

∗
|D̃|) (209)

|θTk,j − θ∗|D̃||1 ≤ L(θTk,j)− L(θ∗)
C

′
k

(210)

Therefore if we have

Tk,j ≥ L2
k,j ||u∗k,j ||22ϵ−2 − 1, (211)

αk,j =
||u∗k||2

Lk,j

√
Tk,j + 1

, (212)

then we have

|θTk,j − θ∗|1 ≤ ϵ

C
′
k

(213)

which according to Equation equation 210 implies that

C
′

k|θTk,j − θ∗|D̃||1 ≤ L|D̃|(θ
Tk,j)− L|D̃|(θ

∗
|D̃|) ≤ ϵ (214)

Dividing Equation equation 214 by C
′

k we get

|θTk,j − θ∗|D̃||1 ≤
L|D̃|(θ

Tk,j)− L|D̃|(θ
∗
|D̃|)

C
′
k

≤ ϵ

C
′
k

(215)

Which implies

|θTk,j − θ∗|D̃||1 ≤ ϵ

C
′
k

(216)

37

Under review as a conference paper at ICLR 2024

Assuming ϵ is small enough such that ϵ
C

′
k

< 1 from lemma 9, this implies that there exists an
Lk,j > 0 such that

|QθTk,j (s, a)−Qθ∗
|D̃|

(s, a)| ≤ Lk,j |θTk,j − θ∗|D̃||1 (217)

≤ Lk,jϵ

C
′
k

(218)

for all (s, a) ∈ S ×A. Equation equation 218 implies that if

Tk,j ≥ L2
k,j ||u∗k,j ||22ϵ−2 − 1, (219)

αk,j =
||u∗k||2

Lk,j

√
Tk,j + 1

, (220)

then we have

E(|QθTk,j (s, a)−Qθ∗
|D̃|

(s, a)|) ≤ Lk,jϵ

C
′
k

(221)

By definition in section C Qk,j is our estimate of the Q function at the kth iteration of Algorithm 1
and thus we have QθTk,j = Qk,j which implies that

E(|Qk,j(s, a)−Qθ∗
D̃
(s, a)|) ≤ Lk,jϵ

C
′
k

(222)

If we replace ϵ by
C

′
k,jϵ

Lk,j
in Equation equation 221, we get that if

Tk,j ≥

(
C

′

k,jϵ

Lk,j

)−2

L2
k,j ||u∗k,j ||22 − 1, (223)

αk,j =
||u∗k||2

Lk,j

√
Tk,j + 1

, (224)

we have

E(|Qk,j(s, a)−Qθ∗
D̃
(s, a)|) ≤ ϵ (225)

From Assumption 5, we have that

E(|Qθ∗(s, a)−Qθ∗
D̃
(s, a)|) ≤ ϵ|D̃| (226)

where θ∗ = argminθ∈Θ L(θ) and by definition of Q3
k,j in Definition 6, we have that Q3

k,j = Qθ∗ .
Therefore if we have

Tk,j ≥

(
C

′

k,jϵ

Lk,j

)−2

L2
k,j ||u∗k,j ||22 − 1, (227)

αk,j =
||u∗k||2

Lk,j

√
Tk,j + 1

, (228)

38

Under review as a conference paper at ICLR 2024

we have

E(|Qk,j(s, a)−Q3
k,j(s, a)|)ν ≤ E(|Qk,j(s, a)−Qθ∗

D̃
(s, a)|) + E(|Q3

k,j(s, a)−Qθ∗
D̃
(s, a)|)

(229)
≤ ϵ+ ϵ|D̃| (230)

This implies

E(|Qk,j(s, a)−Q3
k,j(s, a)|) ≤ Õ

(
1√
Tk,j

)
+ ϵ|D̃| (231)

Thus replacing lemma 6 with lemma 10 we obtain the following.

Theorem 2. Suppose Assumptions 1-5 hold and we have, αi =
||u∗

k,j ||2
Lk,j

√
i+1

, η = 1√
K

and βi =
2

µk(i+1) , then we obtain

min
k≤K

(V ∗(ν)− V πλK (ν)) ≤O
(

1√
K(1− γ)

)
+

1

K(1− γ)

K∑
k=1

J−1∑
j=0

O
(
log log(n)√

n

)
+

+
1

K(1− γ)

K∑
k=1

J−1∑
j=0

O

(
1√
Tk,j

)
+

1

K(1− γ)

K∑
k=1

O(γJ)

+
1

1− γ

(
ϵbias + (

√
ϵapprox) + ϵ|D̃|

)
(232)

Hence, for K = O(ϵ−2(1− γ)−2), J = O
(
log
(
1
ϵ

))
, n = Õ

(
ϵ−2(1− γ)−2

)
,

Tk,j = O(ϵ−2(1− γ)−2) we have

min
k≤K

(V ∗(ν)− V πλK (ν)) ≤ ϵ+
1

1− γ

(
ϵbias + (

√
ϵapprox) + ϵ|D̃|

)
, (233)

which implies a sample complexity of
∑K

k=1

∑J
j=1(n) = Õ

(
ϵ−4(1− γ)−4

)
.

Note that we no longer have the probability statement of ’with a probability at least 1− δ. However,
on the flip side, we have and extra error term in the form of ϵ|D̃|. This error represents the error
incurred due to the inability to obtain an exact convex reformulation of the 2 layer neural network.

39

	Introduction
	Related Works
	Problem Formulation
	Natural Actor Critic Algorithm Overview
	Global Convergence Result
	Assumptions
	Main Result

	Proof Sketch of Theorem 1
	Conclusions
	Supplementary lemmas
	Supporting Lemmas
	Proof of Theorem 1
	Proof of Supporting Lemmas
	Proof Of Lemma 3
	Proof Of Lemma 4
	Proof Of Lemma 5
	Proof Of Lemma 6
	Proof Of Lemma 7

	Comparison of Sample Complexity Analysis with Natural Policy Gradient
	Sample Complexity using Convex Reformulation with Two-Layer Neural Networks
	Proposed Natural Actor Critic Algorithm with 2-Layer Critic Parametrization (NAC2L)

