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A APPENDIX

A.1 SIMULATION

We benchmark our method against a broad set of baselines. Linear regression (LR) is implemented
via scikit-learn; FLR and FPCA use the fdapace5 and fdaconcor6 R packages. We select the
99% variance–explained FPCA model, as it outperforms the 90% and 95% FPCA model. TabNet
is implemented with pytorch tabnet in PyTorch; we also include PyTorch MLP and ResNet.
Additional deep tabular models—TabNet, SAINT, FT-Transformer, AutoInt, and NODE—are ac-
cessed via the DeepTabular/Mambular 7 stack (Thielmann et al., 2024). TabPFN 8 is employed as in
Hollmann et al. (2022). Imputation follows SAND 9 as in Hong et al. (2024). AdaFNN 10 is imple-
mented following Yao et al. (2021). Gradient-boosted baselines (XGBoost, LightGBM, CatBoost)
use their official Python packages, and AutoGluon (Erickson et al., 2020) results are obtained with
autogluon.tabular. The xRFM method is implemented with the xRFM11 package in Python.

In simulations, we use a 70/20/10 train/validation/test split and randomly mask 10% of target values
during training. The model uses 32-dimensional encodings, a 64-unit hidden layer, batch size 128,
and a two-layer transformer with 10% dropout. We trained for 500 epochs with learning rate 0.001.
Unless stated otherwise, the sample size is n = 1000 and functions are sampled on an equally spaced
grid of 101 points over [0, 1]. Code and scripts will be released for reproducibility upon acceptance.
For simulations, we trained on an Apple MacBook Air (Mac15, 12) with an Apple M3 SoC (8-core
CPU: 4P+4E), 8GB LPDDR5 unified memory (Hynix), and the integrated Apple GPU via Metal.
PyTorch ran on Apple’s Metal (MPS) backend; CUDA was not available on this system.

A.1.1 SIMULATION RESULTS

Table 2 summarizes accuracy and efficiency across 30 simulated cases. IDAT is most consistent
overall (Top1: 11/30; Top3: 26/30), followed by its variant without inter–sample attention (no AI ;
Top1: 11/30; Top3: 24/30), with TabPFN ranking third (Top1: 9/30; Top3: 25/30). In noise–free
settings the full model dominates, as AI reduces variance by borrowing strength across similar
subjects; under measurement error, similarity can be misestimated and AI may average over mis-
matched neighbors, increasing bias—so the time–only variant (no AI ) can prevail when the bias
increase outweighs variance reduction. However, when clustering is apparent in the model, the full
model is still outperforms. Empirically, dual-attention yields the largest gains in sparse regimes
(≤ 50% observed; Top1: 9/18, Top3: 17/18), whereas TabPFN is strongest when coverage is denser
(> 50%; Top1: 5/12, Top3: 12/12). Notably, among TabPFN’s nine Top1 wins, two coincide with
LR also being best and four occur when LR is Top3, indicating that TabPFN’s prior learned from its
pre-training structure captures simple/approximately linear trends well.

In terms of efficiency, IDAT achieves 3.085 ms/sample with 180K parameters, offering a favorable
accuracy–latency–size trade–off; TabPFN is substantially larger (11M parameters; 0.047 ms/sample
on the server) and slower (1713.843 ms/sample on the local machine; 5.58 ms/sample on the
server). AutoGluon ensembles methods such as WeightedEnsemble L2, NeuralNetTorch,
NeuralNetFastAI, LightGBMXT, and can be fast at inference (1.734 ms/sample) but typically
require millions of parameters (≈2M) and still underperform IDAT on Top1/Top3; moreover, achiev-
ing competitive accuracy generally entails complexities that make latency comparable to trans-
former–style models. Classical/GBDT baselines are compact and fast yet rarely Top1/Top3 in this
functional setting. Overall, the proposed architecture delivers strong predictive accuracy with mod-
est parameterization and low latency—especially under sparse sampling—while TabPFN is prefer-
able when signal is dense and close to linear. Preprocessing (imputation) times for FPCA/VT/SAND
are reported separately in the footnotes. Because mean imputation is computationally negligible, we
exclude its runtime from the efficiency comparisons.

5https://CRAN.R-project.org/package=fdapace
6https://CRAN.R-project.org/package=fdaconcur
7https://github.com/OpenTabular/DeepTabular
8https://github.com/PriorLabs/TabPFN
9https://github.com/jshong071/SAND/tree/main

10https://github.com/jwyyy/AdaFNN/tree/master
11https://arc.net/l/quote/rhehrnrm
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Table 2: Overall comparison on the simulation study. For each of the 30 simulated cases, meth-
ods are ranked by test performance; Top1/Top3 count how often a method ranks 1st or within the
top 3. Results are reported for all cases and stratified by sampling density (≤ 50%: 18, > 50%:
12). Efficiency is measured as average inference time per sample (ms) and model size (#Params
in thousands). Preprocessing costs for FPCA/VT/SAND are noted in footnotes and excluded from
inference time. Higher Top1/Top3 is better; lower time and fewer parameters are better.

Sampling density (# cases) Efficiency measures

all (30) ≤ 50% (18) > 50% (12) inference time #Params

Method Top1 Top3 Top1 Top3 Top1 Top3 (ms/sample) (1K)

LR 3 7 0 1 3 6 0.005 0.1
FLR 0 0 0 0 0 0 19.71 0.5

FPCA+NN 0 0 0 0 0 0 24.433 12 13
TabNet 0 0 0 0 0 0 0.058 12
SAINT 0 0 0 0 0 0 17.870 125000

FTTransformer 0 0 0 0 0 0 8.501 123
AutoInt 0 0 0 0 0 0 22.179 619
TabPFN 9 25 4 13 5 12 1713.843 11000
VT+NN 0 0 0 0 0 0 28.09313 333

SAND+NN 0 0 0 0 0 0 28.03014 333
MLP 0 0 0 0 0 0 7.485 549

ResNet 0 0 0 0 0 0 6.597 568
AdaFNN 1 7 0 1 1 6 1.481 603

NODE 0 3 0 2 0 1 14.733 6800
CatBoost 1 2 0 0 1 1 0.067 190
XGBoost 0 2 0 1 0 1 0.014 2

LightGBM 0 0 0 0 0 0 0.021 9
AutoGluon 2 10 1 3 1 7 1.734 ≈ 2000

xRFM 0 4 0 4 0 0 0.070 180

IDAT 11 26 9 17 2 9 3.085 180
IDAT w/o AI 11 24 7 15 4 8 1.655 144

Table 3 reports MSE for six simulation scenarios in the very sparse regime (20% observed). With-
out measurement error, the proposed dual-attention model consistently achieves the lowest MSE.
With measurement error, TabPFN slightly leads in the near-linear case I*, while IDAT and its
time-point–only variant remain among the top performers; the variant is more noise-robust because
it avoids averaging over misidentified neighbors. When clustering is present III*, dual-attention
regains a clear advantage, reflecting benefits from cross-subject borrowing.

In Tables 4, 5, 6, 7, 8, and 9, we report MSE across five sparsity levels for three simulation set-
tings and their measurement error variants, highlighting the best method in bold and the top three
in italics. Although IDAT is designed for sparse observations as it accommodates missingness with
its masking, it surprisingly achieves competitive—and often state-of-the-art—performance in sev-
eral dense and fully observed regimes. It consistently attains the best performance in the very- and
super-sparse regimes (< 50% observed). As observations become denser, the transformer-based tab-
ular foundation model TabPFN is often competitive, while AutoGluon remains robust—benefiting
from multi-model ensembling and stacking—and performs strongly in several settings. AdaFNN,
which adopts a basis-expansion design tailored to fully observed trajectories, performs well when
the underlying basis/index structure aligns with the data, but can struggle when the signal departs
from an index-model form or under substantial sparsity.

In Figures 3, 4, and 5, we plot log-MSE versus sparsity (x-axis: 0% to 100%). For each setting, the
left panel shows results without measurement error and the right panel shows the same setting with
measurement error. As expected for transformer-based methods (shown in blue), models that learn
end-to-end from (X,Y ) are comparatively robust to measurement error, whereas imputation-only
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Table 3: MSE under different simulation scenarios under very sparse regime (20% observation). The
best method is in bold and the top three methods are in italics. Without measurement error, IDAT
consistently outperforms all baselines. With measurement error, in case I* (near-linear ground truth),
TabPFN leverages pre-training and slightly edges our models, while IDAT and its time-point–only
variant remain among the top performers. The variant (no AI ) is more robust to noise because it
avoids averaging over misidentified neighbors. When clustering is present (case I*), dual-attention
regains a clear advantage.

Method/MSE case I case II case III case I* case II* case III*

LR 0.0153 0.0108 0.0187 0.0075 0.0069 0.0766
FLR 0.0589 0.0039 0.0316 0.0532 0.0066 0.1341

FPCA+NN 0.0406 0.0336 0.0176 0.0561 0.0272 0.1826
TabNet 0.0477 0.0107 0.0316 0.0433 0.0080 0.0659
SAINT 0.0745 0.0109 0.2591 0.0731 0.0108 0.2583

FTTransformer 0.0116 0.0036 0.0248 0.0136 0.0037 0.0596
AutoInt 0.0168 0.0046 0.0295 0.0124 0.0049 0.0666
TabPFN 0.0083 0.0021 0.0029 0.0067 0.0017 0.0305
VT+NN 0.0116 0.0168 0.0183 0.1767 0.0757 0.0311

SAND+NN 0.0103 0.0104 0.0114 0.1979 0.0856 0.0308
MLP 0.0138 0.0031 0.0174 0.0128 0.0029 0.0393

ResNet 0.0128 0.0025 0.0206 0.0147 0.0030 0.0434
AdaFNN 0.0127 0.0171 0.0032 0.0091 0.0065 0.0317

NODE 0.0126 0.0034 0.0060 0.0111 0.0035 0.0397
CatBoost 0.0113 0.0041 0.0123 0.0102 0.0029 0.0405
XGBoost 0.0180 0.0060 0.0287 0.0186 0.0030 0.0525

LightGBM 0.0189 0.0070 0.0178 0.0152 0.0079 0.0404
AutoGluon 0.0116 0.0031 0.0131 0.0074 0.0022 0.0357

xRFM 0.0080 0.0025 0.0128 0.0100 0.0046 0.0342

IDAT 0.0063 0.0008 0.0019 0.0070 0.0015 0.0139
IDAT w/o AI 0.0077 0.0018 0.0020 0.0069 0.0007 0.0207

variants (SAND+NN and VT+NN) that do not condition on Y are more sensitive. Our model, as
well as most of the end-to-end transformer-based models, remain relatively robust to noise.

(a) Without measurement error. (b) With measurement error.

Figure 3: (log) MSE under different sparsity level in case I.

In Figure 6 (cf. Figure 2b), removing inter-sample attention collapses the separation between clus-
ters: their profiles become much more similar, differing only slightly early in the trajectory. When
clustering is present, such averaging across groups can introduce bias in the approximation.
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Table 4: MSE under different sparsity level in case I. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in sparse regimes and remains competitive
as observations become denser; strong competitors include TabPFN and AutoGluon, while AdaFNN
is tailored to dense/fully observed data.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0207 0.0153 0.0029 0.0006 < 0.0001
FLR 0.0548 0.0589 0.0519 0.0519 0.0546

FPCA+NN 0.0356 0.0406 0.0365 0.0346 0.0335
TabNet 0.0422 0.0477 0.0169 0.0112 0.0064
SAINT 0.0734 0.0745 0.0727 0.0707 0.0757

FTTransformer 0.0224 0.0116 0.0050 0.0014 0.0006
AutoInt 0.0240 0.0168 0.0069 0.0056 0.0026
TabPFN 0.0157 0.0083 0.0018 0.0005 0.0001
VT+NN 0.0267 0.0116 0.0065 0.0074 0.0064

SAND+NN 0.0256 0.0103 0.0058 0.0063 0.0064
MLP 0.0214 0.0138 0.0048 0.0013 0.0011

ResNet 0.0307 0.0128 0.0052 0.0019 0.0009
AdaFNN 0.0321 0.0127 0.0030 0.0007 0.0001

NODE 0.0199 0.0126 0.0051 0.0012 0.0007
CatBoost 0.0195 0.0113 0.0034 0.0012 0.0005
XGBoost 0.0264 0.0180 0.0078 0.0055 0.0034

LightGBM 0.0266 0.0189 0.0043 0.0036 0.0019
AutoGluon 0.0150 0.0116 0.0029 0.0007 0.0002

xRFM 0.0169 0.0080 0.0043 0.0022 0.0025

IDAT 0.0165 0.0063 0.0024 0.0006 0.0003
IDAT w/o AI 0.0169 0.0077 0.0016 0.0006 0.0003

(a) Without measurement error. (b) With measurement error.

Figure 4: (log) MSE under different sparsity level in case II.

A.2 REAL DATA

We compare against mean imputation, MICE, and LOCF. LOCF is applied only to the synthetic
HIV data; in NCDS the measurement times are highly irregular and widely spaced, making last-
observation carry-forward (e.g., for BMI) inappropriate. FPCA-based methods, SAND, and VT al-
ready perform imputation internally; thus these baselines—and our imputation-free approach—are
unaffected by the external imputation choice. We use a 70/20/10 train/validation/test split and
randomly mask 10% of target values during training. To accommodate larger sample sizes and
more complex real-data scenarios, we use 128-dimensional encodings, a batch size of 256, and
a three-layer transformer with a 10% dropout rate. The server we equipped is a NVIDIA A100
80GB PCIe GPU (driver 535.261.03, CUDA 12.2; MIG enabled) paired with an AMD EPYC 9554P
64-core CPU (128 threads) and 755 GiB system RAM, running Rocky Linux 8.10.
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Table 5: MSE under different sparsity level in case II. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in all sparsity regime; strong competitors
include TabPFN, AutoGluon and some ensemble models.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0096 0.0108 0.0097 0.0101 0.0073
FLR 0.0064 0.0039 0.0080 0.0072 0.0059

FPCA+NN 0.0533 0.0336 0.0320 0.0240 0.0492
TabNet 0.0198 0.0107 0.0018 0.0027 0.0033
SAINT 0.0110 0.0109 0.0107 0.0110 0.0025

FTTransformer 0.0066 0.0036 0.0015 0.0018 0.0015
AutoInt 0.0052 0.0046 0.0062 0.0040 0.0025
TabPFN 0.0036 0.0021 0.0006 0.0002 0.0002
VT+NN 0.0145 0.0224 0.0174 0.0135 0.0158

SAND+NN 0.0189 0.0172 0.0169 0.0136 0.0158
MLP 0.0084 0.0031 0.0036 0.0031 0.0023

ResNet 0.0114 0.0025 0.0035 0.0015 0.0015
AdaFNN 0.0281 0.0171 0.0066 0.0043 0.0006

NODE 0.0050 0.0034 0.0009 0.0011 0.0005
CatBoost 0.0031 0.0041 0.0014 0.0004 0.0002
XGBoost 0.0028 0.0060 0.0011 0.0010 0.0003

LightGBM 0.0092 0.0070 0.0025 0.0006 0.0012
AutoGluon 0.0049 0.0031 0.0010 0.0003 0.0001

xRFM 0.0064 0.0025 0.0017 0.0024 0.0025

IDAT 0.0020 0.0008 0.0003 0.0002 < 0.0001
IDAT w/o AI 0.0029 0.0018 0.0003 0.0001 0.0002

(a) Without measurement error. (b) With measurement error.

Figure 5: (log) MSE under different sparsity level in case III.

A.2.1 NATIONAL CHILD DEVELOPMENT STUDY: AGE 62 BMI PREDICTION

The 1958 National Child Development Study (NCDS) is a nationally representative UK birth cohort
run by the Center for Longitudinal Studies (CLS) at UCL. Initiated as the Perinatal Mortality Survey,
it has followed over 17000 individuals born in a single week in March 1958 across eleven major
sweeps at ages 7, 11, 16, 23, 33, 42, 44, 46, 50, 55, and 62. Achieved sample sizes declined from
n = 17415 at birth (and age 7) to n = 9790 (age 55), and n = 9137 (age 62). Because all
participants were assessed at the same discrete ages, no further time alignment is required. After
restricting to participants with valid baseline covariates (measured at age 7) and a valid age-62 BMI,
the analytic sample comprises 4952 individuals. Adult BMI shows turning points near ages 65 and
80 (Dahl et al., 2014); thus, predicting BMI at age 62 is reasonable, as the trajectory has not yet
crossed a change point.
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Table 6: MSE under different sparsity level in case III. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in sparse regimes and remains competitive
as observations become denser; strong competitors include TabPFN and AutoGluon, while AdaFNN
is tailored to dense/fully observed data.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0364 0.0187 0.0084 0.0012 0.0002
FLR 0.0604 0.0316 0.0291 0.0210 0.0245

FPCA+NN 0.0288 0.0176 0.0144 0.0128 0.0104
TabNet 0.0585 0.0316 0.0075 0.0065 0.0029
SAINT 0.2594 0.2591 0.2584 0.2601 0.2510

FTTransformer 0.0440 0.0248 0.0101 0.0047 0.0021
AutoInt 0.0550 0.0295 0.0147 0.0083 0.0068
TabPFN 0.0078 0.0029 0.0006 0.0003 0.0002
VT+NN 0.0409 0.0183 0.0054 0.0053 0.0056

SAND+NN 0.0282 0.0114 0.0070 0.0052 0.0056
MLP 0.0195 0.0174 0.0060 0.0042 0.0014

ResNet 0.0267 0.0206 0.0085 0.0050 0.0018
AdaFNN 0.0169 0.0032 0.0011 0.0005 0.0002

NODE 0.0184 0.0060 0.0039 0.0018 0.0008
CatBoost 0.0358 0.0123 0.0037 0.0026 0.0008
XGBoost 0.0465 0.0287 0.0083 0.0091 0.0023

LightGBM 0.0476 0.0178 0.0064 0.0036 0.0011
AutoGluon 0.0172 0.0131 0.0019 0.0007 0.0002

xRFM 0.0287 0.0128 0.0053 0.0020 0.0010

IDAT 0.0043 0.0019 0.0006 0.0005 0.0003
IDAT w/o AI 0.0055 0.0020 0.0011 0.0004 0.0005

(a) With AI . (b) Without AI .

Figure 6: Embedding clustering in case III, in comparison with and without AI . All the attention
weights are are scaled by a factor of 1000. Removing inter-sample attention collapses the separa-
tion between clusters: their profiles become much more similar, differing only slightly early in the
trajectory.

Anthropometric measurements included body mass index (BMI) and other measurements such as
body fat percentage. The age, sex, and height of the respondent were recorded. Weight was mea-
sured in kilograms using Tanita BF-522W scales (upper limit 130 kg; those likely exceeding this
were not weighed). BMI was computed as

BMI = weight (kg)/
(
height (m)2

)
.
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Table 7: MSE under different sparsity level in case I* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in the super
sparse regime and remains competitive as observations become denser; strong competitors include
TabPFN and xRFM, while AdaFNN is tailored only to fully observed data.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0272 0.0075 0.0030 0.0010 <0.0001
FLR 0.0548 0.0532 0.0515 0.0495 0.0520

FPCA+NN 0.0620 0.0561 0.0549 0.0499 0.0488
TabNet 0.0604 0.0433 0.0238 0.0115 0.0083
SAINT 0.0731 0.0731 0.0736 0.0734 0.0769

FTTransformer 0.0332 0.0136 0.0045 0.0026 0.0007
AutoInt 0.0357 0.0124 0.0068 0.0051 0.0019
TabPFN 0.0193 0.0067 0.0021 0.0008 0.0001
VT+NN 0.1758 0.1767 0.1570 0.1763 0.0064

SAND+NN 0.2233 0.1979 0.1967 0.2140 0.0064
MLP 0.0378 0.0128 0.0035 0.0027 0.0010

ResNet 0.0407 0.0147 0.0037 0.0053 0.0020
AdaFNN 0.0182 0.0091 0.0034 0.0012 0.0001

NODE 0.0289 0.0111 0.0049 0.0026 0.0006
CatBoost 0.0246 0.0102 0.0040 0.0018 0.0007
XGBoost 0.0307 0.0186 0.0086 0.0078 0.0047

LightGBM 0.0391 0.0152 0.0078 0.0047 0.0023
AutoGluon 0.0167 0.0074 0.0028 0.0012 0.0002

xRFM 0.0160 0.0100 0.0042 0.0029 0.0028

IDAT 0.0157 0.0070 0.0031 0.0013 0.0006
IDAT w/o AI 0.0145 0.0069 0.0031 0.0007 0.0003

The longitudinal BMI series exhibit substantial missingness (mean 25%, range 8%–96%), spanning
dense to super-sparse regimes; hence a model that remains robust across observation densities is
desirable. On average, subjects have 6.2 observations (SD 0.9) across the 10 sweeps (Figure 7). The
BMI outcome at age 62 averages 27.95 for females (n = 2489) and 28.25 for males (n = 2463);
values are truncated to [19.39, 41.14]. We adjust for birth BMI given its established association with
later-life BMI (Parsons et al., 1999; Rogers, 2003; Gillman et al., 2003), and for a childhood stress
index defined as the average of 13 binary indicators in the NCDS (e.g., housing problems, finan-
cial hardship, parental divorce, unemployment, illness, disability, or bereavement) (Halliday et al.,
2014; Stenhammar et al., 2010; Garasky et al., 2009). Because sex differences in BMI are marked
across the life course, we formally compared female vs. male BMI distributions at ages 7, 11, 16, 23,
33, 42, 50, 55, and 62 using two-sided Mann–Whitney U tests, obtaining p-values of 3.99×10−6,
9.92×10−7, 1.93×10−22, 1.23×10−35, 6.74×10−40, 5.60×10−42, 3.52×10−2, 1.37×10−14, and
3.13×10−6, respectively (all < 0.05; age 50 remains significant at p=0.035). Given persistent
differences along the entire trajectory, we fit sex-stratified models. Sex differences are well doc-
umented in obesity prevalence, maternal factors further contribute to sex-specific BMI trajectories
(Gillman et al., 2003). Sex-stratified models thus help mitigate confounding bias in the estimated
effects of the primary predictors.

Following CLS guidance on handling missing data, we assessed whether our pre-specified covariates
predicted non-response for the outcome (Mostafa et al., 2021; Katsoulis et al., 2024). We found no
evidence that these covariates were significant predictors of attrition, suggesting negligible selection
bias in the analytic sample. Accordingly, we did not apply explicit non-response adjustments (e.g.,
inverse probability weighting), while noting that non-response in longitudinal studies can reduce
efficiency and, if unaddressed, potentially induce bias.

As shown in Figure 8, we cluster the learned dual–attention weights (unsupervised; k chosen by
cross–validated kNN) into two groups. The resulting labels are highly associated with Y (age-62
BMI), indicating that inter–sample attention captures prediction–relevant structure. The clusters
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Table 8: MSE under different sparsity level in case II* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in all sparsity
regimes; strong competitors include TabPFN and ensemble methods such as NODE and CatBoost.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0133 0.0069 0.0077 0.0106 0.0075
FLR 0.0079 0.0066 0.0059 0.0055 0.0048

FPCA+NN 0.0328 0.0272 0.0383 0.0435 0.0383
TabNet 0.0133 0.0080 0.0071 0.0034 0.0014
SAINT 0.0110 0.0108 0.0110 0.0109 0.0110

FTTransformer 0.0099 0.0037 0.0016 0.0021 0.0017
AutoInt 0.0080 0.0049 0.0047 0.0094 0.0053
TabPFN 0.0065 0.0017 0.0006 0.0003 0.0003
VT+NN 0.0771 0.0757 0.0837 0.0820 0.0158

SAND+NN 0.0911 0.0856 0.0771 0.0854 0.0158
MLP 0.0091 0.0029 0.0021 0.0036 0.0062

ResNet 0.0089 0.0030 0.0020 0.0026 0.0018
AdaFNN 0.0282 0.0065 0.0031 0.0034 0.0035

NODE 0.0075 0.0035 0.0010 0.0008 0.0004
CatBoost 0.0075 0.0029 0.0030 0.0009 0.0002
XGBoost 0.0073 0.0030 0.0034 0.0017 0.0009

LightGBM 0.0106 0.0079 0.0018 0.0010 0.0009
AutoGluon 0.0074 0.0022 0.0015 0.0007 0.0005

xRFM 0.0058 0.0046 0.0019 0.0027 0.0029

IDAT 0.0027 0.0015 0.0013 0.0004 0.0002
IDAT w/o AI 0.0023 0.0007 0.0006 0.0002 0.0002

Figure 7: Number of observations in the NCDS study of sample size n = 4952.

cleanly separate low vs. high BMI at age 62, demonstrating explanatory value and interpretability.
Panel (a) reveals two clear attention clusters and a consistently low–weight, non–informative region
at the 6th time grid (age-50); panel (b) shows that the attention–derived clusters align with sub-
sequent BMI separation, with the shaded non–informative interval being the only segment where
trajectories do not mirror the later outcome.

In the NCDS age–50 sweep, height was not newly measured: healthcare professionals first used the
measured height from the age–44 biomedical sweep; if unavailable, the self–reported height from
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Table 9: MSE under different sparsity level in case III* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in sparse regimes
and remains competitive as observations become denser; strong competitors include TabPFN and LR
in dense/fully observed data.

Method/MSE ssparse 10% vsparse 20% sparse 50% dense 80% full 100%

LR 0.0853 0.0766 0.0367 0.0244 0.0002
FLR 0.1353 0.1341 0.1137 0.1184 0.1166

FPCA+NN 0.2192 0.1826 0.1604 0.1339 0.1968
TabNet 0.1120 0.2613 0.0377 0.0291 0.0198
SAINT 0.2585 0.2583 0.0734 0.0497 0.2579

FTTransformer 0.0801 0.0596 0.0354 0.0326 0.0202
AutoInt 0.0903 0.0666 0.0510 0.0385 0.0171
TabPFN 0.0522 0.0305 0.0115 0.0004 0.0002
VT+NN 0.0673 0.0311 0.0276 0.0231 0.0285

SAND+NN 0.0703 0.0308 0.0208 0.0272 0.0285
MLP 0.0769 0.0393 0.0307 0.0228 0.0127

ResNet 0.0846 0.0434 0.0320 0.0217 0.0085
AdaFNN 0.0582 0.0479 0.0148 0.0060 0.0112

NODE 0.0741 0.0397 0.0383 0.0275 0.0133
CatBoost 0.0740 0.0405 0.0220 0.0171 0.0075
XGBoost 0.0884 0.0525 0.0297 0.0255 0.0170

LightGBM 0.0817 0.0404 0.0272 0.0213 0.0114
AutoGluon 0.0617 0.0357 0.0182 0.0076 0.0012

xRFM 0.0417 0.0342 0.0141 0.0075 0.0044

IDAT 0.0386 0.0139 0.0016 0.0051 0.0033
IDAT w/o AI 0.0378 0.0207 0.0045 0.0073 0.0059

the age–50 main interview. Consequently, the dedicated “height at 50” field appears missing for the
vast majority of cases (about 96% in the analyzed population), reducing the informativeness of BMI
at age 50. Together with the attention–based time–domain selection, these collection procedures
help explain why the age–50 window is identified as non–informative in Figure 8.

(a) (b)

Figure 8: Meaningful dual-attention structure and outcome alignment across time. (a) Attention
weights for test samples. Two clusters are clearly visible, and the masked region (6th time grid, age
50) receives consistently low attention, indicating a non-informative domain. (b) Attention-derived
clusters align with lower vs. higher BMI at age 62; the shaded non-informative domain is the only
region where cluster trajectories fail to mirror the subsequent BMI separation.
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A.2.2 SYNTHETIC HIV DATASET (HEALTH GYM): VL/CD4 CLASSIFICATION

Each dataset in the Health Gym HIV dataset (Kuo et al., 2022) project is generated by training
a generative adversarial network (GAN) on a corresponding real cohort to reproduce marginal
distributions, temporal dynamics, and cross–variable correlations while maintaining a very low
re-identification risk. In this study, we use the EuResist–based (Zazzi et al., 2012) real HIV cohort
and then sampling fully synthetic patient trajectories from the trained generator. The GAN is opti-
mized to reproduce not only marginal distributions but also temporal dynamics and cross–variable
dependencies (e.g., the joint evolution of viral load, CD4, and regimen exposure). Utility is validated
by comparing synthetic to real data across distributions, correlations, regimen usage frequencies, and
time–series summaries; privacy is audited using best–practice membership– and attribute–disclosure
tests, yielding a very low re–identification risk while preserving clinically meaningful patterns.

The EuResist–based source cohort includes individuals who initiated antiretroviral therapy (ART)
after 2015 and were treated with the 50 most common regimen combinations (covering 21 drugs).
Variables comprise demographics, viral load (VL), CD4 T–cell counts, and regimen indicators (both
base combinations and auxiliary drug classes). Records are monthly time series with person–specific
therapy durations; to standardize sequence lengths for modeling, trajectories are truncated to the
nearest multiple of 10 months. Because the real cohort is sparse/irregular, each laboratory/clinical
variable includes a binary “(M)” flag marking whether a measurement was observed at a given
month, preserving real–world missingness for GAN training and downstream evaluation.

The HIV synthetic dataset is based on the work of Parbhoo et al. (2017) and Organization et al.
(2013). It encodes the core variables needed to model disease monitoring and treatment decisions
in HIV: (i) demographics (e.g., sex, age/age group, ethnicity), (ii) ART regimen indicators (base
combinations and auxiliary drug classes), (iii) VL, and (iv) CD4 counts. Two additional identifiers
(patient ID and month) index the panel structure. This schema supports supervised prediction, policy
learning, and descriptive analyses without access to identifiable records.

In terms of scale and structure, the synthetic HIV dataset contains 8916 patients followed at a fixed
monthly cadence for 60 months, yielding 534960 panel records (8916 × 60). The time index runs
from month 1 to month 60 with no gaps, so each patient contributes a complete 60–step trajectory (in
contrast to the variable–length, irregular trajectories in the underlying real cohort). The data schema
comprises 15 variables: 3 numeric (e.g., VL, CD4, and a continuous demographic), 5 binary (e.g.,
regimen or clinical flags), and 5 categorical (e.g., regimen classes, ethnicity), plus patient ID and
month index.

Clinical guidelines recommend frequent viral load monitoring until HIV-1 RNA is suppressed be-
low 200 copies/mL, followed by routine testing, establishing VL < 200 copies/mL as the clinical
threshold for virologic suppression (Eisinger et al., 2019; JG, 2008). Suppression at this level is
clinically meaningful: a systematic review reports essentially zero sexual transmission risk when
individuals adhere to antiretroviral therapy and maintain VL< 200 copies/mL (Sabin et al., 2000).
Accordingly, predicting whether future VL will be < 200 copies/mL is a decision-relevant end-
point that informs monitoring intervals, adherence support, and risk communication, and is aligned
with clinical practice and epidemiologic evidence. The VL series in the feature window is highly
sparse (mean missingness 65%, range 47–88%). Subjects receive a mean of 5.8 observations (SD
1.8) during the 20-month covariate interval (Figure 9). The analysis cohort comprises n = 8683
synthetic patients meeting inclusion criteria for the two windows. We adjust for sex as a baseline
covariate. The detailed accuracy/F1 score under three imputation methods for the VL classification
task is provided in Table 10.

We would like to report another analysis done on this HIV synthetic dataset in Table 11. AIDS is
defined for surveillance by the U.S. CDC (Centers for Disease Control and Prevention, 2025) (and
harmonized with WHO (Organization et al., 2013)) as either: (i) CD4 T-cell count < 200 cells/mm3,
or (ii) the presence of any AIDS-defining illness. In this study we define a binary label indicating
whether a patient ever experiences CD4< 200 during the evaluation window. For each patient we
use the first 40 months of CD4 as the longitudinal covariate vector, and define the outcome as

Y = 1

{
min

t∈{41,...,60}
CD4t < 200

}
,

i.e., whether CD4 ever drops below 200 in the last 20 months (prediction window). The CD4 se-
ries in the feature window is highly sparse (mean missingness 76%, range 49–93%). On average,
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Figure 9: Number of observations in the synthetic HIV study. On the left, VL task with total of 8683
subjects in T = 20 months interval. On the right, CD4 task with total of 7659 subjects in T = 40
months interval.

subjects have 8 (SD 2.6) observations over the 40-month covariate window (Figure 9). The analysis
cohort comprises n = 7659 synthetic patients meeting inclusion criteria for the two windows. We
adjust for sex as a baseline covariate. With only a 6% minority rate, the task is highly imbalanced.
Dual-attention can struggle because both its objective and mechanics amplify majority signals while
diluting minority cues. Inter-sample attention forms softmax-weighted averages across the batch;
with few minority examples per batch, these averages are pulled toward dense majority neighbor-
hoods, washing out rare patterns. If a Y -token is included during training for classification, the
encoder can “cheat” by attending to that token instead of learning from covariates; at test time the
Y -token is masked, creating a distribution shift where the learned shortcut disappears and general-
ization degrades. Finally, imbalanced batches mean the model rarely attends to minority neighbors,
preventing stable minority prototypes and yielding poor F1 score and accuracy.

Ensemble methods perform strongly on the classification task, reflecting robustness under relatively
short grids and stable outcomes. In this setting, LOCF is reasonable because the observed grid is
small and VL varies modestly over successive months, while MICE, although a state-of-the-art
imputation strategy, mainly boosts competing models without closing the gap to our approach.
Across regression and classification, MICE tends to improve baselines, yet none match the proposed
dual-attention Transformer. For classification, especially under severe imbalance, a more tailored
class-balanced design, such as class-balanced batching, logit-adjusted losses and validation-based
thresholding, can further improve performance and better capture minority cases.

A.3 THEORY FOR SCALAR-ON-FUNCTION REGRESSION: NONPARAMETRIC
RANDOM-EFFECT MODELS

For subject i in a batch of size B, the longitudinal measurements follows a random effect model
(Laird & Ware, 1982a; Mu et al., 2008),

X∗
i (t̃i) = µ(t̃i) + bi(t̃i) + ηi(t̃i), (8)

with t̃i = (ti1, . . . , tini) ⊂ [0, 1], where ni may differ among subjects. The irregular samples X∗
i (t̃i)

are then viewed as a noisy finite-dimensional samples from the continuous trajectory Xi(·). The
effect µ is the population mean effect which is shared among all subjects and captures the general
trajectory trend, while the subject-specific effect bi ∼ subG(0,B) captures the effect on subjects
and is distributed independently of each other and of the measurement noise ηi ∼ N(0, σ2

X). We
impose smoothness on both µ and bi via the Hölder class Cα

(
[0, 1]; R

)
. For α ∈ (0, 1], define

Cα
(
[0, 1];R

)
=

{
g : [0, 1] → R : ∥g∥Cα := ∥g∥∞ + [g]Cα < ∞

}
,

where ∥g∥∞ = supt∈[0,1] |g(t)|, [g]Cα = sups̸=t
|g(t)−g(s)|

|t−s|α . In particular, α = 1, C1([0, 1]) is
exactly the space of Lipschitz functions in the ℓ∞ norm. The response Yi ∈ R is generated by a
functional regression operator F acting on the entire trajectory:

Yi = F(Xi(·)) + ϵi, ϵi ∼ N(0, σ2
Y ). (9)
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Table 10: Classification performance on the synthetic HIV VL task under three imputation strategies
(mean, MICE, LOCF). We report accuracy (ACC) and F1; the best score is in bold and the top three
are in italics. IDAT matches the top methods, and LOCF performs comparably given stable VL
trajectories.

Synthetic HIV – VL

mean imputed MICE LOCF

Method ACC F1 ACC F1 ACC F1

LM/GLM 0.9505 0.9746 0.9517 0.9751 0.9448 0.9716
FLR/FGLM 0.9486 0.9736 0.9486 0.9736 0.9486 0.9736
FPCA+NN 0.9413 0.9698 0.9413 0.9698 0.9413 0.9698

TabNet 0.9482 0.9734 0.9494 0.9740 0.9517 0.9752
SAINT 0.9517 0.9752 0.9505 0.9745 0.9517 0.9752

FTTransformer 0.9459 0.9721 0.9494 0.9739 0.9528 0.9757
AutoInt 0.9425 0.9703 0.9494 0.9740 0.9528 0.9758
TabPFN 0.9459 0.9722 0.9482 0.9734 0.9528 0.9758
VT+NN 0.9252 0.9611 0.9252 0.9611 0.9252 0.9611

SAND+NN 0.9321 0.9647 0.9321 0.9647 0.9321 0.9647
MLP 0.9517 0.9752 0.9471 0.9727 0.9540 0.9764

ResNet 0.9448 0.9715 0.9517 0.9751 0.9517 0.9752
AdaFNN 0.9321 0.9649 0.9321 0.9649 0.9321 0.9649

NODE 0.9471 0.9727 0.9517 0.9751 0.9551 0.9769
CatBoost 0.9379 0.9679 0.9448 0.9715 0.9517 0.9751
XGBoost 0.9333 0.9652 0.9471 0.9727 0.9505 0.9745

LightGBM 0.9379 0.9678 0.9448 0.9715 0.9482 0.9733
AutoGluon 0.9505 0.9746 0.9505 0.9745 0.9517 0.9751

xRFM 0.9413 0.9698 0.9413 0.9698 0.9413 0.9698

IDAT 0.9517 0.9752 0.9517 0.9752 0.9517 0.9752
IDAT w/o AI 0.9517 0.9752 0.9517 0.9752 0.9517 0.9752

We assume F : Cα
(
[0, 1]; R

)
→ [−Mf ,Mf ] ⊂ R is bounded and Lf -Lipschitz in supremum

norm, namely∣∣F(X)−F(X ′)
∣∣ ≤ Lf ∥X −X ′∥∞, ∥X −X ′∥∞ = sup

t∈[0,1]

|X(t)−X ′(t)|.

To accommodate irregular sampling to a Transformer model, we fix the ordered grids τ̃ =
{τj}Tj=1 ⊂ [0, 1]. In the sparse regime—where each trajectory contributes only a few time-points
relative to T—one may take {τj} to be the union of all distinct observation times (optionally aug-
mented by equispaced points to guarantee full coverage).In the dense regime it is customary to
partition [0, 1] into T bins, and aggregate local measurements via averaging or interpolation. We
define the mesh size ∆ = max1≤j<T |τj+1 − τj | and ρ = min1≤j<T |τj+1 − τj |, we will care-
fully show how the discretization incurs an approximation error of order ∆α relative to the true
continuous trajectory in Lemma 3.

In the training phase, we align each subject’s irregular observations to the fixed grid τ̃ =
(τ1, . . . , τT ) by introducing a binary mask Mi(τ̃) ∈ {0, 1}T and a zero-padded trajectory vector
X∗

i (τ̃) ∈ RT . Concretely, for each j = 1, . . . , T we define

Mi(τj) =

{
1, ∃ k such that τj = ti,k,

0, otherwise,
X∗

i (τj) =

{
X∗

i (ti,k), τj = ti,k,

0, Mi(τj) = 0.

Thus the elementwise (Hadamard) product Xi(τ̃)⊙Mi(τ̃) retains the observed values and zeros out
missing entries. Finally, we concatenate this length-T vector with the scalar response Yi to obtain

Di =
(
X∗

i (τ̃)⊙Mi(τ̃), Yi

)
∈ RT+1,
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Table 11: Classification performance on the synthetic HIV CD4 task under three imputation strate-
gies (mean, MICE, LOCF). We report accuracy (ACC) and F1; the best score is in bold and the top
three are in italics. Tree/ensemble methods and TabPFN attain the highest ACC, while FPCA+NN
yields the best F1, with rankings broadly stable across imputations.

Synthetic HIV – CD4

mean imputed MICE LOCF

Method ACC F1 ACC F1 ACC F1

LM/GLM 0.8158 0.3095 0.8327 0.2182 0.8210 0.1039
FLR/FGLM 0.8184 0.1026 0.8184 0.1026 0.8184 0.1026
FPCA+NN 0.8405 0.7648 0.8405 0.7648 0.8405 0.7648

TabNet 0.8132 0.2258 0.8495 0.4579 0.8366 0.3942
SAINT 0.8249 0.1176 0.8171 0.3092 0.8262 0.1625

FTTransformer 0.8508 0.5022 0.8405 0.4279 0.8353 0.4641
AutoInt 0.8457 0.4138 0.8353 0.3981 0.8327 0.3385
TabPFN 0.8586 0.4631 0.8599 0.4653 0.8508 0.4700
VT+NN 0.7951 0.0366 0.7951 0.0366 0.7951 0.0366

SAND+NN 0.8080 0.2885 0.8080 0.2885 0.8080 0.2885
MLP 0.8379 0.4681 0.8482 0.4293 0.8340 0.3725

ResNet 0.8470 0.3516 0.8379 0.3590 0.8379 0.3961
AdaFNN 0.7406 0.1736 0.7406 0.1736 0.7406 0.1736

NODE 0.8495 0.3763 0.8431 0.3388 0.8379 0.3781
CatBoost 0.8521 0.3936 0.8534 0.4744 0.8457 0.4516
XGBoost 0.8495 0.4579 0.8444 0.4643 0.8353 0.4356

LightGBM 0.8482 0.4179 0.8521 0.4722 0.8392 0.4414
AutoGluon 0.8470 0.4327 0.8508 0.4279 0.8288 0.4211

xRFM 0.8145 0.3129 0.8145 0.3129 0.8145 0.3129

IDAT 0.8171 0.3092 0.8171 0.3092 0.8171 0.3092
IDAT w/o AI 0.8171 0.3092 0.8171 0.3092 0.8171 0.3092

which is then passed to the embedding along with the positional information. In order for the model
to make use of the order of the time sequence, we must inject some information about the relative or
absolute position of the observation in the time trajectory. We apply two learned linear maps with
embedding dimension d,

EX : R → Rd, EY : R → Rd,

pointwise across the sequence and then add sinusoidal positional encodings P (τ̃).

D̃i =
(
EX · [X∗

i (τ̃)⊙Mi(τ̃)] + P (τ̃), EY · Yi

)
∈ Rd×(T+1),

for dimension i ∈ [d] and j ∈ [T ], we define the relative position as p =
∑

k≤j τk/ρ, then

P (2i)(τj) = sin(p · 10000−2i/d), P (2i+1)(τj) = cos(p · 10000−2i/d).

Intuitively, the geometric progression of wavelengths ensures each timepoint is mapped to a unique
location in Rd, which underpins the universal approximation property over sequences of bounded
length.

Consider a mini-batch embedding of size B, we define D̃ = {D̃i}Bi=1 ∈ RB×d×(T+1) as a training
batch. The dual-attention Transformer block T B : RB×d×(T+1) → RB×d×(T+1) is defined by

T B(D̃) = FF1 ◦AI ◦ FF2 ◦AT (D̃) = FF1

(
AI

(
FF2(AT (D̃))

))
∈ RB×d×(T+1), (10)

where FF1,FF2 : RB×d×(T+1) → RB×d×(T+1) position-wise feed-forward network (e.g. a two-
layer ReLU MLP with hidden dimension dFF). WLOG, we assume FF1 = FF2 = FF. For
analytical simplicity we omit layer normalization, while preserving the basic architecture of the
Transformer.
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We next introduce the dual-attention mechanism, which combines classical self-attention over time
points with an inter-sample attention across the batch. Let σ[·] denote the column-wise softmax op-
erator, which maps any real matrix to a column-stochastic matrix (nonnegative entries, each column
summing to one). Both attention modules employ H distinct heads of size dA. For each head h, the
time-point projections satisfy Wh

Q,W
h
K ,Wh

V ∈ RdA×d and Wh
O ∈ Rd×dA , while the inter-sample

projections satisfy V h
Q , V h

K , V h
V ∈ Rd×dA and V h

O ∈ RdA×d. This design follows Yun et al. (2019),
augmented by inter-sample attention to borrow strength across subjects.

Time-Point Attention. Applied independently to each sample i = 1, . . . , B. Let D̃i ∈ Rd×(T+1)

be the input embedding of the ith subject. For head h we form

Qh
i = Wh

Q D̃i, Kh
i = Wh

K D̃i, V h
i = Wh

V D̃i, Wh
Q,W

h
K ,Wh

V ∈ RdA×d.

We then compute the attention weights

Sh
i = σ

[
(Kh

i )
⊤Qh

i

]
∈ R(T+1)×(T+1),

and update the sequence by

AT (D̃i) = D̃i +

H∑
h=1

Wh
O

(
V h
i Sh

i

)
∈ Rd×(T+1), Wh

O ∈ Rd×dA .

Inter-Sample Attention. Operates across the batch at each time index t = 1, . . . , T + 1. Denote
D̃t = D̃:,:,t ∈ RB×d. For head h set

Qh
t = D̃t Uh

Q, Kh
t = D̃t Uh

K , V h
t = D̃t Uh

V , Uh
Q, U

h
K , Uh

V ∈ Rd×dA .

The batch-wise attention weights are

Sh
t = σ

[
Qh

t (K
h
t )

⊤] ∈ RB×B ,

and the updated features

AI(D̃
t) = D̃t +

H∑
h=1

(
Sh
t V h

t

)
Uh
O ∈ RB×d, V h

O ∈ RdA×d.

Reassembling over all t yields AI(D̃) ∈ RB×d×(T+1).

Composing L Transformer blocks defines the full dual-attention Transformer embedding

T (D̃) = T B ◦ · · · ◦ T B︸ ︷︷ ︸
L times

(D̃) = T B◦L(D̃) : RB×d×(T+1) → RB×d×(T+1). (11)

Regressor Layer. After learning an embedding from the dual-attention mechanism, let the
dual–attention encoder output

T (D̃i) ∈ Rd×(T+1), T (D̃i) =
[
ZX

∣∣ ZY

]
i
,

where ZX = T (D̃i):,:,1:T ∈ Rd×T contains the token-wise representations of the longitudi-
nal covariates and ZY = T (D̃i):,:,T+1 ∈ Rd is the embedding of the response token. Define
ϕ : Rd×T → Rd is any deterministic pooling operator that aggregates the first length-T sequence of
d-dimensional vectors from T (D̃i) into a single d-dimensional summary. Common choices include
mean pooling or attention pooling, which is designed to learn the nonparametric regression weight
between the embedding. In any case ϕ is a fixed, deterministic function—once its parameters are
trained, it introduces no additional randomness at inference. We assume ϕ is Lipschitz, with constant
Lϕ, so that for any two sequences Z,Z ′,

∥ϕ(Z)− ϕ(Z ′)∥∞ ≤ Lϕ ∥Z − Z ′∥∞.

We take g : Rd → R to be a two-layer ReLU network of the form

g(z) = W (2) σ
(
W (1)z + b(1)

)
+ b(2),
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where
W (1) ∈ RdFF×d, b(1) ∈ RdFF , W (2) ∈ R1×dFF , b(2) ∈ R.

Here σ(x) = max{0, x} acts element-wise. This network is Lipschitz in the sup-norm with constant

Lg = ∥W (2)∥op ∥W (1)∥op,

since each linear map has operator norm equal to its largest singular value and ReLU is 1-
Lipschitz. The model prediction is therefore Ŷi = g

(
ϕ([ZX ]i)

)
. During training we minimise a

loss ℓ
(
Ŷi, g([ZY ]i)

)
, treating the response embedding ZY as an informative target. We train g so

that it uniformly approximates (Hornik, 1991; Stinchcombe, 1999; Cybenko, 1989; Hornik et al.,
1989; Yarotsky, 2017) the true functional on the oracle embedding range; that is, for z = ϕ([ZX ]i),

sup
∥z∥∞≤R

∣∣g(z)− f
(
si
)∣∣ ≤ εg.

A.3.1 OVERVIEW

The theoretical development proceeds as follows. We first embed irregular, noisy longitudinal mea-
surements on a fixed grid and control the resulting input–embedding discrepancy (Lemma 3). In
training phase, the components of the dual–attention block (time–point self–attention AT , posi-
tion–wise feed–forward FF, and inter–sample attention AI ) are Lipschitz (Lemmas 4, 8) and ad-
mit uniform approximation on compact sets (Lemma 5,6,7), yielding a deterministic approximation
bias. Inter–sample attention further reduces stochastic embedding variance by up to a B−1/2 factor
(Lemma 9). Stacking L blocks yields the training phase embedding error εT (Theorem 1). Gener-
alization bounds for a single block and for L stacked blocks are given in Lemma 10 and 11, and the
train MSE deviation appears in Theorem 2. Combining these with the approximation bounds from
Theorem 1 shows that the training MSE is controlled by (i) input discretization, (ii) model approx-
imation and variance terms, and (iii) a Rademacher generalization term. Under standard structural
risk minimization scaling: refining the grid so ∆→0, increasing capacity so εFF, εAT

, εAI
, εg→0,

enforcing norm control so the encoder Lipschitz LT remains bounded and letting p = B d (T+1)

grow with n so that
√

p/n→0 (or an analogous spectral complexity term → 0), the generalization
term vanishes and the training MSE is consistent.

During the testing phase, Theorem 13 bounds pointwise and uniform test prediction error via a
decomposition into embedding error, regressor approximation error, discretization bias, and label
noise. It then controls the population test MSE via the training MSE plus a Rademacher complexity
term and an expectation bridge that propagates the test-phase perturbation from the missing Y -token;
the empirical test MSE further adds a standard test concentration term. As shown in Corollary 14,
the test MSE is consistent if: (i) the mesh shrinks ∆→ 0, (ii) the training MSE is consistent, (iii)
the bridge term vanishes with LY → 0 or Y -token masking, and (iv) N →∞ so the test concentra-
tion term vanishes; under these structural risk minimization-style conditions, both population and
empirical test MSE converge to the Bayes risk.

A.3.2 TRAINING PHASE.

Lemma 3 (Input Embedding Discretization Error). Under the random effect model with assump-
tion that µ, bi ∈ Cα([0, 1];R) with Hölder constant L/2, supt∈[0,1] |µ(t)| = ∥µ∥∞, and bi ∼
GP(0, B) with σ2

b = supt∈[0,1] B(t, t). The measurement noise satisfies ηi(τj)
i.i.d.∼ N(0, σ2

X),

and the label noise ϵi
i.i.d.∼ N(0, σ2

Y ). Let D̃i =
(
EX

(
X∗

i (τ̃)⊙Mi(τ̃)
)
+ P (τ̃), EY Yi

)
and

S̃i =
(
EX

(
si(τ̃)

)
+ P (τ̃), EY f(si)

)
, where si(τj) = µ(τj) + bi(τj). Then with probability at

least 1− δ,

δ0 = ∥D̃− S̃∥∞

≤ (LX + LY Lf )
(
L∆α + σX

√
2 ln 2BT

δ + ∥µ∥∞ + σb

√
2 ln 2BT

δ

)
+ LY σY

√
2 ln

2B

δ
,

where ∆ = maxj |τj+1 − τj | is the mesh size, LX = ∥EX∥op and LY = ∥EY ∥op.
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Remark 1: The true response is generated by the functional

Yi = F
(
Xi(·)

)
+ ϵi, F : Cα([0, 1];R) → R, ∥ϵi∥ ∼ N(0, σ2

Y ).

We never observe Xi continuously, only at grid points {τj}Tj=1. Write si(τj) = µ(τj) + bi(τj), and
extend si to a continuous function s̃i ∈ Cα([0, 1];R) (e.g. by linear interpolation). We then define
the oracle scalar

f(si) := F
(
s̃i
)
.

Since F is Lf–Lipschitz in the supremum norm, with mesh size ∆ we have∣∣F(Xi(·))− f(si)
∣∣ = ∣∣F(Xi(·))−F(s̃i)

∣∣ ≤ Lf ∥Xi − s̃i∥∞ ≤ Lf ∆
α.

Thus f(si) approximates the true functional F(Xi(·)) with a discretization error of order ∆α.

Remark 2: In the sequel, we establish high-probability, non-asymptotic bounds showing that our
learned Transformer embedding T (D̃) approximates the oracle embedding H(S̃) up to some error
terms. One term is regarding to discretization error of order ∆α, arising from sampling an α–Hölder
trajectory on a grid of mesh size ∆. While reducing ∆ tightens the discretization bound, it also
increases the sequence length T and hence computational cost. In practical applications, ∆ must
therefore be chosen to balance statistical accuracy against the available computational budget.

Proof. Fix i ∈ [B] and j ∈ [T ]. If Mi(τj) = 1, then X∗
i (τj) = si(tik) + ηi(tik) = µ(tik) +

bi(tik) + ηi(tik) for some tik with |tik − τj | ≤ ∆. Hence by continuity assumption on µ and bi,∣∣X∗
i (τj)− si(τj)

∣∣ ≤
∣∣si(tik)− si(τj)

∣∣ + |ηi(τj)| ≤ L∆α + |ηi(τj)|.

If Mi(τj) = 0 then X∗
i (τj)⊙Mi(τj) = 0 and

∣∣0− si(τj)
∣∣ = |si(τj)|. Therefore for every i, j,∣∣X∗

i (τj)Mi(τj)− si(τj)
∣∣ ≤ |si(τj)| ≤ L∆α + |ηi(τj)| + |si(τj)|.

By standard Gaussian-maxima bounds and a union bound over i and j,

max
i,j

|ηi(τj)| ≤ σX

√
2 ln

2BT

δ
, max

i,j
|bi(τj)| ≤ σb

√
2 ln

2BT

δ
,

each with probability ≥ 1− δ/2. Hence with probability ≥ 1− δ,

max
i,j

∣∣X∗
i (τj)Mi(τj)− si(τj)

∣∣ ≤ L∆α + σX

√
2 ln

2BT

δ
+ ∥µ∥∞ + σb

√
2 ln

2BT

δ
.

Applying EX (operator-norm LX ) to each token and noting that the positional encoding P (τj)
cancels, we get

max
i,j

∥∥EX(X∗
i Mi)− EX(si)

∥∥
2

≤ LX

(
L∆α + σX

√
2 ln

2BT

δ
+ ∥µ∥∞ + σb

√
2 ln

2BT

δ

)
.

Finally, for the Y -token, since f is Lf–Lipschitz in the sup-norm,∣∣Yi − f(si)
∣∣ = ∣∣f(Xi)− f(si)

∣∣+ |ϵi| ≤ Lf ∥Xi − si∥∞ + |ϵi|.

Then with probability at least 1 − δ
2 , maxi,j

∣∣Xi(τj)Mi(τj) − si(τj)
∣∣ yields the same upper bound

as L∆α + σX

√
2 ln 2BT

δ + ∥µ∥∞+σb

√
2 ln 2BT

δ . A Gaussian-maxima bound and union bound

over i = 1, . . . , B give max1≤i≤B |ϵi| ≤ σY

√
2 ln 2B

δ with probability ≥ 1 − δ
2 . Hence with

probability at least 1− δ,

max
1≤i≤B

∣∣Yi−f(si)
∣∣ ≤ Lf

(
L∆α + σX

√
2 ln

2BT

δ
+ ∥µ∥∞+σb

√
2 ln

2BT

δ

)
+ σY

√
2 ln

2B

δ
.

Finally, applying the linear embedding EY (with operator norm LY ) to each scalar yields

max
1≤i≤B

∥∥EY (Yi)− EY

(
f(si)

)∥∥
2

≤ LY

(
Lf

(
L∆α + σX

√
2 ln

2BT

δ
+ ∥µ∥∞ + σb

√
2 ln

2BT

δ

)
+ σY

√
2 ln

2B

δ

)
.

Combining these bounds yields the stated result.
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Lemma 4 (Lipschitz Continuity of the Feed-Forward Network). Let

FF : RB×d×(T+1) −→ RB×d×(T+1)

be the position-wise two-layer ReLU network defined by, for each sample i ∈ [B] and time-index
j ∈ [T + 1],

FF(Z)i,j = W2

[
max{0, W1 Zi,j}

]
+ b2, W1 ∈ RdFF×d, W2 ∈ Rd×dFF , b2 ∈ Rd,

where the ReLU (max{0, x}) acts element-wise on x ∈ RdFF , and Zi,j ∈ Rd denotes the embedding
of the jth token of the ith sample. Then FF is Lipschitz continuous in both the sup-norm and any Lp

norm, with constant
LFF = ∥W2∥op ∥W1∥op,

where the operator norm of a matrix W ∈ Rm×n is ∥W∥op = supx∈Rn\{0} ∥W x∥2/∥x∥2.

Proof. Observe that: x 7→ W1x is ∥W1∥op-Lipschitz in ℓ2. The ReLU activation x 7→ max{0, x}
is 1-Lipschitz in ℓ2. x 7→ W2x + b2 is ∥W2∥op-Lipschitz in ℓ2.Composing these shows each
token map Zi,j 7→ FF(Z)i,j is LFF-Lipschitz. Applying this position-wise yields, for any
Z,Z ′ ∈ RB×d×(T+1), with ∥Z∥∞ = maxi,j ∥Zi,j∥2,

∥FF(Z)− FF(Z ′)∥∞ ≤ LFF ∥Z − Z ′∥∞.

Lemma 5 (Approximation Power of the Feed-Forward Network). Let R > 0 and let

G : [−R,R]B×d×(T+1) → RB×d×(T+1)

be any position-wise operator satisfying the Lipschitz condition

∥G(Z)−G(Z ′)∥∞ ≤ LG ∥Z − Z ′∥∞ ∀Z,Z ′ with ∥Z∥∞, ∥Z ′∥∞ ≤ R.

Then for every εFF > 0 there exists a two-layer ReLU network FF : RB×d×(T+1) → RB×d×(T+1)

applied position-wise (i.e. independently to each (i, j) token) with hidden width

dFF =
⌈
(2LG R/εFF)

d
⌉

such that sup∥Z∥∞≤R

∥∥FF(Z) − G(Z)
∥∥
∞ ≤ εFF.

Proof Sketch. This lemma follows classical universal approximation results (Hornik, 1991; Stinch-
combe, 1999; Cybenko, 1989; Hornik et al., 1989; Yarotsky, 2017). Since G acts independently
on each d-dimensional token Zi,j ∈ [−R,R]d and is LG-Lipschitz in the sup-norm, the classical
two-layer ReLU universal approximation construction on [−R,R]d yields a network h : Rd → Rd

of width ⌈(2LGR/εFF)
d⌉ satisfying sup∥x∥∞≤R ∥h(x) − G(Z)i,j∥∞ ≤ εFF. Applying h to each

token position-wise produces the desired FF.

Lemma 6 (Uniform Approximation by Multi-Head Time-point Attention). Let X = {U ∈
Rd×(T+1) : ∥U∥∞ ≤ R} be a compact subset in the sup–norm, and let

fT : X −→ Rd×(T+1)

be any Ltemp-Lipschitz continuous mapping. Then for every εAT
> 0 there exist H ≥ H0(ε) and

dA ≥ d0(ε), and weight matrices {Wh
Q,W

h
K ,Wh

V ∈ RdA×d, Wh
O ∈ Rd×dA}Hh=1 such that the

multi-head time-point attention operator satisfies

sup
U∈X

∥∥AT (U) − fT(U)
∥∥
∞ ≤ εAT

.

Remark: In particular, if D̃, S̃ ∈ RB×d×(T+1) satisfy ∥D̃i∥∞ ≤ R and ∥S̃i∥∞ ≤ R for all i, then
with ∥D̃− S̃∥∞ bounded in Lemma 3,

∥AT (D̃)− fT(S̃)∥∞ ≤ εAT + LT ∥D̃− S̃∥∞ = εAT + LTδ0.

This is the total embeddind error if we only apply time-point attention mechanism to get embedding.
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Proof Sketch. The time-point attention is identical to the classical multi-head self-attention. The
time-point attention operator AT is realized by first projecting the input U via the matrices
Wh

Q,W
h
K ,Wh

V , then computing the scaled dot-products (Kh)⊤Qh and normalizing each row by
a softmax to obtain Sh. These attention weights are used to re-weight the values V h, the re-
sults are linearly combined by Wh

O, and finally a residual connection adds the original U . Each
of these steps—linear projection, softmax-normalization, weighted summation, and residual addi-
tion—is a continuous map on the compact domain X . By the universal-approximation theorem for
Transformer self-attention (Yun et al., 2019; Takeshita & Imaizumi, 2025; Kajitsuka & Sato, 2023),
networks of this form with sufficiently many heads H and head-dimension dA can uniformly ap-
proximate any continuous target mapping fT on X to within ε. The residual connection preserves
this approximation while enhancing expressivity, yielding the claimed bound. The final residual
ensures exact interpolation of the noiseless input when D̃ = S̃, and the Lipschitz continuity of fT
propagates any input mismatch ∥D̃− S̃∥∞ to an additional error of at most LT∥D̃− S̃∥∞, yielding
the stated bound.

Lemma 7 (Uniform Approximation by Multi-Head Inter-Sample Attention). Let

Y =
{
Z ∈ RB×d×(T+1) : ∥Z∥∞ ≤ R

}
be the closed sup-norm ball of radius R, and let

fI : Y −→ RB×d×(T+1)

be any LI–Lipschitz continuous mapping across the batch dimension. Then for every εAI
> 0 there

exist integers H and dA (depending on ε,R,B, d, T, LI) and weight matrices

{V h
Q , V h

K , V h
V ∈ Rd×dA , V h

O ∈ RdA×d}Hh=1

such that the multi-head inter-sample attention operator satisfies

sup
Z∈Y

∥∥AI(Z)− fI(Z)
∥∥
∞ ≤ εAI

.

Remark: Consequently, if D̃, S̃ ∈ RB×d×(T+1) satisfy ∥D̃i∥∞ ≤ R and ∥S̃i∥∞ ≤ R for all i, then
with ∥D̃− S̃∥∞ bounded in Lemma 3, then∥∥AI(D̃)− fI(S̃)

∥∥
∞ ≤ εAI

+ LI

∥∥D̃− S̃
∥∥
∞ = ε.

This is the total embedding error if we ignore the time-point embedding.

Proof Sketch. Inter-sample attention at each time-step t is exactly self-attention over the “batch-
axis” vectors Z:,t,: ∈ RB×d. As in Lemma 6, one shows that a finite number of heads H and
head-dimension dA suffice to uniformly approximate any continuous, Lipschitz mapping fI on the
compact set Y . The argument parallels that for time-point attention: each step (linear projections,
scaled-dot-product plus softmax, weighted summation, residual addition) is continuous, so by the
universal-approximation property of multi-head self-attention (Yun et al., 2019) one can achieve
error at most ε. The final residual ensures exact interpolation of the noiseless input when D̃ = S̃,
and the Lipschitz continuity of fI propagates any input mismatch ∥D̃− S̃∥∞ to an additional error
of at most LI∥D̃− S̃∥∞, yielding the stated bound.

Lemma 8 (Lipschitz Continuity of Dual-Attention Transformer Block). Let

T B = FF ◦ AI ◦ FF ◦ AT : RB×d×(T+1) → RB×d×(T+1)

be the dual-attention Transformer block. Suppose (1) The position-wise MLP FF is LFF–Lipschitz in
the sup-norm. (2) The time-point attention AT is LT –Lipschitz in the sup-norm. (3) The inter-sample
attention AI is LI–Lipschitz in the sup-norm. Then T B is Lipschitz continuous in the sup-norm with
constant LT B = L2

FF LT LI , i.e. for all X,X ′,
∥∥T B(X) − T B(X ′)

∥∥
∞ ≤ L2

FF LT LI

∥∥X −
X ′

∥∥
∞. Note that the Transfomer of layer L is naturally LL

T B–Lipschitz.

Proof. By assumption FF, AT , and AI satisfy ∥FF(U)−FF(U ′)∥∞ ≤ LFF∥U−U ′∥∞, ∥AT (V )−
AT (V

′)∥∞ ≤ LT ∥V − V ′∥∞, ∥AI(W )−AI(W
′)∥∞ ≤ LI∥W −W ′∥∞. Now set U = AT (X),
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U ′ = AT (X
′), V = FF(U), V ′ = FF(U ′), W = AI(V ), W ′ = AI(V

′). Then for any X,X ′ ∈
RB×d×(T+1),

∥T B(X)− T B(X ′)∥∞ =
∥∥FF(AI(FF(AT (X)))

)
− FF

(
AI(FF(AT (X

′)))
)∥∥

∞

≤ LFF

∥∥AI(V )−AI(V
′)
∥∥
∞

≤ LFF LI ∥V − V ′∥∞
= LFF LI ∥FF(U)− FF(U ′)∥∞
≤ L2

FF LI ∥U − U ′∥∞
= L2

FF LI ∥AT (X)−AT (X
′)∥∞

≤ L2
FF LI LT ∥X −X ′∥∞,

establishing the stated Lipschitz constant.

Lemma 9 (Variance Reduction by Inter-Sample Attention). Let

Zi = FF
(
AT (D̃i)

)
, mi = FF

(
AT (S̃i)

)
,

be the feed-forward outputs of the time-point attention on the observed embedding D̃i and the oracle
embedding S̃i. For each time-step t = 1, . . . , T + 1, write

Zt =
[
Zt
1; . . . ;Z

t
B

]
∈ RB×d, mt =

[
mt

1; . . . ;m
t
B

]
∈ RB×d,

where each row decomposes as

Zt
k = mt

k + γt
k, γt

k,j
iid∼ N(0, σ2

enc), k ∈ {1, . . . , B}, j ∈ {1, . . . , d},

under the assumption that ∥mt∥∞ ≤ Mm, the map βt is Lβ–Lipschitz and the FF network prop-
agates the Gaussian embedding noise from AT (D̃i) with Lipschitz constant absorbed into σenc.
Define the inter-sample attention weights at time t by

βt
i,k =

exp
(
(Qt

i ·Kt
k)/

√
dA

)∑B
ℓ=1 exp

(
(Qt

i ·Kt
ℓ)/

√
dA

) ,
where Qt = ZtWQ, Kt = ZtWK ∈ RB×dA . Then the inter-sample attention output for subject i
at t is

[
AI(Z

t)
]
i,:

=
∑B

k=1 β
t
i,k Z

t
k. For any δ ∈ (0, 1), with probability at least 1− δ,

max
i=1,...,B

∥∥AI(Z
t)i −AI(m

t)i
∥∥
∞ ≤ σenc max

i=1,...,B

√√√√ B∑
k=1

(βt
i,k)

2

√
2 ln

2B d

δ
,

which is of order between OP

(
σenc√

B

√
2 ln 2B d

δ

)
and OP

(
σenc

√
2 ln 2B d

δ

)
.

Taken consideration across all time-step, we have∥∥AI

(
FF(AT (D̃))

)
−AI

(
FF(AT (S̃))

)∥∥
∞

≤ σenc max
i∈[B]

√√√√ B∑
k=1

(βt
i,k)

2

√
2 ln

2B(T + 1) d

δ
+min{LβMm, LI} ∥FF(AT (D̃))− FF(AT (S̃))∥∞

= εvar.

In particular, if the subject-specific effect is absent so that βt
i,k = 1/B, then the bound is

σenc√
B

√
2 ln

2B(T + 1) d

δ
+min{LβMm, LI} ∥FF(AT (D̃))− FF(AT (S̃))∥∞.
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Remark 1: In the general random-effects case, attention implements a non-uniform weighted av-
erage. As long as the learned weights βt

i,k’s are reasonably spread over multiple subjects (typi-
cally because similar ht

k get grouped), we can obtain a variance reduction of order OP(1/
√
B) ≤

OP(
√∑B

k=1(β
t
i,k)

2) ≤ OP(1). In particular, if subject-specific effect is absent, all queries are
identical so that βt

i,k = 1/B, then inter-sample attention is equivalent to simple averaging, and we
could achieve the 1/

√
B variance reduction.

max
i,j

∣∣[AI(Z
t)−AI(m

t)
]
i,j

∣∣ ≤ σenc√
B

√
2 ln

2B d

δ
.

By contrast, without inter-sample attention each coordinate error γt
k,j satisfies maxk,j |γt

k,j | ≤
σenc

√
2 ln(2B d/δ) with the same probability. Thus inter-sample attention achieves a OP(1/

√
B)

reduction in the dominant noise term when the attention weights are uniform.

Remark 2: (Effective Embedding-Noise Standard Deviation.) Let ηi(τj)
iid∼ N(0, σ2

X) and ϵi
iid∼

N(0, σ2
Y ). Define

D̃i =
(
EX(Xi(τ̃)⊙Mi(τ̃)) + P (τ̃), EY (Yi)

)
, S̃i =

(
EX(si(τ̃)) + P (τ̃), EY (f(si))

)
,

with si(τj) = µ(τj) + bi(τj). Write LX = ∥EX∥op and LY = ∥EY ∥op. Then after embed-
ding, measurement noise becomes EX ηi(τj) ∼ N(0, L2

X σ2
X) and label noise becomes EY ϵi ∼

N(0, L2
Y σ2

Y ). Passing through a LT-Lipschitz time-point attention and an LFF-Lipschitz feed-
forward network multiplies each variance by (LTLFF)

2. Hence the effective embedding-noise stan-
dard deviation is

σenc = LFF LT max{LX σX , LY σY }.

Proof. Define the error

Ui,j =

B∑
k=1

βt
i,k γ

t
k,j .

For fixed i and j, Di,j is Gaussian with mean zero and variance σ2
enc

∑B
k=1(β

t
i,k)

2. Hence

Pr
(
|Di,j | > u

)
≤ 2 exp

(
− u2

2σ2
enc

∑
k(β

t
i,k)

2

)
.

By a union bound over all i ∈ [B] and j ∈ [d],

Pr
(
max
i,j

|Di,j | > u
)

≤ 2B d exp
(
− u2

2σ2
enc maxi

∑
k(β

t
i,k)

2

)
.

Setting

u = σenc max
i

√∑
k

(βt
i,k)

2

√
2 ln

2B d

δ

makes the right-hand side ≤ δ. This yields the first displayed bound. The uniform-weight case
follows by substituting βt

i,k = 1/B. Finally, for i.i.d. γt
k,j ∼ N(0, σ2

enc), a standard Gaussian-
maxima bound gives maxk,j |γt

k,j | ≤ σenc

√
2 ln(2B d/δ), completing the comparison.

For each row i,

AI(Z
t)i −AI(m

t)i =

B∑
k=1

βt
i,k(Z

t) γt
k︸ ︷︷ ︸

=:Ui

+

B∑
k=1

(
βt
i,k(Z

t)− βt
i,k(m

t)
)
mt

k︸ ︷︷ ︸
=:Vi

.

Uniform bound across all time-steps Ui,j gives the additional (T+1) in the first term of Ui. Lipschitz
continuity of the weight map gives ∥Vi∥∞ ≤ Mm ∥βt(Zt)− βt(mt)∥1 ≤ Mm Lβ ∥Zt −mt∥∞,
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Theorem (Theorem 1, revisit, Training-phase embedding error and consistency of T ). Let D̃ ∈
RB×d×(T+1) be the observed, masked embedding and let S̃ ∈ RB×d×(T+1) be the “oracle” em-
bedding obtained from the noiseless, fully-observed trajectories si = µ(τ̃) + bi(τ̃) and noise-
less responses f(si). The corresponding fully observed positional embedding would be s̃i =
(EXsi + P (τ̃), EY f(si)), with all the masks are defined as 1, implying fully observed. We define
S̃ = {S̃i}Bi=1 ∈ RB×d×(T+1), then the ideal block-wise mapping by

H(S̃) = G ◦ fI ◦G ◦ fT(S̃) = G
(
fI
(
G(fT(S̃))

))
.

For the approximation errors, by Lemma 5, the position-wise feed-forward network FF satisfies

∥FF(Z)−G(Z)∥∞ ≤ εFF for all ∥Z∥∞ ≤ R.

Lemma 6 guarantees

∥AT (Z)− fT(Z)∥∞ ≤ εAT for all ∥Z∥∞ ≤ R,

and Lemma 7 guarantees

∥AI(Z)− fI(Z)∥∞ ≤ εAI
for all ∥Z∥∞ ≤ R.

Then with the stochastic error we obtained in Lemma 9, we have that for any δ ∈ (0, 1), with
probability at least 1− δ,

∥AI(FF(AT (D̃)))−AI(FF(AT (S̃)))∥∞ ≤ εvar.

With the assumption that G, fT, and fI are Lipschitz continuous in the sup-norm with constants
LFF, LT, and LI, respectively. Then the a single dual-attention block for any δ ∈ (0, 1),

T B(D̃) = FF
(
AI

(
FF(AT (D̃))

))
,

obeys the embedding error bound with probability at least 1− δ,∥∥T B(D̃)−H(S̃)
∥∥
∞ ≤ LFF

(
εvar + εAI

+ LI

(
εFF + LFF εAT

))
+ εFF = εT B. (12)

Consequently, with Lipschitz continuity of T B showed in Lemma 8 composing L blocks yields em-
bedding error of the dual-attention transformer∥∥T (D̃)−H(S̃)

∥∥
∞ ≤ LL

T B (δ0 + εT B) = εT , (13)

with probability at least 1− δ and input embedding discretization error δ0 derived in Lemma 3.

Proof. Employ the following decomposition

∥T B(D̃)−H(S̃)∥∞ =
∥∥FF(AI(FF(AT (D̃)))

)
− G

(
fI(G(fT (S̃)))

)∥∥
∞

≤ ∥FF(AI(FF(AT (D̃)))) − FF(AI(FF(AT (S̃))))∥∞︸ ︷︷ ︸
(I) inter-sample embedding stochastic error

+ ∥FF(AI(FF(AT (S̃)))) − G(AI(FF(AT (S̃))))∥∞︸ ︷︷ ︸
(II) FF bias

+ ∥G(AI(FF(AT (S̃)))) − G
(
fI(FF(AT (S̃)))

)
∥∞︸ ︷︷ ︸

(III) inter-sample attention approximation error

+ ∥G
(
fI(FF(AT (S̃)))

)
− G

(
fI(G(AT (S̃)))

)
∥∞︸ ︷︷ ︸

(IV) FF bias

+ ∥G
(
fI(G(AT (S̃)))

)
− G

(
fI(G(fT (S̃)))

)
∥∞︸ ︷︷ ︸

(V) time-point attention approximation error

.

By Lemma 9 and continuity assumption, (I) ≤ LFFεvar. By Lemma 5, (II) and (IV) can be bounded
by εFF and LFFLIεFF, respectively, with Lipchitz assumption. (III) and (V) can be bounded with
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Lemma 6 and 7 by LFFεAI
and L2

FFLIεAT
. Rearranging yields the stated bound. Define the

sequence δk = ∥T B◦k(D̃)−H(S̃)∥∞, k = 0, 1, . . . , L. Since δ0 = ∥D̃−H(S̃)∥∞ and H is fixed,
we use only the block-level bound and Lipschitz property (Lemma 8):

δ1 = ∥T B(D̃)−H(S̃)∥∞ ≤ εT B,

and for k ≥ 1,

δk+1 = ∥T B(T B◦k(D̃))−H(S̃)∥∞
≤ ∥T B(T B◦k(D̃))− T B(H(S̃))∥∞ + ∥T B(H(S̃))−H(S̃)∥∞
≤ LT B δk + εT B.

Unrolling this recursion gives

δL ≤ LL
T B δ0 +

L−1∑
j=0

Lj
T B εT B = LL

T B δ0 +
LL
T B − 1

LT B − 1
εT B ≤ LL

T B (δ0 + εT B).

Note that δ0 is related to the embedding error from discretization and is bounded under the random
effect model by Lemma 3.

Remark: (Oracle Approximation by a Dual-Attention Transformer) Theorem 1 directly im-
plies that oracle approximation from dual-attention transformer is achievable. Let X = {Z ∈
RB×d×(T+1) : ∥Z∥∞ ≤ R} be compact. Let the oracle operator be

H = G ◦ fI ◦G ◦ fT : X → RB×d×(T+1),

where G, fT, and fI are continuous and LFF-, LT -, LI–Lipschitz on X , respectively. Then for any
ε > 0 there exist: a position-wise two-layer ReLU network FF, a multi-head time-point attention
AT , a multi-head inter-sample attention AI , with sufficiently large hidden width and number of
heads/head-dimension (as guaranteed by Lemmas 5, 6, and 7), for any fixed depth L ∈ N stacks of
the dual-attention block T = T B◦L with T B = FF ◦ AI ◦ FF ◦ AT . T satisfies the uniform
oracle-approximation bound

sup
D̃∈X

∥∥T (D̃)−H(S̃)
∥∥
∞ ≤ εT .

Remark: In particular, if the mesh shrinks ∆ → 0 so that δ0 → 0, the approximation and stochas-
tic terms vanish εFF, εAT

, εAI
, εvar → 0 with increasing capacity, and supB LT B(B) < ∞ (the

block Lipschitz constant remains uniformly bounded as batch size B grows for fixed L), then∥∥T (D̃)−H(S̃)
∥∥
∞ −→ 0,

i.e., the daul-attention Transformer embedding T is consistent for the oracle mapping H .
Lemma 10 (Generalization error for a dual–attention block). Let T B = FF ◦ AI ◦ FF ◦ AT :
RB×d×(T+1) → RB×d×(T+1) be LT B–Lipschitz in ∥ · ∥∞ (Lemma 8). Let Ψ : RB×d×(T+1) →
[0, 1] be LΨ–Lipschitz in ∥ · ∥∞. Assume inputs satisfy ∥D̃∥∞ ≤ Rin almost surely and set p :=
B d (T + 1). Then the class G := {Ψ ◦ T B} obeys

R̂n(G) := Eσ

[
sup
g∈G

1

n

n∑
i=1

σi g(D̃i)
]

≤ LΨLT B Rin

√
2 p

n
.

Consequently, for [0, 1]–valued Ψ ◦ T B, with probability at least 1− δ,

E[Ψ(T B(D̃))] ≤ 1

n

n∑
i=1

Ψ(T B(D̃i)) + 2LΨLT B Rin

√
2 p

n
+ 3

√
ln(2/δ)

2n
.

Proof. Ψ◦T B is LΨLT B–Lipschitz in ∥ ·∥∞, hence also LΨLT B–Lipschitz in ∥ ·∥2. By Lemma 8,
for all X,X ′, ∥T B(X)− T B(X ′)∥∞ ≤ LT B∥X −X ′∥∞. Since Ψ is LΨ–Lipschitz in ∥ · ∥∞,

|Ψ(T B(X))−Ψ(T B(X ′))| ≤ LΨ ∥T B(X)− T B(X ′)∥∞ ≤ LΨLT B ∥X −X ′∥∞.
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Because ∥v∥∞ ≤ ∥v∥2 for all v ∈ Rp, this also implies |Ψ(T B(X)) − Ψ(T B(X ′))| ≤
LΨLT B ∥X − X ′∥2; i.e., the same Lipschitz constant works in ℓ2 (no dimension factor is intro-
duced when passing from ℓ∞ to ℓ2). From ∥D̃i∥∞ ≤ Rin we get ∥D̃i∥2 ≤ √

pRin for each i.
It is a standard fact (Bartlett & Mendelson, 2002; Shalev-Shwartz & Ben-David, 2014) that for an
L–Lipschitz (in ℓ2) function class on a set with maxi ∥D̃i∥2 ≤ R2,

R̂n ≤ LR2

√
2

n
.

Applying this with L = LΨLT B and R2 =
√
pRin yields R̂n(G) ≤ LΨLT B (

√
pRin)

√
2/n =

LΨLT B Rin

√
2p/n. Finally, apply the standard Rademacher generalization inequality for

[0, 1]–valued functions: for all g ∈ G, with probability at least 1− δ,

E[g(D̃)] ≤ 1

n

n∑
i=1

g(D̃i) + 2 R̂n(G) + 3

√
ln(2/δ)

2n
,

which gives the stated bound.

Lemma 11 (Generalization error for an L-stack dual–attention Transformer). Let T B = FF ◦
AI ◦ FF ◦ AT : RB×d×(T+1) → RB×d×(T+1) be LT B–Lipschitz in ∥ · ∥∞ (Lemma 8) and define
the L-block Transformer T := T B◦L, T is LT –Lipschitz in ∥ · ∥∞ with LT = LL

T B. Let
Ψ : RB×d×(T+1) → [0, 1] be LΨ–Lipschitz in ∥ · ∥∞. Assume inputs satisfy ∥D̃∥∞ ≤ Rin almost
surely and set p := B d (T + 1). Then the class GL := {Ψ ◦ T } obeys

R̂n(GL) := Eσ

[
sup
g∈GL

1

n

n∑
i=1

σi g(D̃i)
]

≤ LΨ LT Rin

√
2 p

n
= LΨ LL

T B Rin

√
2 p

n
.

Consequently, for [0, 1]–valued Ψ ◦ T , with probability at least 1− δ,

E[Ψ(T (D̃))] ≤ 1

n

n∑
i=1

Ψ(T (D̃i)) + 2LΨ LL
T B Rin

√
2 p

n
+ 3

√
ln(2/δ)

2n
.

Proof. By Lemma 8, T B is LT B–Lipschitz in ∥ · ∥∞. Therefore the composition T = T B◦L

is LT –Lipschitz with LT = LL
T B. Since Ψ is LΨ–Lipschitz in ∥ · ∥∞, the composition Ψ ◦ T

is LΨLT –Lipschitz in ∥ · ∥∞, hence also LΨLT –Lipschitz in ∥ · ∥2 (because ∥v∥∞ ≤ ∥v∥2).
From ∥D̃i∥∞ ≤ Rin we get ∥D̃i∥2 ≤ √

pRin. The standard Lipschitz Rademacher bound
(Shalev-Shwartz & Ben-David (2014), Lemma 26.9) yields R̂n ≤ (LΨLT ) (

√
pRin)

√
2/n =

LΨLT Rin

√
2p/n. Applying the usual [0, 1]–valued Rademacher generalization inequality com-

pletes the proof.

Theorem (Theorem 2 revisit, Training phase Generalization Error for Dual-Attention Transformer
Embedding). Let T B = FF ◦ AI ◦ FF ◦ AT : RB×d×(T+1) → RB×d×(T+1) be LT B–Lipschitz in
∥ · ∥∞ (Lemma 8) and let T := T B◦L denote L stacked blocks. Then T is LT –Lipschitz in ∥ · ∥∞
with LT = LL

T B. Assume inputs satisfy ∥D̃∥∞ ≤ Rin almost surely and set p := B d (T + 1).
Let ϕ : Rd×T → Rd be Lϕ–Lipschitz in ∥ · ∥∞, and g : Rd → R be Lg–Lipschitz in ∥ · ∥∞. Let
ℓ : R × R → [0, 1] be Lℓ–Lipschitz in its first argument. Define the predictor (using the covariate
tokens of the encoder output)

Ŷ (L)(D̃) := g
(
ϕ
([

T (D̃)
]
:,:,1:T

))
.

Then, for i.i.d. (D̃i, Yi)
n
i=1, with probability at least 1− δ,

E
[
ℓ(Ŷ (L)(D̃), Y )

]
≤ 1

n

n∑
i=1

ℓ
(
Ŷ (L)(D̃i), Yi

)
+ 2Lℓ Lg Lϕ L

L
T B Rin

√
2 p

n
+ 3

√
ln(2/δ)

2n
.
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Proof. By Lemma 8, T = T B◦L is LT = LL
T B–Lipschitz in ∥ · ∥∞. Let S : RB×d×(T+1) → Rd×T

be the slicing operator S(U) = U:,:,1:T , which is 1–Lipschitz in ∥ · ∥∞ since it only removes
coordinates. Therefore, the scalar predictor

h(D̃) := g
(
ϕ(S(T (D̃)))

)
is Lh–Lipschitz in ∥ · ∥∞ with Lh = Lg Lϕ L

L
T B.

For any vectors v, ∥v∥∞ ≤ ∥v∥2, so h is also Lh–Lipschitz in ∥ · ∥2. With p = B d (T + 1) and
∥D̃∥∞ ≤ Rin almost surely, we have ∥D̃∥2 ≤ √

pRin for each sample.

Consider the class HL := {h(·) = g ◦ ϕ ◦ S ◦ T (·) } over all parameterizations with the same LT B
(thus the same LT ). A standard bound for L–Lipschitz real-valued functions on a set of Euclidean
radius R2 ( Shalev-Shwartz & Ben-David (2014) Lemma 26.9, Bartlett & Mendelson (2002)) gives
the empirical Rademacher complexity

R̂n(HL) ≤ Lh R2

√
2

n
≤

(
LgLϕL

L
T B

) (√
pRin

)√ 2

n
= Lg Lϕ L

L
T B Rin

√
2p

n
.

Define the loss class FL := { (D̃, Y ) 7→ ℓ(h(D̃), Y ) : h ∈ HL }. By the Ledoux–Talagrand
contraction (Ledoux & Talagrand, 2011) (Lipschitz in the first argument and [0, 1]–valued loss),

R̂n(FL) ≤ Lℓ R̂n(HL) ≤ Lℓ Lg Lϕ L
L
T B Rin

√
2p

n
.

Finally, the standard Rademacher generalization inequality for [0, 1]–valued functions gives, with
probability at least 1− δ, uniformly over FL,

E[ℓ(h(D̃), Y )] ≤ 1

n

n∑
i=1

ℓ(h(D̃i), Yi) + 2 R̂n(FL) + 3

√
ln(2/δ)

2n
.

Substituting the bound on R̂n(FL) completes the proof with h = Ŷ (L).

Remark 1: (Heterogeneous layers and spectral complexity) If the L blocks have possibly different
Lipschitz constants L

(1)
T B, . . . , L

(L)
T B, replace LL

T B by
∏L

ℓ=1 L
(ℓ)
T B throughout. Alternatively, with

spectral–norm constraints on all linear maps (including attention projections WQ,WK ,WV ,WO

and FF weights W1,W2), one can replace the
√
p factor by a Bartlett–type spectral complexity

involving products of operator norms and a sum of normalized Frobenius norms, and include the
softmax sensitivity via a factor ∥WQ∥op∥WK∥op/

√
dA.

Remark 2: (Training phase MSE) Define the training predictor and empirical MSE

Ŷ (L)(D̃) := g
(
ϕ
(
[T (D̃)]:,:,1:T

))
, MSEtrain

n :=
1

n

n∑
i=1

(
Ŷ (L)(D̃i)− Yi

)2
.

Assume |Ŷ (L)(D̃)| ≤ Rout and |Y | ≤ Mf almost surely, so the squared loss ℓ(u, y) = (u− y)2 is
Lℓ–Lipschitz in u with Lℓ = 2(Rout + Mf ). Then, with direct application of Theorem 2, for any
δ ∈ (0, 1), with probability at least 1− δ,∣∣∣MSEtrain

n − E
(
Ŷ (L)(D̃)− Y

)2∣∣∣ ≤ 2Lℓ Lg Lϕ LT Rin

√
2p

n
+ 3

√
ln(2/δ)

2n
.

A.3.3 TESTING PHASE.

Lemma 12 (Testing phase Dual-Attention Transformer Embedding Perturbation). In testing stage,
as the Y information is fully unobserved, we define the input positional encoding as

D̃∗
i =

(
EX

(
Xi(τ̃)⊙Mi(τ̃)

)
+ P (τ̃), 0 · 1n

)
∈ Rd×(T+1),
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assume test sample size is N and D̃∗ = {D̃∗
i }Ni=1, comparing to the oracle embedding, with all the

batch size notation in error set as N ,∥∥T (D̃∗)−H(S̃)
∥∥
∞ ≤

∥∥T (D̃∗)− T (D̃)
∥∥
∞ +

∥∥T (D̃)−H(S̃)
∥∥
∞

≤ sup
i∈[N ]

LL
T BLY |Yi|+ εT = sup

i∈[N ]

LT LY (Mf + |ϵi|) + εT ,

with LY = ∥EY ∥op, LT B defined as Lipchitz constant in Lemma 8, and εT defined by the training
phase transformer embedding error showed in Theorem 1. So with probability at least 1− δ,∥∥T (D̃∗)−H(S̃)

∥∥
∞ ≤ LT LY (Mf + σY

√
2 ln(2N/δ) + εT = εT ∗

Theorem 13 (Test MSE via Train Generalization and Expectation Bridge). We assume

• (Bounded inputs.) ∥D̃∥∞ ≤ Rin almost surely. Set p := B d (T + 1).

• (Bounded outputs.) |Y | ≤ Mf almost surely, and the predictor is uniformly bounded
|Ŷ (L)(D̃)| ≤ Rout almost surely.

• (Squared-loss Lipschitzness and boundedness.) For ℓ(u, y) = (u− y)2, ℓ is Lℓ–Lipschitz,

Lℓ := 2 (Rout +Mf ), 0 ≤ ℓ(u, y) ≤ (Rout +Mf )
2 a.s.

• (Independence for test concentration.) When a train set of size n is used, it is independent
of the test set (size N ).

Moreover, Lipschitz encoder and head are guaranteed in Lemma 8 the dual–attention encoder is
T = T B◦L with Lipschitz constant LT = LL

T B in ∥ · ∥∞. The pooling ϕ : Rd×T → Rd and
regressor g : Rd → R are Lϕ– and Lg–Lipschitz in ∥ · ∥∞, respectively. Define the predictors

Ŷ (L)(D̃) := g
(
ϕ
(
[T (D̃)]:,:,1:T

))
, Ŷ ∗(D̃∗) := g

(
ϕ
(
[T (D̃∗)]:,:,1:T

))
,

where the test input uses the zeroed response-token D̃∗
i =

(
EX(Xi(τ̃) ⊙Mi(τ̃)) + P (τ̃), 0 · 1n

)
.

Suppose Y = F(X(·)) + ϵ with ϵ ∼ N(0, σ2
Y ) independent, and that the head approximates the

oracle on the oracle embedding range with error εg:

sup
∥z∥∞≤R

|g(z)− f(s̃)| ≤ εg, where s̃ is the Hölder interpolation of {s(τj)}Tj=1.

Let the testing phase encoder perturbation from Lemma 12 be εT ∗ .

(i) (Test set prediction error) For each test point∣∣Ŷ ∗(D̃∗
i )− Yi

∣∣ ≤ Lg Lϕ εT ∗ + εg + Lf ∆
α + |ϵi|,

Moreover, uniformly over test set of size N ,

max
1≤i≤N

|Ŷi − Yi| ≤ Lg Lϕ εT ∗ + εg + Lf ∆
α + σY

√
2 ln 2N

δ .

(ii) (Train–test MSE relationship) For any δ ∈ (0, 1),ith probability at least 1 − δ over the
training sample (D̃i)

n
i=1 and testing sample (D̃∗

i ) of size N ,

E
(
Ŷ ∗(D̃∗)− Y

)2 ≤ 1

n

n∑
i=1

(
Ŷ (L)(D̃i)− Yi

)2
+ 2Lℓ Lg Lϕ LT Rin

√
2p

n
+ 3

√
ln(2/δ)

2n

+ Lℓ Lg Lϕ LT LY

(
Mf + σY

√
2/π

)
.
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(iii) (Test empirical MSE) For any δ ∈ (0, 1), with probability at least 1 − δ, for a universal
constant C > 0,

1

N

N∑
i=1

(
Ŷ ∗(D̃∗)− Y

)2 ≤ 1

n

n∑
i=1

(
Ŷ (L)(D̃i)− Yi

)2
+ 2Lℓ Lg Lϕ LT Rin

√
2p
n + 3

√
ln(4/δ)

2n

+ Lℓ Lg Lϕ LT LY

(
Mf + σY

√
2/π

)
+ C (Rout +Mf )

2
√

ln(4/δ)
N .

Proof. Define [ZX ]
∗
i = T (D̃∗

i ):,:,1:T and [ZX ]
◦
i = T (S̃i):,:,1:T , we employ the following decom-

position ∣∣Ŷi − Yi

∣∣ = ∣∣g(ϕ (
[ZX ]

∗
i

)
)−F(Xi(·))− ϵi

∣∣
≤

∣∣g(ϕ (
[ZX ]

∗
i

)
)− g(ϕ

(
[ZX ]

◦
i

)
)
∣∣︸ ︷︷ ︸

(I) embedding error

+
∣∣g(ϕ (

[ZX ]
◦
i

)
)− f(si)

∣∣︸ ︷︷ ︸
(II) regressor

approximation bias

+
∣∣f(si)−F(Xi(·))

∣∣︸ ︷︷ ︸
(III) functional
discretization

+ |ϵi|

= Lg Lϕ εT ∗ + εg + Lf ∆
α + |ϵi|.

Here f(si) = F(s̃i) is the value of F on the piecewise-interpolated, Hölder-continuous extension
s̃i of the grid-values si(τj), as the remark showed in Lemma 3, we have the bound of (III)∣∣F(Xi(·))− f(si)

∣∣ = ∣∣F(Xi(·))−F(s̃i)
∣∣ ≤ Lf ∥Xi − s̃i∥∞ ≤ Lf ∆

α.

Thus f(si) approximates the true functional F(Xi(·)) with a discretization error of order ∆α. More-
over, for (i) as shown in Lemma 12, under high probability, the testing embedding error from the
dual-attention Transformer is ≤ Lg Lϕ∥ [ZX ]

∗
i − [ZX ]

◦
i ∥∞ ≤ Lg LϕεT ∗ , we also have the ap-

proximation error of the regressor layer sup∥z∥≤R |g(z) − f(si)| ≤ εg , with z = ϕ
(
[ZX ]

◦
i

)
then

with Gaussian maxima bound on label error term, the probability at least 1 − δ, we show uniform
prediction error bound,

max
1≤i≤N

|Ŷi − Yi| ≤ Lg Lϕ εT ∗ + εg + Lf ∆
α + σY

√
2 ln 2N

δ .

Let u := Ŷ ∗(D̃∗) and v := Ŷ (L)(D̃). If |u| ≤ Rout, |v| ≤ Rout and |Y | ≤ Mf a.s., then
(u− Y )2 − (v − Y )2 = (u− v) (u+ v − 2Y ) and |u+ v − 2Y | ≤ Lℓ, we get

E(u− Y )2 ≤ E(v − Y )2 + Lℓ E|u− v|.

The difference term is controlled by Lipschitzness of g, ϕ, T and linearity of EY :

|u− v| ≤ LgLϕ ∥T (D̃∗)− T (D̃)∥∞ ≤ LgLϕ LT LY |Y |,

hence E|u − v| ≤ LgLϕLT LY E|Y | ≤ LgLϕLT LY

(
Mf + σY

√
2/π

)
. For the first expecta-

tion, apply the high-probability generalization bound for the squared loss class F = {(D̃, Y ) 7→
(Ŷ (L)(D̃) − Y )2}: by Lemma 11 and Ledoux–Talagrand contraction. Combine the pieces and the
generalization terms, with probability at least 1− δ,
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E
(
Ŷ ∗(D̃∗)− Y

)2 ≤ 1

n

n∑
i=1

(
Ŷ (L)(D̃i)− Yi

)2
︸ ︷︷ ︸

MSEtrain
n

+ 2Lℓ Lg Lϕ LT Rin

√
2p

n
+ 3

√
ln(2/δ)

2n︸ ︷︷ ︸
Rademacher generalization

+ Lℓ Lg Lϕ LT LY

(
Mf + σY

√
2/π

)
︸ ︷︷ ︸

test perturbation

.

We split the argument into a training-side generalization step and an independent test-side concen-
tration step, then union bound the two events. By the train–test MSE relation (ii), for any δtr with
probability at least 1 − δtr over the draw of the training sample {(D̃i)}ni=1, we have the bound for
E
(
Ŷ ∗(D̃∗)− Y

)2
in terms of MSE of train samples, Rademacher generalization and test perturba-

tion. Consider independently drawn test set {(D̃∗
i )}Ni=1, define

Zi :=
(
Ŷ ∗(D̃∗

i )− Yi

)2
, MSEtest

N =
1

N

N∑
i=1

Zi, µ := E[Z1] = E
(
Ŷ ∗(D̃∗)− Y

)2
.

Since |Ŷ ∗(·)| ≤ Rout and |Y | ≤ Mf almost surely, we have 0 ≤ Zi ≤ (Rout +Mf )
2 =: B2. By

Hoeffding’s inequality, for any δte, with probability at least 1− δte,

MSEtest
N =

1

N

N∑
i=1

Zi ≤ µ + B2

√
ln(1/δte)

2N

≤ E
(
Ŷ ∗(D̃∗)− Y

)2
+ C (Rout +Mf )

2

√
ln(1/δte)

N
,

where C > 0 is a universal constant (e.g., C = 1/
√
2 for the displayed Hoeffding form). Combining

these two parts with δtr = δte = δ/2 gives

MSEtest
N ≤ 1

n

n∑
i=1

(
Ŷ (L)(D̃i)− Yi

)2
+ 2Lℓ Lg Lϕ LT Rin

√
2p

n
+ 3

√
ln(4/δ)

2n

+ Lℓ Lg Lϕ LT LY

(
Mf + σY

√
2/π

)
+ C (Rout +Mf )

2

√
ln(2/δ)

N
,

with probability at least 1− δ. Absorbing harmless changes of logarithmic arguments into constants
(and writing ln(4/δ) and ln(4N/δ) uniformly) yields the stated corollary form:

MSEtest
N ≤ MSEtrain

n

+ 2Lℓ Lg Lϕ LT Rin

√
2p
n + 3

√
ln(4/δ)

2n

+ Lℓ Lg Lϕ LT LY

(
Mf + σY

√
2/π

)
+ C (Rout +Mf )

2
√

ln(4/δ)
N .

Remark: (Y -token perturbation) Lemma 12 gives, w.p. ≥ 1 − δ, εT ∗ = LT LY

(
Mf +

σY

√
2 ln 2N

δ

)
+ εT . In the (ii) part we use the expectation bound, which does not involve uni-

formly bounding the entire N sample errors, so the E|Y | ≤ LT LY

(
Mf +σY

√
2/π

)
. If, by design,

the response-token embedding is scaled so LY → 0 (or the Y-token is masked from influencing X-
tokens), the bridge term vanishes asymptotically, and the test MSE inherits the train generalization
rate.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Corollary 14 (Consistency of test MSE). Assume the conditions of Theorem 13. Suppose, along a
sequence indexed by n (training size) and N (test size):

1. Training fit consistency: MSEtrain
n = 1

n

∑n
i=1(Ŷ

(L)(D̃i)− Yi)
2 P−−→ σ2

Y .

2. Capacity term vanishes: LgLϕLT Rin

√
pn/n → 0 (or an analogous spectral complexity

term → 0).

3. Expectation bridge vanishes: LY → 0 (e.g., response-token scaling/masking), hence
LℓLgLϕLT LY (Mf + σY

√
2/π) → 0.

4. Test sampling concentrates: N → ∞, so (Rout +Mf )
2
√

ln(1/δ)/N → 0.

Then the population and empirical test MSE are consistent:

E
(
Ŷ ∗(D̃∗)− Y

)2 P−−→ σ2
Y , MSEtest

N =
1

N

N∑
i=1

(Ŷ ∗(D̃∗
i )− Yi)

2 P−−→ σ2
Y .

Proof. MSE Lower bound is E(Ŷ ∗ − Y )2 = E(Ŷ ∗ − F(X))2 + σ2
Y ≥ σ2

Y . The population MSE
upper bound is given by Theorem 13(ii),

E(Ŷ ∗−Y )2 ≤ MSEtrain
n +2LℓLgLϕLT Rin

√
2pn/n+3

√
ln(2/δ)

2n +LℓLgLϕLT LY (Mf+σY

√
2/π).

By assumptions 1–3, the RHS is σ2
Y + oP(1). Together with the lower bound, this gives E(Ŷ ∗ −

Y )2 → σ2
Y in probability. Similarly, empirical test MSE upper bound is given by Theorem 13(iii).

By assumption 4,

MSEtest
N ≤ E(Ŷ ∗ − Y )2 + C(Rout +Mf )

2
√

ln(4/δ)
N = σ2

Y + oP(1),

and since MSEtest
N ≥ σ2

Y in expectation, convergence in probability follows.

LIMITATIONS

Our approach uses absolute sinusoidal positional encodings to inject temporal information into
sparse, irregular longitudinal sequences. While such encodings enable universal approximation on
a fixed maximum sequence length (Yun et al., 2019), they do not guarantee extrapolation beyond
the largest horizon T seen during training, nor to previously unseen temporal spacings; performance
may deteriorate under substantial extrapolation. Moreover, when prediction depends primarily on
relative timing (lags, local neighborhoods) rather than absolute timestamps, absolute encodings can
be suboptimal. Alternative time encoders from time–series forecasting (e.g., calendar/seasonal fea-
tures as in Informer and ETSformer (Zhou et al., 2021; Woo et al., 2022)) or continuous-time/relative
encodings may better capture temporal structure in some applications; a systematic comparison is
left to future work. The second limitation is computational. With sequence length T and batch
size B, time-point attention costs O(d T 2) in compute and O(T 2) in memory per subject, while
inter-sample attention (across subjects at a fixed time) costs O(dB2) in compute and O(B2) in
memory per time step. Consequently, dual-attention becomes expensive for very long sequences
or large batches. Practical deployments require tuning T and B (and/or using sparsified/windowed
attention) to balance accuracy and efficiency. Although dual-attention can increase computation,
Table 2 shows IDAT is relatively lightweight compared with existing Transformer-based methods.

FUTURE WORK

We conjecture that a Transformer architecture that exploits this intrinsic dimension via ba-
sis/smoothness constraints or spectral regularization, so one can achieve the same statistical perfor-
mance with substantially fewer parameters. We plan to design parameter-efficient attention blocks
constrained by functional bases or effective rank, and establish theoretical guarantees whose model
complexity depends on intrinsic dimension rather than ambient grid length.
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