
A Rotation Invariance w.r.t. the Initialized Weights440

In this paper, we analyze neural networks trained on high-dimensional data that lies on a low dimen-441

sional linear subspace denoted by P . We assume that the dimension of P is d− ℓ. Throughout the pa-442

per it will be more convenient to analyze data which lies on the subspace M = span({e1, . . . , ed−ℓ}),443

because then the “off manifold” directions correspond exactly to certain coordinates of the input. In444

this section we show that we can essentially analyze the data as if it is rotated to lie on M , and it445

would imply the same consequences as the original data from P .446

Theorem A.1. Let P ⊆ Rd be a subspace of dimension d − ℓ, and let M = span{e1, . . . , ed−ℓ}.447

Let R be an orthogonal matrix such that R · P = M , let X ⊆ P be a training dataset and let448

XR = {R · x : x ∈ X}. Assume we train a neural network N(x) =
∑m

i=1 uiσ(w
⊤
i x) as explained449

in Section 3, and denote by NX and NXR the network trained on X and XR respectively for the450

same number of iterations. Let x0 ∈ P , then we have:451

1. W.p. p (over the initialization) we have
∥∥∥ΠP⊥

(
∂NX(x0)

∂x

)∥∥∥ ≥ c (resp. ≤ c) for some c ∈ R,452

iff w.p. p also
∥∥∥ΠM⊥

(
∂NXR (Rx0)

∂x

)∥∥∥ ≥ c (resp. ≤ c).453

2. For any c, p ≥ 0, w.p. p (over the initialization) there exists z ∈ P⊥ with ∥z∥ = c such that454

sign(NX(x0 + z)) ̸= sign(NX(x0)), iff w.p. p there exists z′ ∈ M⊥ with ∥z′∥ = c such455

that sign(NXR(Rx0 + z′)) ̸= sign(NXR(Rx0)).456

Proof. Denote by w1:m := (w1, . . . , wm) and by Rw1:m = (Rw1, . . . , Rwm). Let w(t)
1:m the457

weights of the network trained on the dataset X where w
(0)
1:m is some initialization, and w̃

(t)
1:m =458

(w̃
(t)
1 , . . . , w̃

(t)
m) the weights of the network trained on XR and initialized at Rw

(0)
1:m. In the proof,459

when taking derivatives w.r.t. the wi’s we will explicitly write N(x,w1:m).460

We first show by induction on the number of training steps that w̃(t)
1:m = Rw

(t)
1:m. For t = 0 it is clear461

by the assumption on the initialization. Assume it is true for t, then we have for some x ∈ X:462

∂N(Rx, w̃
(t)
1:m)

∂wi
= uiσ

′(⟨w̃(t)
i , Rx⟩)Rx

= uiσ
′(⟨Rw

(t)
i , Rx⟩)Rx

= uiσ
′(⟨w(t)

i , x⟩)Rx

= R · ∂N(x,w
(t)
1:m)

∂wi
.

This is true for every i ∈ [m] and for every x ∈ X . Also note that by our induction assumption we463

have:464

N(x,w
(t)
1:m) =

m∑
i=1

uiσ(⟨w(t)
i , x⟩) =

m∑
i=1

uiσ(⟨Rw
(t)
i , Rx⟩) = N(Rx, w̃

(t)
1:m) . (1)

Finally, the derivative of the loss on a single data point x ∈ X with label y can be written as:465

∂L
(
N(x,w

(t)
1:m) · y

)
∂wi

= L′
(
N(x,w

(t)
1:m) · y

)
· ∂N(x,w

(t)
1:m)

∂wi
,

where the first term depends only on the value of N(x,w
(t)
1:m). Hence, taking a single gradient step of466

N with weights w(t)
1:m and dataset X will change the weights by the same term up to multiplication467

by R as if taking a gradient step with with weights w̃(t)
1:m and dataset XR. This finishes the induction.468

Let w(0)
1:m be an initialization for the training of NX , where there exists z ∈ P⊥ with ∥z∥ = c such469

that sign(NX(x0 + z)) ̸= sign(NX(x0)). Then, by Eq. (1) the initialization Rw
(0)
1:m for the training470

of NXR is such that for z′ = Rz we have ∥z′∥ = c and sign(NXR(Rx0+ z′)) ̸= sign(NXR(Rx0)).471

This argument holds also in the opposite direction. Let A ⊆ {w1:m ∈ Rd·m} be the set of all472

12

initializations to NX where there exists z ∈ P⊥ with ∥z∥ = c such that sign(NX(x0 + z)) ̸=473

sign(NX(x0)), then by the above the set R · A = {Rw1:m : w1:m ∈ A} are exactly all the474

initializations to NXR where there exists z′ ∈ M⊥ with ∥z′∥ = c such that sign(NXR(Rx0+z′)) ̸=475

sign(NXR(Rx0)). Since we initialize the wi’s using a Gaussian initialization which is spherically476

symmetric, we have that Pr(A) = Pr(RA). This proves item (2). Item (1) follows from similar477

arguments (which we do not repeat for conciseness).478

Under the assumption that the data lies on M = span{e1, . . . , ed−ℓ}, and no regularization is used,479

we can show that the weights of the first layer projected on M⊥ do not change during training. This480

is an essential part of the proofs, as it allows us to analyze those weights as random Gaussian vectors,481

and apply concentration bounds on them.482

Theorem A.2. Let M = span{e1, . . . , ed−ℓ}. Assume we train a neural network N(x,w1:m) :=483 ∑m
i=1 uiσ(w

⊤
i x) as explained in Section 3 (where w1:m = (w1, . . . , wm)). Denote by ŵ :=484

ΠM⊥(w) for w ∈ Rd, then after training, for each i ∈ [m], ŵi did not change from their initial value.485

Proof. Note that for each i ∈ [m] and x ∈ M we have:486

ΠM⊥

(
∂N(x,w1:m)

∂wi

)
= ΠM⊥

(
uiσ

′(w⊤
i x)x

)
= uiσ

′(w⊤
i x)x̂ = 0 .

Taking the derivative of the loss we have:487

ΠM⊥

(
∂L (N(x,w1:m) · y)

∂wi

)
= ΠM⊥

(
L′ (N(x,w1:m) · y) · ∂N(x,w1:m)

∂wi

)
= L′ (N(x,w1:m) · y) ·ΠM⊥

(
∂N(x,w1:m)

∂wi

)
= 0 .

The above calculation did not depend on the specific value of the wi’s. Hence, the value of the ŵi’s488

for every i ∈ [m] did not change during training from their initial value.489

B Proofs from Section 4490

Before proving the main theorem, we will first need the next two lemmas about the concentration of491

Gaussian random variables:492

Lemma B.1. Let w ∈ Rn such that w ∼ N (0, σ2In). Then:493

P
[
∥w∥2 ≤ 1

2
σ2n

]
≤ e−

n
16 .

Proof. Note that
∥∥w

σ

∥∥2 has the Chi-squared distribution. A concentration bound by Laurent and494

Massart [Laurent and Massart, 2000, Lemma 1] implies that for all t > 0 we have495

Pr

[
n−

∥∥∥w
σ

∥∥∥2 ≥ 2
√
nt

]
≤ e−t .

Plugging-in t = n
16 , we get496

Pr

[
n−

∥∥∥w
σ

∥∥∥2 ≥ 1

2
n

]
= Pr

[∥∥∥w
σ

∥∥∥2 ≤ 1

2
n

]
≤ e−n/16 .

Thus, we have497

Pr

[
∥w∥ ≤ σ

√
n

2

]
≤ e−n/16 .

498

Lemma B.2. Let w1, . . . , wm ∈ Rn such that for all i ∈ [m], wi ∼ N (0, σ2In), then we have:499

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ 1

2
mσ2n

 ≤ e−
n
16 .

13

Proof. We denote the j-th coordinate of the vector wi ∈ Rn by wi,j . Note, for any i ∈ {1, . . . ,m}500

and j ∈ {1, . . . , n} we have wi,j ∼ N (0, σ2). We denote by s the sum vector s :=
m∑
i=1

wi, and by501

sj the j- th coordinate of s. By this definition, sj =
m∑
i=1

wi,j is a sum of m independent Gaussian502

variables and therefore also a Gaussian variable. Particularly, s ∼ N (0,mσ2In). We use Lemma B.1503

with variance mσ2 and get that:504

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ 1

2
mσ2n

 ≤ e−
n
16 .

505

We are now ready to prove the main theorem of this section:506

Proof of Theorem 4.1. Let M = span{e1, . . . , ed−ℓ}. By Theorem A.1(1), given a training dataset507

X ⊆ P , it is enough to consider a training set XR = {Rx : x ∈ X}, where R is an orthogonal508

matrix such that R ·P = M , and training is done over XR. From now on, we assume that the training509

data, as well as x0 lie on M , and the consequences of this proof would also imply for a dataset X510

and x0 ∈ P .511

The projection of the gradient on M⊥ is equal to:512

ΠM⊥

(
∂N(x0)

∂x

)
= ΠM⊥

(
m∑
i=1

uiwi1⟨wi,x0⟩≥0

)
=

m∑
i=1

ΠM⊥ (uiwi)1i∈S =
∑
i∈S

ΠM⊥ (uiwi) .

Denote by ŵi = (wi)d−ℓ+1:d, the last ℓ coordinates of wi. By Theorem A.2 we get that for every513

i ∈ [m], ŵi did not change from their initial value during training.514

Recall that we initialized ŵi ∼ N (0, 1√
d
Iℓ). Note that the set S is independent of the value of the515

ŵi’s. This is because ŵi does not effect the training, hence will not effect wi −ΠM⊥(wi). Also, after516

choosing x0 we have ⟨ŵi, x̂0⟩ = 0, since x̂0 = 0, which means that the choice of S is independent517

of the ŵi’s. We can conclude that the random variables ŵi for i ∈ S are sampled independently.518

Note, since for all i ∈ {1, . . . ,m}, |ui| = 1√
m

and they are not trained, we get that uiŵi are also519

Gaussian random variables with the same mean, and variance multiplied by 1
m . Therefore, from520

Lemma B.2 we get that w.p. ≥ 1− e−ℓ/16:521 ∥∥∥∥∥∑
i∈S

uiŵi

∥∥∥∥∥ ≥
√

1

2

√
kl

dm
.

Combining the above, we get:522 ∥∥∥∥ΠM⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≥
√

1

2

√
kl

dm
.

523

C Proofs from Section 5524

Before proving the main theorem, we prove a few lemmas about concentration of Gaussian random525

variables:526

Lemma C.1. Let w ∈ Rn with w ∼ N (0, σ2In). Then:527

Pr
[
∥w∥2 ≥ 2σ2n

]
≤ e−

n
16 .

14

Proof. Note that
∥∥w

σ

∥∥2 has the Chi-squared distribution. A concentration bound by Laurent and528

Massart [Laurent and Massart, 2000, Lemma 1] implies that for all t > 0 we have529

Pr

[∥∥∥w
σ

∥∥∥2 − n ≥ 2
√
nt+ 2t

]
≤ e−t .

Plugging-in t = n
16 , we get530

Pr

[∥∥∥w
σ

∥∥∥2 ≥ 2n

]
≤ Pr

[∥∥∥w
σ

∥∥∥2 − n ≥ n/2 + n/8

]
≤ e−n/16 .

Thus, we have531

Pr
[
∥w∥ ≥ σ

√
2n
]
≤ e−n/16 .

532

Lemma C.2. Let u ∈ Rn, and v ∼ N (0, σ2In). Then, for every t > 0 we have533

Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ 2 exp

(
− t2

2σ2

)
.

Proof. We first consider ⟨ u
∥u∥ , v⟩. As the distribution N (0, σ2In) is rotation invariant, one can rotate534

u and v to get ũ and ṽ such that ũ
∥u∥ = e1, the first standard basis vector and ⟨ u

∥u∥ , v⟩ = ⟨ ũ
∥u∥ , ṽ⟩.535

Note, v and ṽ have the same distribution. We can see that ⟨ ũ
∥u∥ , ṽ⟩ ∼ N (0, σ2) since it is the first536

coordinate of ṽ. By a standard tail bound, we get that for t > 0:537

Pr

[
|⟨ u

∥u∥
, v⟩| ≥ t

]
= Pr

[
|⟨ ũ

∥u∥
, ṽ⟩| ≥ t

]
= Pr [|ṽ1| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
.

Therefore538

Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ 2 exp

(
− t2

2σ2

)
.

539

Lemma C.3. Let u ∼ N (0, σ2
1In), and v ∼ N (0, σ2

2In). Then, for every t > 0 we have540

Pr
[
|⟨u, v⟩| ≥ σ1

√
2nt
]
≤ e−n/16 + 2e−t2/2σ2

2 .

Proof. Using Lemma C.1 we get that w.p. ≤ e−n/16 we have ∥u∥ ≥ σ1

√
2n. Moreover, by541

Lemma C.2, w.p. ≤ 2 exp
(
− t2

2σ2
2

)
we have |⟨u, v⟩| ≥ ∥u∥ t. By the union bound, we get542

Pr
[
|⟨u, v⟩| ≥ σ1

√
2nt
]
≤ Pr

[
∥u∥ ≥ σ1

√
2n
]
+ Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ e−n/16 + 2 exp

(
− t2

2σ2
2

)
.

543

We are now ready to prove the main theorem of this section:544

Theorem 5.1. By Theorem A.1(2), we can assume w.l.o.g. that P = M = span{e1, . . . , ed−ℓ}.545

We also assume w.l.o.g. that y0 = 1, the case y0 = −1 is proved in a similar manner. Denote by546

w̄ := (w)d−ℓ+1:d, the last ℓ coordinates of w. By Theorem A.2 we have that w̄i have not changed547

after training from their initial value.548

We can write N(x0 + z) as:549

15

N(x0 + z) =

m∑
i=1

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩) +
∑
i∈I+

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ ⟨w̄i, z̄⟩) +
∑
i∈I+

uiσ(⟨wi, x0⟩+ ⟨w̄i, z̄⟩) (2)

where the last equality is since (z)1:d−ℓ = 0, hence ⟨w, z⟩ = ⟨w̄, z̄⟩ for every w ∈ Rd. We will550

bound each term of the above separately.551

For the first term in Eq. (2), where i ∈ I− we can write:552

⟨w̄i, z̄⟩ = α ∥w̄i∥2 + α⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ .

By our assumptions, w̄i ∼ N
(
0, 1

dIℓ
)

and
∑

j ̸=i sign(uj)w̄j ∼ N
(
0, m−1

d Iℓ
)
, since it is a sum of553

m− 1 i.i.d. Gaussian random variables, which are also symmetric hence multiplying them by −1554

does not change their distribution. From Lemma B.1 we get w.p. ≥ 1− e−ℓ/16 that555

α · ∥w̄i∥2 ≥ α · ℓ

2d
.

From Lemma C.3, and using t =
√

(m−1) log(dm2)
d we get w.p. ≥ 1 − e−ℓ/16 + 2e−t2d/2(m−1) =556

1− e−ℓ/16 + 2m−1d−1/2 that557

⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ ≤
1√
d
t
√
2ℓ

=
1

d
·
√

2ℓ(m− 1) log(m2d) . (3)

Applying union bound over the above two events, and for every i ∈ I−, we get w.p. ≥ 1 −558

2
(
me−ℓ/16 + d−1/2

)
that:559

⟨w̄i, z̄⟩ ≥
αℓ

2d
− α

d

√
2ℓ(m− 1) log(m2d) .

For the second term in Eq. (2), where i ∈ I+ we can write in a similar way:560

⟨w̄i, z̄⟩ = −α ∥w̄i∥2 + α⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ .

Using the same argument as above, we get w.p ≥ 1− 2
(
me−ℓ/16 + d−1/2

)
that:561

⟨w̄i, z̄⟩ ≤ −αℓ

2d
+

α

d

√
2ℓ(m− 1) log(m2d) .

By assuming that ℓ ≥ 8(m − 1) log(m2d) we get that ⟨w̄i, z⟩ ≤ 0. Denote C := αℓ
2d −562

α
d

√
2ℓ(m− 1) log(m2d), then going back to Eq. (2), using the above bounds and applying union563

bound, we get w.p. ≥ 1− 4
(
me−ℓ/16 + d−1/2

)
that:564

N(x0 + z) ≤
∑
i∈I−

uiσ(⟨wi, x0⟩+ C) +
∑
i∈I+

uiσ(⟨wi, x0⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ C) +
∑
i∈I+

uiσ(⟨wi, x0⟩) +
∑
i∈I−

uiσ(⟨wi, x0⟩)−
∑
i∈I−

uiσ(⟨wi, x0⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ C)−
∑
i∈I−

uiσ(⟨wi, x0⟩) +N(x0)

=
∑
i∈I−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩)) +N(x0) .

16

Define F− := {i ∈ I− : ⟨wi, x0⟩ ≥ 0}, and k− = |F−|. We have that:565

∑
i∈I−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩)) ≤
∑
i∈F−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩))

=
∑
i∈F−

uiC = −k−C√
m

,

where the first inequality is since we only sum over negative terms, and the second inequality is since566

both ⟨wi, x0⟩ ≥ 0 (because i ∈ F−) and C ≥ 0 (because ℓ ≥ 32(m− 1) log(m2d)). Combining all567

of the above, we get that:568

N(x0 + z) ≤ −k−C√
m

+N(x0) . (4)

By our assumption that ℓ ≥ 32(m− 1) log(m2d) we have that569

C = α

(
1

2

ℓ

d
−
√
2
√
m− 1

√
ℓ

d

√
log(dm2)

)

=
α
√
ℓ

d

(√
ℓ

2
−
√
2(m− 1) log(m2d)

)

≥ αℓ

4d
.

Plugging in C and α = 8
√
mdN(x0)
k−ℓ to Eq. (4) we get that:570

N(x0 + z) ≤ −k−C√
m

+N(x0)

≤ − k−√
m

· ℓ

4d
· 8

√
mdN(x0)

k−ℓ
+N(x0) = −N(x0) < 0 ,

and in particular sign(N(x0)) ̸= sign(N(x0 + z)).571

We are left with calculating the norm of z:572

∥z∥ = α ·

∥∥∥∥∥∥
∑
i∈I−

ΠM⊥(wi)−
∑
i∈I+

ΠM⊥(wi)

∥∥∥∥∥∥
= α ·

∥∥∥∥∥
m∑
i=1

−sign(ui)ΠM⊥(wi)

∥∥∥∥∥
= α ·

∥∥∥∥∥
m∑
i=1

−sign(ui)w̄i

∥∥∥∥∥ .

Since for each i ∈ [m], w̄i ∼ N
(
0, 1

dIℓ
)
, then −sign(ui)w̄i also have the same distribution, because573

this is a symmetric distribution. Hence,
∑m

i=1 −sign(ui)w̄i ∼ N
(
0, m

d Iℓ
)

as a sum of Gaussian574

random variables. Using Lemma C.1 we get w.p ≥ 1− e−ℓ/16 that ∥
∑m

i=1 −sign(ui)w̄i∥
2 ≤ 2mℓ

d .575

Plugging in α we get that:576

∥z∥ ≤
√

2mℓ

d
· 8

√
mdN(x0)

k−ℓ
= 8

√
2N(x0) ·

m

k−
·
√

d

ℓ
.

577

17

D Proofs for Section 6578

For proving the main theorem, we will use the following lemma that upper bounds the norm of a sum579

of Gaussian random variables:580

Lemma D.1. Let w1, .., wm ∈ Rn such that for all i ∈ [m], wi ∼ N (0, σ2In), then we have:581

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≥ 2mσ2n

 ≤ e−
n
16

Proof. We denote the j-th coordinate of the vector wi ∈ Rn by wi,j . Note, for any i ∈ [m] and582

j ∈ [n] we have wi,j ∼ N (0, σ2). We denote by s the sum vector s :=
m∑
i=1

wi, and by sj the j-th583

coordinate of s. By this definition, sj =
m∑
i=1

wi,j is a sum of m independent Gaussian variables and584

therefore also a Gaussian variable. Therefore, s ∼ N (0,mσ2In). We use Lemma C.1 with variance585

mσ2 and get that:586

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≥ 2mσ2n

 ≤ e−
n
16 .

587

We now prove the main theorem of this section:588

Proof of Theorem 6.1. Similar to the lower bound of the norm, let M = span{e1, . . . , ed−ℓ}. By589

Theorem A.1(1), given a training dataset X ⊆ P , it is enough to consider a training set XR = {Rx :590

x ∈ X}, where R is an orthogonal matrix such that R · P = M , and training is done over XR. From591

now on, we assume that the training data, as well as x0 lie on M , and the consequences of this proof592

would also imply for a dataset X and x0 ∈ P .593

The projection of the gradient on M⊥ is equal to:594

ΠM⊥

(
∂N(x0)

∂x

)
= ΠM⊥

(
m∑
i=1

uiwi1⟨wi,x0⟩≥0

)
=

m∑
i=1

ΠM⊥ (uiwi)1i∈S =
∑
i∈S

ΠM⊥ (uiwi) .

Denote by ŵi = (wi)d−ℓ+1:d, the last ℓ coordinates of wi. By Theorem A.2 we get that for every595

i ∈ [m], ŵi did not change from their initial value during training.596

Recall that we initialized ŵi ∼ N (0, β2Iℓ). Note that the set S is independent of the value of the597

ŵi’s. This is because ŵi does not effect the training, hence will not effect wi −ΠM⊥(wi). Also, after598

choosing x0 we have ⟨ŵi, x̂0⟩ = 0, since x̂0 = 0, which means that the choice of S is independent599

of the ŵi’s. We can conclude that the random variables ŵi for i ∈ S are sampled independently.600

Therefore, from Lemma B.2 we get that w.p. ≥ 1− e−ℓ/16:601

∥∥∥∥∥∑
i∈S

ŵi

∥∥∥∥∥ ≤ β
√
2kℓ .

Note, since for all i ∈ [m], |ui| = 1√
m

and they are not trained, we get w.p. ≥ 1− e−ℓ/16 that:602 ∥∥∥∥ΠM⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ β

√
2kℓ

m
.

603

18

D.1 Explicit L2 regularization604

Proof of Theorem 6.2. As before, for this proof we rotate the data subspace P to lie on M =605

span{e1, . . . , ed−ℓ} and rotate the model’s weights accordingly. For a dataset (x1, y1), .., (xr, yr),606

we train over the following objective:607

r∑
j=1

L(yj ·N(xj ,w1:m))) +
1

2
λ ∥w1:m∥2

In Theorem A.2, we showed for all (xj , yj) that if we train the model using the loss L we get:608

ΠM⊥

(
∂L (N(xj ,w1:m) · yj)

∂wi

)
= 0

Now, we analyze the training process using the new loss which includes the regularization term. We609

denote by w
(t)
i the weight vector wi after t training steps, and by ŵ

(t)
i := ΠM⊥

(
w

(t)
i

)
its projection610

on the subspace orthogonal to M . We look at the projected gradient of w(t)
i w.r.t. the loss:611

ΠM⊥

∂
∑r

j=1 L
(
N(xj ,w

(t)
1:m) · yj

)
∂wi

+
∂ 1

2λ
∥∥∥w(t)

i

∥∥∥2
∂wi

 =

=

r∑
j=1

ΠM⊥

∂L
(
N(xj ,w

(t)
1:m) · yj

)
∂wi

+ΠM⊥

∂ 1
2λ
∥∥∥w(t)

i

∥∥∥2
∂wi


=ΠM⊥

∂ 1
2λ
∥∥∥w(t)

i

∥∥∥2
∂wi


=ΠM⊥

(
λw

(t)
i

)
=λŵ

(t)
i .

For a training step of size η, using gradient descent we get that:612

ŵ
(t+1)
i = ŵ

(t)
i − ηλŵ

(t)
i .

Thus, after a total of T iteration of training we get that:613

ŵ
(T)
i = (1− ηλ)T ŵ

(0)
i .

Therefore, the projection of gradients after training onto P⊥ will be the same as if they were initialized614

to ∼ N
(
0, (1−ηλ)2T

d Id

)
and trained using logistic loss without regularization. The rest of the proof615

is the same as Theorem 6.1 for β = (1−ηλ)T√
d

.616

E Further Experiments and Experimental Details617

E.1 Further Experiments618

In Figure 3 we present the boundary of a two-layer ReLU network trained over a 25-point dataset619

on a two-dimensional linear subspace, similar to Figure 2. We train the networks until reaching a620

constant positive margin. The difference between the figures is that in Figure 3 we initialize the621

weights using the default PyTorch initialization, while in Figure 2 we initialized using a smaller scale622

19

for the robustness effect to be smaller, and visualized more easily. The experiment in Figure 3 is623

demonstrating an extreme robustness effect, occurring when using the standard settings.624

(a) (b) (c)

Figure 3: Experiments on two-dimensional dataset. We plot the dataset points and the decision
boundary in 3 settings: (a) Vanilla trained network, (b) The network’s weights are initialized from a
smaller variance distribution, and (c) Training with regularization. Colors are used to emphasise the
values in the z axis.

In Figure 4 we go beyond the theory discussed in this paper, and present similar phenomena in all625

three settings for a five-layer ReLU network. In Figure 4a we can see the boundary of the regularly626

trained network within a small distance in P⊥ from the data points. In Figure 4b we use small627

initialization for all five layers, and present a boundary almost orthogonal to the data manifold. In628

Figure 4c, the boundary of a regularized trained network is in a similar form. This experiment629

suggests that our theoretical results might be extended also to deeper networks, where all layers are630

trained.631

(a) (b) (c)

Figure 4: Experiments on one-dimensional dataset with deep network. We plot the dataset points
and the decision boundary in 3 settings: (a) Vanilla trained network, (b) The network’s weights are
initialized from a smaller variance distribution, and (c) Training with regularization.

E.2 One-dimensional dataset experiment - 2 layer network (Figure 1)632

Dataset For all the three experiments we used a 7-point data set, spread equally on the two633

dimensional line y = x from (−1,−1) to (1, 1).634

Network For all the three experiments we used two-layer ReLU network of width 100 with biases635

in both layers. The weights of both layers were initialized using (1+3) default PyTorch initialization636

for linear layers, (2) default initialization divided by 3.637

Training We used train step of size 0.02 for (1+3) and 0.04 for (2). We trained both layers until the638

margin reached 0.3. The losses we used were (1+2) Logistic loss, (3) Logistic loss with 0.005 L2639

regularization.640

20

E.3 Two-dimensional dataset experiment - smaller effect (Figure 2)641

Dataset For all the three experiments we used a 25-point data set, spread equally on a grid which642

lies on the z = 0.5 axis.643

Network For all the three experiments we used two-layer ReLU network of width 4000 with biases644

in both layers. The weights in the first layer were initialized in (1+3) from N (0, 1/3I3), and in (2)645

from N (0, 1/36I3). The weight of the output layer were initialized to the uniform distribution over646

the set {−1, 1}.647

Training For all the experiments we trained both layers until the margin reached 0.3 and we used648

train step of size 0.002. The losses we used were (1+2) Logistic loss, (3) Logistic loss with 0.8 L2649

regularization on the weights of the first layer.650

E.4 Two-dimensional dataset experiment (Figure 3)651

Dataset For all the three experiments we used a 25-point data set, spread equally on a grid which652

lies on the x− y axis.653

Network For all the three experiments we used two-layer RelU network of width 400 with biases654

in both layers. The weights in any layer were initialized using (1+3) default PyTorch initialization for655

linear layers, (2) default initialization divided by 3.656

Training For (1) experiments we used train step of size 0.005, and for (2+3) we used step of size657

0.05. We trained both layers until the margin reached 0.1. The losses we used were (1+2) Logistic658

loss, (3) Logistic loss with 0.005 L2 regularization.659

E.5 One-dimensional dataset experiment - 5 layer network (Figure 4)660

Dataset For all the three experiments we used a 7-point data set, spread equally on the two661

dimensional line y = x from (−1,−1) to (1, 1).662

Network For all the three experiments we used 5-layer RelU network of width 100 with biases in663

all layers. The weights in any layer were initialized using (1+3) default PyTorch initialization for664

linear layers, (2) default initialization divided by 3.665

Training For (1+3) experiments we used train step of size 0.02, and for (2) we used step of size666

0.06. we trained all layers until the margin reached 0.3. The losses we used were (1+2) Logistic loss,667

(3) Logistic loss with 0.01 L2 regularization.668

21

	Rotation Invariance w.r.t. the Initialized Weights
	Proofs from Section 4
	Proofs from Section 5
	Proofs for Section 6
	Explicit L2 regularization

	Further Experiments and Experimental Details
	Further Experiments
	One-dimensional dataset experiment - 2 layer network (Figure 1)
	Two-dimensional dataset experiment - smaller effect (Figure 2)
	Two-dimensional dataset experiment (Figure 3)
	One-dimensional dataset experiment - 5 layer network (Figure 4)

