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SimCEN: Simple Contrast-enhanced Network for CTR Prediction
Anonymous Authors

ABSTRACT
Click-through rate (CTR) prediction is an essential component of
industrial multimedia recommendation, and the key to enhancing
the accuracy of CTR prediction lies in the effective modeling of
feature interactions using rich user profiles, item attributes, and
contextual information. Most of the current deep CTRmodels resort
to parallel or stacked structures to break through the performance
bottleneck of Multi-Layer Perceptron (MLP). However, we identify
two limitations in these models: (1) parallel or stacked structures
often treat explicit and implicit components as isolated entities,
leading to a loss of mutual information; (2) traditional CTR models,
whether in terms of supervision signals or interaction methods,
lack the ability to filter out noise information, thereby limiting the
effectiveness of the models.

In response to this gap, this paper introduces a novel model by
integrating alternate structure and contrastive learning into only
one simple MLP, discarding the design of multiple MLPs respon-
sible for different semantic spaces, named the Simple Contrast-
enhanced Network (SimCEN), which employs a contrastive prod-
uct to build second-order feature interactions that have the same
semantic but different representation spaces. Additionally, it em-
ploys an external-gated mechanism between linear layers to fa-
cilitate explicit learning of feature interactions and to filter out
noise. At the final representation layer of the MLP, a contrastive
loss is incorporated to help the MLP obtain self-supervised sig-
nals for higher-quality representations. Experiments conducted
on six real-world datasets demonstrate the effectiveness and com-
patibility of this simple framework, which can serve as a substi-
tute for MLP to enhance various representative baselines. Our
source code and detailed running logs will be made available at
https://anonymous.4open.science/r/SimCEN-8E21.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Contrastive Learning, Micro-video, Feature Interaction, Neural Net-
work, Recommender Systems, CTR Prediction

1 INTRODUCTION
Multimedia recommendation is a critical component of industrial
recommender systems [5, 17, 31], which enhance the precision of
content delivery to users by aggregating a wealth of multimodal

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

………

Fusion

ො𝑦

Explicit

Explicit

Fusion

ො𝑦

Fusion

ො𝑦

Stacked StructureParallel Structure Alternate  Structure

Implicit

Feature Embeddings Layer

(MLP) Implicit (MLP) Implicit (MLP)

Implicit (MLP)

Explicit (Product)

(Product)

Feature Embeddings Layer Feature Embeddings Layer

Figure 1: The architecture comparison among parallel,
stacked, and alternate structures.

information. Click-through rate (CTR) prediction is a vital element
in achieving this goal, leveraging user profiles, item attributes, and
context to predict user-item interactions. Accurate CTR predictions
significantly influence system profits [3, 6, 14, 52], while also im-
proving user satisfaction and retention through better recognition
of user interests, enhancing the overall experience.

The Multi-Layer Perceptron (MLP) is a backbone component
widely used in deep learning, with applications across fields like
computer vision (CV) [16, 45], natural language processing (NLP)
[10, 47], and recommender systems [19, 34, 64]. However, some
studies have pointed out that while MLP is proven to be a universal
function approximator [20], it still struggles to learn certain simple
product operations [42], such as the inner product. In the CTR
prediction tasks, the effectiveness of product operations has been
widely proven [38, 39, 41, 43], and these operations are integrated
as explicit interaction methods in most deep CTR models to break
through the performance bottleneck of implicit interactions, which
are typically modeled using MLPs. According to the method of inte-
gration, as illustrated in Figure 1, explicit and implicit components
can be divided into two structural types: parallel [3, 14, 29, 51, 52]
and stacked structures [27, 39, 54, 60]. The parallel structure
typically integrates explicit & implicit components in a parallel
manner, where both components are processed separately and their
results are combined at the fusion layer. On the other hand, the
stacked structure serially combines explicit & implicit components,
where the output of one component is fed into the next.

Despite their effectiveness, current CTR models based on the
aforementioned two structures have some limitations:

• Lack of Information Fusion.Most models attempt to decouple
multimodal feature interactions into two independent compo-
nents to model low-order and high-order feature interactions
simultaneously [6, 14, 51]. However, compared to the alternate
structure, their components are too independent, neglecting
layer-by-layer information fusion and interaction.

• Feeble Communication and Supervision Signals. Typically,
the augmented feature embeddings are treated as additional se-
mantic spaces to help the model capture more diverse informa-
tion [27, 34, 43]. However, these semantic spaces lack an effective
means of communication and auxiliary supervision signals to
prevent the model from learning redundant information.

https://anonymous.4open.science/r/SimCEN-8E21
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• Excessive Noise in Feature Interactions. The information
gained from the traditional transition of feature interactions
from low-order to high-order is not always effective, which often
introduces a significant amount of noise [9, 30, 62]. Therefore,
we need to seek more efficient ways of interaction.

In this paper, we try to address the aforementioned limitations from
the perspective of contrastive learning (CL) [22, 57] in a simple yet
effective manner, exploring a feedforward neural network more
suitable for CTR prediction. Recently, CL has garnered sustained
interest across multiple domains [4, 13, 24, 33, 58, 59]. The CL aids
model learning in a self-supervised manner to obtain higher-quality
representations, where the fundamental concept involves introduc-
ing alignment and uniformity constraints [53] between samples
from different views obtained through data augmentation. For CTR
prediction, this idea can, with some adjustments, be extended to the
capture of feature interaction information across multiple semantic
spaces, enabling each space to receive auxiliary supervision signals
and enhancing the model’s robustness.

However, we observe that most contrastive learning methods
[50, 55, 56, 59] do not facilitate communication between multi-
ple views (semantic spaces), which limits the effectiveness of the
models. For another thing, most existing CTR models research en-
deavors to set up more complex explicit components to further
enhance the model’s performance [7, 29, 44, 48, 49], while neglect-
ing exploration into components’ communication and supervision
signals. Therefore, our work firstly defines the concept of alternate
structure and introduces a contrastive loss into a simple MLP to
address the aforementioned limitations, leading to the proposal
of a new improved MLP framework, named the Simple Contrast-
enhanced Network (SimCEN). Overall, alternate structure implies
building features interaction within the network in a way that they
are intrinsically part of the model’s architecture, rather than being
separate components. This leads to effective multimodal informa-
tion fusion. Contrastive learning refers to the use of data itself
as supervision, which could provide additional signals to guide
the MLP in learning richer interactions without the need for ex-
plicit labels. More specifically, SimCEN is comprised of several key
ideas: (1) contrastive product, which augments the feature embed-
dings to obtain second-order interaction information with the same
semantics but different representation spaces; (2) external-gated
mechanism, which filters and interacts with the feature informa-
tion across multiple semantic spaces; (3) balancing diversity and
homogeneity [25], which employs different activation functions
and dropout rates across different semantic spaces of the hidden
layers, and utilizes the intra-layer connection and contrastive loss
(L𝑐𝑙 ) in the final representation. The major contributions of this
paper are summarized as follows:

• We propose a new alternate structure, which leads to a finer-
grained aggregation of feature interaction information by layer-
by-layer integrating explicit and implicit components.

• We introduce a simple yet effective contrastive learning frame-
work that bolsters the MLP’s capability to model feature interac-
tions by balancing diversity and homogeneity in representations.

• We conduct comprehensive experiments across six real-world
datasets, demonstrating the effectiveness and compatibility of
the proposed SimCEN.

2 REVISITING EXPLICIT & IMPLICIT
PARADIGM FOR CTR PREDICTION

2.1 Multimodal Feature Embedding
In the explicit & implicit paradigm, feature embedding is a com-
monly used technique that maps high-dimensional and sparse raw
features into dense and continuous representations: e𝑖 = E𝑖𝑥𝑖 ,
where E𝑖 ∈ R𝑑×𝑠𝑖 and 𝑠𝑖 separately indicate the embedding matrix
and the vocabulary size for the 𝑖𝑡ℎ field, 𝑑 represents the embedding
dimension. Subsequently, we can obtain the result representation
of the embedding layer: E =

[
e1; e2; · · · ; e𝑓

]
∈ R𝑓 ×𝑑 , where 𝑓

denotes the number of fields. S𝑖 = segment(E), where S𝑖 represents
the 𝑖𝑡ℎ semantic space and the segment represents various aug-
mentation or no operations, such as gating mechanisms, product
operation, adding noise and so on.

For multimodal feature data such as micro-videos, their thumb-
nails can be preprocessed using a visual model (e.g., ResNet [16])
to produce high-dimensional visual embeddings that are associated
with corresponding category labels. These embeddings can then
be further reduced in dimensionality through Principal Compo-
nent Analysis (PCA) [1], which decreases the computational cost
of the model while preserving essential features. As for features
containing timestamps, such as a user’s sequence of click behaviors,
average pooling can be employed to integrate the high-dimensional
and variable behavioral sequences over time into a stable represen-
tation, enabling interaction with other low-dimensional features.

2.2 Parallel Structure
Parallel structures [48, 52] typically employ two concurrent com-
ponents, explicit & implicit, that attempt to complement the per-
formance bottleneck of MLPs by leveraging low-order explicit fea-
ture interactions in different semantic spaces. Formally, the fusion
scheme for the parallel structure is defined as follows:

V𝑒𝑥𝑝

𝑖
= explicit(S𝑖 ),

V𝑖𝑚𝑝

𝑖
= implicit(S𝑖 ),

(1)

𝑦 = F𝑓 𝑢𝑠𝑖𝑜𝑛 (V
𝑒𝑥𝑝

1 ,V𝑒𝑥𝑝

2 , . . . ,V𝑒𝑥𝑝
𝑛 ,V𝑖𝑚𝑝

1 ,V𝑖𝑚𝑝

2 , . . . ,V𝑖𝑚𝑝
𝑛 ), (2)

where V𝑒𝑥𝑝

𝑖
represents the output of the explicit component in

the 𝑖𝑡ℎ semantic space, V𝑖𝑚𝑝

𝑖
denotes the result of the implicit

capture in the semantic space. F𝑓 𝑢𝑠𝑖𝑜𝑛 is the aggregation function.
𝑦 represents the final prediction value of the model. The parallel
structure attempts to simultaneously capture explicit and implicit
feature interaction information to achieve a complementary effect.

2.3 Stacked Structure
Stacked structures [38, 60] utilize explicit interactions based on
product operations to augment the information within the original
semantic space. Simply put, this idea seeks to directly enrich the
MLP’s input by introducing the product information that it typically
finds difficult to learn. Formally, the definition of stacked structures
is as follows:

V𝑒𝑥𝑝 = explicit(E),

V𝑖𝑚𝑝 = implicit(V𝑒𝑥𝑝

𝑖
),

𝑦 = F𝑓 𝑢𝑠𝑖𝑜𝑛 (V𝑖𝑚𝑝 ),
(3)
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Figure 2: CTR prediction distributions of three structures in
the PNN model on MovieLens dataset.

2.4 Alternate Structure
It is clear that in both parallel and stacked structures, the explicit
and implicit components exist independently as parts of the model,
rather than being unified. Therefore, the alternate structure inter-
sperses explicit interactions within the implicit ones, aiding in the
better acquisition of mutual information between the explicit and
implicit components. More specifically, we introduce explicit prod-
uct operations at every linear layer of the MLP, allowing the explicit
and implicit components to be integrated as a whole, rather than
as separate entities. The definition of the alternate structure is as
follows:

V𝑎𝑙𝑡
0 = {S1, S2, . . . , S𝑛},

V𝑎𝑙𝑡
𝑙+1 = explicit𝑙 (implicit𝑙 (V𝑎𝑙𝑡

𝑙
)),

or V𝑎𝑙𝑡
𝑙+1 = implicit𝑙 (explicit𝑙 (V𝑎𝑙𝑡

𝑙
)),

𝑦 = F𝑓 𝑢𝑠𝑖𝑜𝑛 (V𝑎𝑙𝑡
𝐿 ),

(4)

where 𝑛 represents the number of suitable semantic spaces, and
V𝑎𝑙𝑡
𝑙

denotes the output of the 𝑙𝑡ℎ layer of the alternate structure.
This structure alternates between implicit and explicit components
to model feature interactions.
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Figure 3: CTR prediction distributions of three structures in
the DCN model on Frappe dataset.

Table 1: Performance comparison of three structures.
Logloss reflects the classification capability of the model,

while AUC indicates the model’s ranking ability.

Model Structure MovieLens Frappe
Logloss↓ AUC↑ Logloss↓ AUC↑

DNN \ 0.2125 96.82 0.1653 98.11

DCN
parallel 0.2087 96.91 0.1544 98.38
stacked 0.2051 96.99 0.1465 98.36
alternate 0.2025 96.87 0.1326 98.44

PNN
parallel 0.2099 96.93 0.1461 98.41
stacked 0.2092 96.91 0.1556 98.28
alternate 0.2030 96.92 0.1423 98.39

DCNv2
parallel 0.2091 96.92 0.1484 98.45
stacked 0.2094 96.87 0.1507 98.41
alternate 0.2057 96.77 0.1405 98.42

2.5 Performance Analysis of Alternate Structure
To validate the effectiveness of the alternate structure, performance
comparisons of the three structures are conducted on two bench-
mark datasets. The results are shown in Table 1. It can be observed
that while the parallel structure achieves commendable AUC perfor-
mance, the alternate structure consistently outperforms the other
two structures in terms of Logloss optimization, indicating its higher
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efficacy in predicting the true CTR. We conjecture that this might
be due to the alternate structure helping the MLP learn the product
operation layer by layer, which is difficult for it to capture on its
own [42], resulting in more accurate predictions.

Predicting user CTR is a classic binary classification problem
[39, 54]. To further investigate the discrepancies between the fi-
nal predictions of the three structures and the true labels ∈ {0, 1},
we plot the CTR prediction distributions for positive and negative
samples separately using a polar coordinate system (randomly sam-
pling 1,000 instances). The corresponding predictions are recorded
when each structure is performing optimally. The visualizations are
shown in Figures 3 and 2. To more intuitively represent the differ-
ences between prediction and true values, we calculate the average
distance ( 1

1000
∑1000
𝑖=1 |𝑦𝑖 − 0|) of the predicted values from the center

point in each polar coordinate system. For negative samples (true
label = 0), a shorter average distance is preferable, indicating more
accurate model predictions (i.e., the distribution of predictions is
more clustered around the center point), while for positive samples,
the opposite is true.

By correlating Figures 3 and 2 with the corresponding Logloss
in Table 1, we can preliminarily demonstrate the effectiveness of
the alternate structure. The prediction distribution of the alternate
structure for negative samples is more concentrated around the
center point, with a shorter average distance. In contrast, for posi-
tive samples, the prediction values tend to be uniformly distributed
toward (1, 𝜃 ), with a longer average distance. Similarly, Logloss is
a metric that measures the difference between the predicted proba-
bility by the model and the actual occurrence probability [39, 50].
Therefore, when the model can more accurately classify both nega-
tive and positive samples, Logloss decreases. The alternate structure
excels in both aspects, resulting in lower Logloss values as shown
in Table 1 compared to other structures.

3 SIMCEN: SIMPLE CONTRAST-ENHANCED
NETWORK FOR CTR PREDICTION

Based on the results from Section 2, we have demonstrated the
efficacy of the alternate structure. Thus, in this section, to further
explore the potential of this structure, we attempt to enhance the
advantages of this structure by utilizing concepts related to con-
trastive learning. Next, we will introduce the SimCEN model from
the bottom up, with its architecture depicted in Figure 4.

3.1 Contrastive Product
As mentioned before, some existing studies [38, 39, 41, 42] have
extensively demonstrated the effectiveness of the inner product. By
combining feature pairs, not only assists MLP in learning the inner
product operation but also augments the data, thereby achieving
better performance. However, these studies only consider the up-
per triangular elements of the inner product matrix, not the full
elements. Therefore, we propose the concept of the contrastive
product to delineate two semantically identical but representation-
ally distinct second-order feature interaction spaces, allowing for
contrastive learning between the upper and lower triangular ele-
ments. The formulated representation of the contrastive product is
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Figure 4: The architecture of SimCEN.

as follows:
Sv1 = W⊤

𝑢𝑝 (Upper(E 𝜙 E⊤)),
Sv2 = W⊤

𝑢𝑛 (Under(E 𝜙 E⊤)),
(5)

where E ∈ R𝑓 ×𝑑 denotes feature embeddings,𝜙 ∈ R𝑑×𝑑 is learnable
weight matrix, Upper refers to the upper triangular part of the inner
product matrix, and likewise, Under refers to the under triangular
part, W𝑢𝑝 and W𝑢𝑛 ∈ R

𝑓 (𝑓 +1)
2 ×𝐷 are two transformation matrices.

Sv1 and Sv2 represent 2-order (o2) feature interactions that have
the same semantic but different representation spaces. Indeed, this
approach of expanding semantic spaces can yield a greater number
of spaces. However, due to considerations of time complexity, we
choose to expand only two additional semantic spaces.

3.2 External-Gated Mechanism
Gating mechanisms [11, 27, 34, 48, 54] are widely applied in CTR
prediction, but most of models utilize a self-gated mechanism [40],
where the gating signal is generated by the input information itself,
rather than depending on an external input: F𝐺𝑎𝑡𝑒 (S) = S⊙Gate(S).
However, it is evident that such a gating mechanism can only act
as an information filter and is incapable of performing crucial in-
teraction operations in CTR prediction. Therefore, we use a new
external-gated mechanism to create interaction signals between
representations of different semantic spaces and filter information:

F𝐺𝑎𝑡𝑒 (S1, S2) = S1 ⊙ Gate(S2),
Gate(S2) = 𝛼 ⊙ 𝜎 (WsS2 + bs), (6)
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whereWs and bs are weight and bias.𝛼 is a learnable parameter that
can adaptively scale the range of the sigmoid function (𝜎), thereby
obtaining a more dynamic interaction and gating capability.

3.3 Alternate Interaction
As defined in Section 2.4, when we construct an alternate struc-
ture, the order in which components are arranged inevitably arises
as an issue (akin to the sequence of batch norm and linear lay-
ers). However, after our experiment, there is less difference in the
performance of alternate structures in either order. For clarity of ex-
position, we default to describing the structure in an implicit before
explicit sequence. The formalization of the alternate interaction is
as follows:
• Input Layer: To enhance the diversity of semantic information,
we utilize the contrastive product to obtain two additional second-
order feature semantic spaces, which are then concatenated with
the Sego = flatten(E):

V𝑎𝑙𝑡
0 = Sego | | Sv1 | | Sv2 , (7)

• Interaction Layer: To further diversify the information captured
by the linear layer across three semantic spaces without losing
global information, we embrace a divide-and-conquer approach.
When V𝑎𝑙𝑡

𝑖
passes through a common linear layer, it is divided

into three parts, each processed separately:

Implicit : V𝑎𝑙𝑡
𝑙+1 = WV

𝑙
V𝑎𝑙𝑡
𝑙

+ bV
𝑙
,

Explicit : ego𝑙+1, v
1
𝑙+1, v

2
𝑙+1 = chunk(V𝑎𝑙𝑡

𝑙+1),
v1
𝑙+1 = F𝐺𝑎𝑡𝑒 (v1𝑙+1, ego𝑙+1) + v1

𝑙
+ Δv1

𝑙
,

v2
𝑙+1 = F𝐺𝑎𝑡𝑒 (v2𝑙+1, ego𝑙+1) + v2

𝑙
+ Δv2

𝑙
,

V𝑎𝑙𝑡
𝑙+1 = 𝜎𝑒𝑔𝑜 (ego𝑙+1) | | 𝜎v1 (v1𝑙+1) | | 𝜎v2 (v

2
𝑙+1),

(8)

where WV
𝑙
and bV

𝑙
are the weight and bias of the linear layer,

chunk represents the split operation (i.e., the inverse operation
of concatenation), ego, v1, and v2 respectively represent the tem-
porary representations of three semantic spaces (Sego, Sv1 , Sv2 ).
Δ represents random perturbation sampled from a uniform dis-
tribution, and 𝜎 ( ·) denotes different activation functions.

• Fusion Layer: To ensure the model captures both the diversity
and homogeneity of information, we further introduce L𝑐𝑙 and
intra-layer connection (ILC):

ILC : v1𝐿 = ego𝐿 ⊙ M(𝑚) + v1𝐿,

v2𝐿 = ego𝐿 ⊙ M(𝑚) + v2𝐿,
(9)

L𝑐𝑙 =
∑︁
𝑖∈B

− log
exp

(
(ego⊤

𝐿𝑖
v1
𝐿𝑖

+ ego⊤
𝐿𝑖
v2
𝐿𝑖
)/2𝜏

)
∑

𝑗∈B exp
(
v1⊤
𝐿𝑖

v2
𝐿𝑗
/𝜏
) , (10)

𝑦 = F𝑓 𝑢𝑠𝑖𝑜𝑛 (ego𝐿, v1𝐿, v
2
𝐿), (11)

where the temperature coefficient 𝜏 plays a regulatory role, B
represents the batch size, and 𝑖, 𝑗 represents the sample index.
M represents a mask randomly sampled from a Bernoulli dis-
tribution. The intra-layer connection can be seen as a form of
horizontally skip connection [16] that introduces a mask. Empir-
ically, this approach can ensure the homogeneity of v1, v2, and
ego with a probability𝑚.

Table 2: Dataset statistics

Dataset #Instances #Fields #Features
Avazu 40,428,966 24 3,750,999
Criteo 45,840,617 39 5,549,252

MovieLens 2,006,859 3 88,596
Frappe 288,609 10 5,382

MicroVideo 13,661,383 5 3,421,266
KuaiVideo 12,737,617 7 3,884,725

• Training: We combine the widely used binary cross entropy
(Logloss) [39, 50, 52, 65] with contrastive loss as our total loss
function:

L𝑡𝑜𝑡𝑎𝑙 = − 1
𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 log (𝑦𝑖 ) + (1 − 𝑦𝑖 ) log (1 − 𝑦𝑖 )) +𝜆 ·L𝑐𝑙 , (12)

where 𝜆 represents hyperparameters that control the balance be-
tween the loss functions, 𝑁 is the total number of training samples,
and 𝑦 represents the true label.

3.4 Discussion
In our model, unlike the approach in InfoNCE [35], we do not en-
force consistency between the two perturbed augmented semantic
spaces v1

𝐿
and v2

𝐿
. Instead, we encourage consistency between the

ego and them. In CTR prediction, users may exhibit diverse interests
(i.e., multi-interest), manifesting as vastly different click behaviors,
thus blindly introducing the alignment concept of contrastive learn-
ing often deteriorates feature representation learning [15]. As men-
tioned in CETN [25], by considering the diversity and homogeneity
of representations from different semantic spaces, we can introduce
the L𝑐𝑙 to help the model learn richer and higher-quality feature
information. Simultaneously, we introduced a product-based inter-
action operation between linear layers through the external-gated
mechanism, thereby finer-grained decoupling the representation
learning process of explicit and implicit feature interactions. This
strengthens the fusion and communication of information across
different semantic spaces and reduces feature interaction noise.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets and preprocessing. We evaluate SimCEN on six real-
world datasets: Avazu1 [54], Criteo2 [65], MovieLens3 [7], Frappe4
[2, 7], MicroVideo5 [5], and KuaiVideo6 [26]. Table 2 provides de-
tailed information about these datasets. For data preprocessing
methods, we follow the settings from [65]7.

Evaluation metrics. To compare the performance, we utilize
two commonly used metrics in CTR models: Logloss and AUC [14,
38, 43, 48]. Logloss is the calculation result of binary cross entropy.
A lower Logloss suggests a better capacity for fitting the true data
(i.e., classification capability). AUC stands for Area Under the ROC
Curve, which measures the probability that a positive instance will
1https://www.kaggle.com/c/avazu-ctr-prediction
2https://www.kaggle.com/c/criteo-display-ad-challenge
3https://grouplens.org/datasets/movielens/
4http://baltrunas.info/research-menu/frappe
5https://huggingface.co/datasets/reczoo/MicroVideo1.7M_x1/tree/main
6https://huggingface.co/datasets/reczoo/KuaiVideo_x1/tree/main
7https://github.com/reczoo/BARS/tree/main/datasets

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://grouplens.org/datasets/movielens/
http://baltrunas.info/research-menu/frappe
https://huggingface.co/datasets/reczoo/MicroVideo1.7M_x1/tree/main
https://huggingface.co/datasets/reczoo/KuaiVideo_x1/tree/main
https://github.com/reczoo/BARS/tree/main/datasets
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Table 3: Performance comparison of different models. "*": Integrating the original model with DNN networks. We bold the
performance of SimCEN and related models, while underlined scores are the second best. Meanwhile, we conducted a

two-tailed T-test (𝑝-values) to assess the statistical significance between the double SimCEN and the best baseline model.
Typically, CTR researchers consider an improvement of 0.1% in Logloss and AUC to be statistically significant [3, 50, 51, 65].

Avazu Criteo MovieLens Frappe MicroVideo KuaiVideoModels Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑
FM [41] 0.3762 78.55 0.4443 80.76 0.2775 94.25 0.2029 96.72 0.7665 67.01 0.6873 69.87
DNN [8] 0.3726 79.18 0.4393 81.28 0.2125 96.82 0.1653 98.11 0.4127 72.69 0.4366 74.09
PNN [38] 0.3719 79.32 0.4380 81.38 0.2092 96.91 0.1556 98.28 0.4152 72.91 0.4345 74.48

Wide & Deep [6] 0.3725 79.20 0.4382 81.35 0.2105 96.92 0.1525 98.32 0.4141 72.72 0.4360 73.99
DeepFM [14] 0.3723 79.21 0.4380 81.39 0.2111 96.92 0.1575 98.37 0.4315 71.12 0.4674 72.34
DCN [51] 0.3725 79.21 0.4384 81.35 0.2087 96.91 0.1544 98.38 0.4112 73.08 0.4336 74.54

xDeepFM [29] 0.3722 79.24 0.4385 81.35 0.2110 96.92 0.1509 98.45 0.4123 72.77 0.4340 74.64
FiGNN [27] 0.3738 79.11 0.4395 81.24 0.2605 95.10 0.2266 96.48 0.4151 72.34 0.4356 74.10
AutoInt* [43] 0.3722 79.24 0.4378 81.40 0.2075 96.97 0.1520 98.41 0.4143 72.77 0.4357 74.33
AFN* [7] 0.3727 79.21 0.4392 81.30 0.2066 96.84 0.1598 98.19 0.4125 72.84 0.4356 74.08

DCNv2 [52] 0.3724 79.22 0.4387 81.36 0.2091 96.92 0.1484 98.45 0.4130 73.02 0.4359 74.61
EDCN [3] 0.3716 79.35 0.4386 81.36 0.2649 96.03 0.1620 98.41 0.4142 72.84 0.4390 74.49

MaskNet [54] 0.3716 79.36 0.4397 81.25 0.2425 96.79 0.1916 98.32 0.4147 72.96 0.4405 73.95
GraphFM [28] 0.3754 78.72 0.4405 81.13 0.2384 95.95 0.2665 94.71 0.4169 72.35 0.4387 73.85
CL4CTR [50] 0.3724 79.21 0.4383 81.35 0.2148 96.83 0.1559 98.27 0.4117 73.10 0.4340 74.45
EulerNet [44] 0.3723 79.22 0.4421 81.14 0.2064 96.79 0.1478 98.16 0.4192 72.28 0.4406 74.01

SimCEN 0.3710 79.52 0.4376 81.47 0.2060 97.04 0.1440 98.47 0.4107 73.36 0.4315 74.77
SimCEN + MLP 0.3704 79.55 0.4374 81.47 0.2039 97.08 0.1407 98.53 0.4108 73.37 0.4321 74.81

SimCEN + SimCEN 0.3695 79.70 0.4371 81.49 0.1887 97.27 0.1350 98.56 0.4106 73.41 0.4306 74.95
T-test (𝑝-values) 2.97e-4 1.99e-8 8.02e-3 9.89e-4 2.67e-3 5.96e-3 1.20e-4 6.77e-3 9.83e-4 4.77e-4 2.13e-4 5.87e-5

be ranked higher than a randomly chosen negative one (i.e., ranking
ability). It’s worth noting that even a slight improvement in AUC
and Logloss is meaningful in the context of CTR prediction tasks.
Typically, CTR researchers consider improvements at the 0.001-
level (0.1%) to be statistically significant, as often highlighted in
existing literature [3, 50, 51, 65].

Baselines.We compared SimCEN with some classical state-of-
the-art (SOTA) models. Given that deep CTR models often per-
form better, for models that have both non-DNN and DNN ver-
sions, we tend to choose the latter. The list of models we have
chosen in chronological order of publication is as follows: FM [41]
(2010); DNN [8], PNN [38], Wide & Deep [6] (2016); DeepFM [14],
DCN [51] (2017 ); xDeepFM [29] (2018); FiGNN [27], AutoInt+ [43]
(2019); AFN+ [7] (2020); DCNv2 [52], EDCN [3], MaskNet [54]
(2021); GraphFM [28] (2022); CL4CTR [50], EulerNet [44] (2023).

Implementation Details. We implemented all models using
Pytorch [37] and refer to existing works [21, 65]. We employ the
Adam optimizer [23] to optimize all models, with a default learning
rate set to 0.001. For the sake of fair comparison, we set the embed-
ding dimension of MicroVideo and KuaiVideo to 64 [26], and the
embedding dimension of other datasets to 16 [63, 65], the numbers
of MLP hidden units are [400, 400, 400], and the batch size to 10,000
for all models. The hyperparameters of the baseline model were
configured and finetuned based on the optimal values provided in
[21, 65] and their original paper.

4.2 Overall Performance
We not only compared SimCEN with the selected 16 baseline mod-
els but also further investigated the joint performance of SimCEN
with MLP and the performance of the double SimCEN. The over-
all experimental results are shown in Table 3. We can draw the
following observations:
• Models based on the parallel structure (e.g., DCN, DeepFM, Au-
toInt*), by decoupling feature interaction learning into parallel

learning of explicit and implicit interactions, improve perfor-
mance. This confirms the rationality of separately modeling ex-
plicit and implicit feature interactions.

• Models based on the stacked structure (e.g., PNN, MaskNet,
FiGNN) improve performance through sequential deconstruc-
tion of feature interaction learning. It is worth noting that, for
example, in the cases of PNN and AutoInt*, there is no absolute
advantage of stacked structure over parallel structure, vice versa.
On the Avazu dataset, the former is better than the latter, while
on the Criteo dataset, it is the opposite.

• As depicted in Table 1, the standard alternate structure achieves
notable improvements primarily in Logloss optimization, while
its performance in AUC is lacking. Nevertheless, the double Sim-
CEN consistently demonstrates statistically significant enhance-
ments in both Logloss and AUC as verified by t-tests (with 𝑝-
values), and SimCEN even outperforms the strongest baseline
models. This serves as evidence of the efficacy of contrastive loss
and intra-layer connection. In terms of AUC, SimCEN achieves
an absolute gain of 0.16% on the Avazu dataset, and regarding
Logloss, it achieves an absolute improvement of 0.38% on the
Frappe dataset, both surpassing the 0.1% threshold for signif-
icance. This highlights the superiority of SimCEN over other
complex models.

• SimCEN can be jointly used with MLP or itself to capture richer
feature interaction information, further enhancing performance
beyond that of a single SimCEN. Meanwhile, the performance of
the double SimCEN is consistently better than SimCEN + MLP,
further confirming the superiority of SimCEN over MLP. More
specifically, SimCEN + MLP achieves an average absolute im-
provement of 0.2% for Logloss and 0.15% for AUC across the six
datasets, while the double SimCEN achieves an improvement of
0.61% for Logloss and 0.24% for AUC. This also demonstrates that
SimCEN’s optimization for Logloss is more remarkable.
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Table 4: Compatibility study of SimCEN. △Logloss and △AUC denote the average performance improvement.

Model Avazu Criteo MovieLens Frappe △Logloss ↓ △AUC ↑Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑ Logloss↓ AUC(%)↑
DNN 0.3726 79.18 0.4393 81.28 0.2125 96.82 0.1653 98.11 0.77% 0.27%SimCEN 0.3710 79.52 0.4376 81.47 0.2060 97.04 0.1440 98.47

Wide & Deep [6] 0.3725 79.20 0.4382 81.35 0.2105 96.92 0.1525 98.32 0.29% 0.13%Wide & Deep + SimCEN 0.3707 79.50 0.4377 81.44 0.2020 97.02 0.1514 98.38
DeepFM [14] 0.3723 79.21 0.4380 81.39 0.2111 96.92 0.1575 98.37 0.39% 0.13%DeepFM + SimCEN 0.3706 79.51 0.4375 81.46 0.2021 97.04 0.1529 98.43
xDeepFM [14] 0.3722 79.24 0.4385 81.35 0.2110 96.92 0.1509 98.45 0.25% 0.13%xDeepFM + SimCEN 0.3712 79.54 0.4380 81.43 0.2032 97.05 0.1500 98.46
DCN [51] 0.3725 79.21 0.4384 81.35 0.2087 96.91 0.1544 98.38 0.26% 0.14%DCN + SimCEN 0.3707 79.52 0.4376 81.47 0.2047 97.00 0.1503 98.43
AFN* [7] 0.3727 79.21 0.4392 81.30 0.2066 96.84 0.1598 98.19 0.59% 0.20%AFN + SimCEN 0.3707 79.53 0.4386 81.37 0.1963 97.06 0.1488 98.41

Table 5: Ablation study of SimCEN.

Model
Avazu Criteo MicroVideo KuaiVideo

△Logloss ↓ △AUC ↑ △Logloss ↓ △AUC ↑ △Logloss ↓ △AUC ↑ △Logloss ↓ △AUC ↑
SimCEN 0.3710 79.52 0.4376 81.47 0.4107 73.36 0.4315 74.77
w/o CP 0.3720 79.29 0.4376 81.44 0.4111 73.20 0.4335 74.41
w/o D 0.3707 79.49 0.4380 81.40 0.4119 72.97 0.4352 74.56
w/o AS 0.3710 79.47 0.4398 81.33 0.4116 73.09 0.4352 74.62
w/o ICL 0.3713 79.48 0.4380 81.42 0.4113 73.30 0.4333 74.65

4.3 In-Depth Study of SimCEN
4.3.1 Ablation Study. To investigate the effectiveness of the vari-
ous designs we propose, we designed six variants for SimCEN and
conducted ablation experiments.

• w/o CP: SimCEN without the contrastive product.
• w/o D: SimCEN without uniform noise Δ.
• w/o AS: SimCEN with MLP instead of the alternate structure.
• w/o ICL: SimCEN without intra-layer connection and L𝑐𝑙 .

The results of the ablation study are illustrated in Table 5. It can
be observed that the performance degradation is more pronounced
when removing the contrastive product and the alternate structure.
This demonstrates the effectiveness of multiple semantic spaces
and the alternate structure. Furthermore, we also note a perfor-
mance loss when eliminating the contrastive loss and the intra-
layer connection, emphasizing the importance of balancing both
homogeneity and diversity.

4.3.2 Compatibility Analysis. In order to confirm the compatibility
of SimCEN, we treat it as a substitute forMLP and incorporate it into
other classic baseline models. The experimental results are shown in
Table 4. It is evident that relative to traditional DNN, our proposed
SimCEN achieves significant improvements (greater than 0.1%) on
all six datasets, with average improvements of 0.77% and 0.27%
in Logloss and AUC optimization, respectively. Across all models,
SimCEN brings particularly significant performance gains on the
Avazu dataset, providing over 0.3% absolute improvement in AUC.
In terms of Logloss optimization, SimCEN delivers a 1% absolute
improvement for AFN. This demonstrates the effectiveness and
compatibility of SimCEN. Additionally, by observing the average
performance improvements brought by SimCEN, we can see that its
optimization for Logloss is greater than the improvement in AUC,
further confirming the effectiveness of the alternate structure.
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Figure 5: Influence of the magnitude 𝜆 and 𝜏 of CL.

4.3.3 Impact of 𝜆 and 𝜏 . We investigate the impact of the weight
coefficient 𝜆 and temperature coefficient 𝜏 of L𝑐𝑙 on both Logloss
and AUC. The experimental results are depicted in Figure 5. In gen-
eral, as 𝜆 increases and 𝜏 decreases, SimCEN achieves the lowest
Logloss. Moreover, the model attains higher AUC when 𝜏 is set to
0.2 or 0.3. This demonstrates that the contrastive loss, in conjunc-
tion with binary cross-entropy, can jointly optimize SimCEN for
improved performance.

4.3.4 Visualization of Final Representation. To explore the impact
of balancing diversity and homogeneity in different semantic spaces
on the final representation, we conducted a comparison between
SimCEN and a simple DNN (with input augmented to three times
the embeddings). We initially randomly sampled 1,000 instances
from the final representations. Subsequently, we employed t-SNE
[46] to map these representations into a 2-dimensional space and
visualized the distribution as depicted in Figure 6. Evidently, the
final representations learned by SimCEN are dispersed, whereas the
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Figure 6: Visualized final representations on MovieLens and Frappe datasets with three colors for different semantic spaces.

DNN obtains relatively concentrated representations. This implies
that by simultaneously considering diversity and homogeneity, we
can acquire richer and low-redundancy feature interaction infor-
mation. In contrast, the semantic information obtained by DNN is
relatively narrow.

Table 6: A comparison of different gating mechanisms.

Gating Variant Avazu Frappe
Mechanisms Logloss↓ AUC↑ Logloss↓ AUC↑

self-gated
#1 0.3712 79.41 0.1566 98.18
#2 0.3711 79.46 0.1684 97.91
#3 0.3716 79.49 0.1595 98.18

external-gated
#4 0.3721 79.33 0.2314 96.57
#5 0.3713 79.46 0.1503 98.25

#6 (SimCEN) 0.3710 79.52 0.1440 98.47

4.3.5 Impact of Different Gating Mechanisms. To explore the im-
pact of different gating mechanisms on model performance, we
designed six variants and conducted experiments:

• #1: V𝑎𝑙𝑡
𝐿

= V𝑎𝑙𝑡
𝐿

⊙ 𝑔(V𝑎𝑙𝑡
𝐿

),
• #2: ego𝐿 = ego𝐿 ⊙ 𝑔(ego𝐿); v1𝐿 = v1

𝐿
⊙ 𝑔(v1

𝐿
); v2

𝐿
= v2

𝐿
⊙ 𝑔(v2

𝐿
),

• #3: v1
𝐿
= v1

𝐿
⊙ 𝑔(v1

𝐿
); v2

𝐿
= v2

𝐿
⊙ 𝑔(v2

𝐿
),

• #4: ego𝐿 = ego𝐿 ⊙ ego𝐿 ; v1𝐿 = v1
𝐿
⊙ ego𝐿 ; v2𝐿 = v2

𝐿
⊙ ego𝐿 ,

• #5: ego𝐿 = ego𝐿⊙𝑔(ego𝐿); v1𝐿 = v1
𝐿
⊙𝑔(ego𝐿); v2𝐿 = v2

𝐿
⊙𝑔(ego𝐿),

where 𝑔(𝑥) = 𝜎 (W𝑥 + b). The experimental results are presented
in Table 6. From Table 6, we observe that variants #6 achieved the
best results, demonstrating the superiority of external-gated over
self-gated. It is worth noting that we found global gating is not
always a good choice (e.g., variants #1, #2, #5), preserving some of
the original representations can further improve performance (e.g.,
variants #2, #3 on Avazu).

5 RELATEDWORK
5.1 Deep CTR Prediction
Most existing deep CTR prediction models can be categorized into
user behavior sequences based models [12, 15, 32, 61] and feature
interaction based models [3, 14, 27, 29, 39, 48, 51, 52, 54, 60]. As
SimCEN belongs to the latter category, we provide a summary of
relevant feature interaction based models, which generally employ
two frameworks: parallel and stacked structure. Wide & Deep [6],
DeepFM [14], DeepLight [9], FinalMLP [34], and DCN [51] use par-
allel structures typically divide the original embeddings into two or
more different semantic spaces, capturing low-order and high-order

feature interactions in parallel through explicit and implicit com-
ponents. On the other hand, NFM [18], PNN [38], MaskNet [54],
and xCrossNet [60] use stacked structures input embeddings pro-
cessed by explicit components into implicit components, helping
the implicit components acquire more diverse feature interactions
of different orders. However, these models often attempt to pro-
pose more complex ways of feature interaction without trying to
break the limitations of these two structures. In this paper, SimCEN
introduces a novel alternate structure that integrates explicit and
implicit components alternately, mutually promoting each other’s
learning capabilities and enhancing information communication.

5.2 Contrastive Learning for CTR Prediction
Until now, there has been limited exploration of combining con-
trastive learning with CTR prediction based on feature interac-
tions. The reason for encountering this challenge is that user click
behavior is multi-interest, making it difficult to construct strict
positive and negative samples between feature representations.
Consequently, traditional contrastive learning principles centered
on alignment and uniformity cannot be readily applied to CTR.
Meanwhile, due to the similarities between CTR prediction models
based on user behavior sequences and NLP [24, 33], they initially
incorporate contrastive learning. MISS [15] enhances user interest
representations using contrastive loss at the feature level. AQCL
[36] addresses learning difficulties in representing user click his-
tory features in cold-start scenarios through AQCL loss. CL4CTR
first introduces contrastive learning to feature interaction-based
CTR prediction, introducing concepts of feature alignment and field
uniformity. However, it proposes a contrastive module that greatly
increases training costs.

6 CONCLUSION
In this paper, we revisited deep CTR prediction models based on
explicit and implicit feature interactions and summarized their limi-
tations. To achieve a more finely-grained decoupling of the learning
process, we introduced the alternate structure which showcases its
superiority in Logloss optimization through experiments. Subse-
quently, to further explore the potential of the alternate structure
and solve the limitations, we attempted to integrate it with con-
trastive learning into a simple MLP. By balancing the diversity
and homogeneity of captured feature interaction information, we
proposed the SimCEN model, which significantly enhanced the
performance of the MLP. We conducted extensive experiments
across six real-world datasets and confirmed the compatibility and
effectiveness of SimCEN.
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