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A APPENDIX

A.1 SIMULATION

We benchmark our method against a broad set of baselines. Linear regression (LR) is implemented
via scikit-learn; FLR and FPCA use the fdapac and fdaconcorﬁ] R packages. We select the
99% variance—explained FPCA model, as it outperforms the 90% and 95% FPCA model. TabNet
is implemented with pytorch_tabnet in PyTorch; we also include PyTorch MLP and ResNet.
Additional deep tabular models—TabNet, SAINT, FT-Transformer, AutoInt, and NODE—are ac-
cessed via the DeepTabular/Mambular stack (Thielmann et al.| [2024). TabPFNﬂis employed as in
Hollmann et al.| (2022). Imputation follows SAND as in|Hong et al.| (2024)). AdaFNN‘[%E]is imple-
mented following Yao et al.| (2021)). Gradient-boosted baselines (XGBoost, LightGBM, CatBoost)
use their official Python packages, and AutoGluon (Erickson et al., [2020) results are obtained with
autogluon.tabular. The XRFM method is implemented with the xRFNE] package in Python.

In simulations, we use a 70/20/10 train/validation/test split and randomly mask 10% of target values
during training. The model uses 32-dimensional encodings, a 64-unit hidden layer, batch size 128,
and a two-layer transformer with 10% dropout. We trained for 500 epochs with learning rate 0.001.
Unless stated otherwise, the sample size is n = 1000 and functions are sampled on an equally spaced
grid of 101 points over [0, 1]. Code and scripts will be released for reproducibility upon acceptance.
For simulations, we trained on an Apple MacBook Air (Mac15, 12) with an Apple M3 SoC (8-core
CPU: 4P+4E), 8GB LPDDRS unified memory (Hynix), and the integrated Apple GPU via Metal.
PyTorch ran on Apple’s Metal (MPS) backend; CUDA was not available on this system.

A.1.1 SIMULATION RESULTS

Table [2] summarizes accuracy and efficiency across 30 simulated cases. IDAT is most consistent
overall (Topl: 11/30; Top3: 26/30), followed by its variant without inter—sample attention (no Ay;
Topl: 11/30; Top3: 24/30), with TabPFN ranking third (Topl: 9/30; Top3: 25/30). In noise—free
settings the full model dominates, as A; reduces variance by borrowing strength across similar
subjects; under measurement error, similarity can be misestimated and A; may average over mis-
matched neighbors, increasing bias—so the time—only variant (no Ay) can prevail when the bias
increase outweighs variance reduction. However, when clustering is apparent in the model, the full
model is still outperforms. Empirically, dual-attention yields the largest gains in sparse regimes
(< 50% observed; Topl: 9/18, Top3: 17/18), whereas TabPFN is strongest when coverage is denser
(> 50%; Topl: 5/12, Top3: 12/12). Notably, among TabPFN’s nine Topl wins, two coincide with
LR also being best and four occur when LR is Top3, indicating that TabPFN’s prior learned from its
pre-training structure captures simple/approximately linear trends well.

In terms of efficiency, IDAT achieves 3.085 ms/sample with 180K parameters, offering a favorable
accuracy—latency—size trade—off; TabPFN is substantially larger (11M parameters; 0.047 ms/sample
on the server) and slower (1713.843 ms/sample on the local machine; 5.58 ms/sample on the
server). AutoGluon ensembles methods such as WeightedEnsemble L2,NeuralNetTorch,
NeuralNetFastAI, LightGBMXT, and can be fast at inference (1.734 ms/sample) but typically
require millions of parameters (=2M) and still underperform IDAT on Top1/Top3; moreover, achiev-
ing competitive accuracy generally entails complexities that make latency comparable to trans-
former—style models. Classical/GBDT baselines are compact and fast yet rarely Top1/Top3 in this
functional setting. Overall, the proposed architecture delivers strong predictive accuracy with mod-
est parameterization and low latency—especially under sparse sampling—while TabPFN is prefer-
able when signal is dense and close to linear. Preprocessing (imputation) times for FPCA/VT/SAND
are reported separately in the footnotes. Because mean imputation is computationally negligible, we
exclude its runtime from the efficiency comparisons.

Shttps://CRAN.R-project.org/package=fdapace
6https://CRAN.prroject.org/packagerdaconcur
"nttps://github.com/OpenTabular/DeepTabular
$https://github.com/PriorLabs/TabPFN
‘nttps://github.com/jshong071/SAND/tree/main
Ohttps://github.com/jwyyy/AdaFNN/tree/master
"https://arc.net/l/quote/rhehrnrm
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Table 2: Overall comparison on the simulation study. For each of the 30 simulated cases, meth-
ods are ranked by test performance; Top1/Top3 count how often a method ranks 1st or within the
top 3. Results are reported for all cases and stratified by sampling density (< 50%: 18, > 50%:
12). Efficiency is measured as average inference time per sample (ms) and model size (#Params
in thousands). Preprocessing costs for FPCA/VT/SAND are noted in footnotes and excluded from
inference time. Higher Top1/Top3 is better; lower time and fewer parameters are better.

Sampling density (# cases) Efficiency measures
all (30) <50% (18) > 50% (12) inference time #Params
Method Topl Top3 Topl Top3 Topl Top3  (ms/sample) (1K)
LR 3 7 0 1 3 6 0.005 0.1
FLR 0 0 0 0 0 0 19.71 0.5
FPCA+NN 0 0 0 0 0 0 24.433 13
o TabNete O O O O O 0O 008 12
SAINT 0 0 0 0 0 0 17.870 125000
FTTransformer 0 0 0 0 0 0 8.501 123
Autolnt 0 0 0 0 0 0 22.179 619
TabPFN 9 25 4 13 5 12 1713.843 11000
VT+NN 0 0 0 0 0 0 28.093"] 333
SAND+NN 0 0 0 0 0 0 28.03("] 333
M O O O 0 0 0 7485 549
ResNet 0 0 0 0 0 0 6.597 568
AdaFNN 1 7 0 1 1 6 1.481 603
~  NODE O 3 0 2 0 1 14733 6800
CatBoost 1 2 0 0 1 1 0.067 190
XGBoost 0 2 0 1 0 1 0.014 2
LightGBM 0 0 0 0 0 0 0.021 9
AutoGluon 2 10 1 3 1 7 1.734 ~ 2000
xRFM 0 4 0 4 0 0 0.070 180
IDAT 11 26 9 17 2 9 3.085 180
IDAT w/o A 11 24 7 15 4 8 1.655 144

Table reports MSE for six simulation scenarios in the very sparse regime (20% observed). With-
out measurement error, the proposed dual-attention model consistently achieves the lowest MSE.
With measurement error, TabPFN slightly leads in the near-linear case I*, while IDAT and its
time-point—only variant remain among the top performers; the variant is more noise-robust because
it avoids averaging over misidentified neighbors. When clustering is present IIT*, dual-attention
regains a clear advantage, reflecting benefits from cross-subject borrowing.

In Tables @] [5] [6l [7] [B] and Ol we report MSE across five sparsity levels for three simulation set-
tings and their measurement error variants, highlighting the best method in bold and the top three
in italics. Although IDAT is designed for sparse observations as it accommodates missingness with
its masking, it surprisingly achieves competitive—and often state-of-the-art—performance in sev-
eral dense and fully observed regimes. It consistently attains the best performance in the very- and
super-sparse regimes (< 50% observed). As observations become denser, the transformer-based tab-
ular foundation model TabPEN is often competitive, while AutoGluon remains robust—benefiting
from multi-model ensembling and stacking—and performs strongly in several settings. AdaFNN,
which adopts a basis-expansion design tailored to fully observed trajectories, performs well when
the underlying basis/index structure aligns with the data, but can struggle when the signal departs
from an index-model form or under substantial sparsity.

In Figures 3] {i] and[5] we plot log-MSE versus sparsity (x-axis: 0% to 100%). For each setting, the
left panel shows results without measurement error and the right panel shows the same setting with
measurement error. As expected for transformer-based methods (shown in blue), models that learn
end-to-end from (X,Y") are comparatively robust to measurement error, whereas imputation-only
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Table 3: MSE under different simulation scenarios under very sparse regime (20% observation). The
best method is in bold and the top three methods are in italics. Without measurement error, IDAT
consistently outperforms all baselines. With measurement error, in case I* (near-linear ground truth),
TabPFN leverages pre-training and slightly edges our models, while IDAT and its time-point—only
variant remain among the top performers. The variant (no Aj) is more robust to noise because it
avoids averaging over misidentified neighbors. When clustering is present (case I*), dual-attention

regains a clear advantage.

Method/MSE  casel casell caselll caselI* casell* case III*
LR 0.0153 0.0108 0.0187 | 0.0075 0.0069 0.0766
FLR 0.0589 0.0039 0.0316 | 0.0532 0.0066 0.1341
FPCA+NN 0.0406 0.0336 0.0176 | 0.0561 0.0272 0.1826
S TabNet  0.0477 ~ 0.0107 ~ 0.0316 | 0.0433 ~ 0.0080  0.0659 ~
SAINT 0.0745 0.0109 0.2591 | 0.0731 0.0108 0.2583
FTTransformer 0.0116 0.0036 0.0248 | 0.0136  0.0037 0.0596
AutoInt  0.0168 0.0046 0.0295 | 0.0124  0.0049 0.0666
TabPFEN 0.0083 0.0021 0.0029 | 0.0067 0.0017 0.0305
VT+NN 0.0116 0.0168 0.0183 | 0.1767 0.0757 0.0311
SAND+NN 0.0103 0.0104 0.0114 | 0.1979  0.0856 0.0308
"7 7 T MLP 0.0138 0.0031 0.0174 | 0.0128 = 0.0029 = 0.0393
ResNet 0.0128 0.0025 0.0206 | 0.0147  0.0030 0.0434
AdaFNN 0.0127 0.0171 0.0032 | 0.0091 0.0065 0.0317
"7 7 " 7 NODE  0.0126 0.0034 0.0060 | 0.0111 = 0.0035 = 0.0397 ~
CatBoost 0.0113 0.0041 0.0123 | 0.0102 0.0029 0.0405
XGBoost 0.0180 0.0060 0.0287 | 0.0186 0.0030 0.0525
LightGBM 0.0189 0.0070 0.0178 | 0.0152  0.0079 0.0404
AutoGluon 0.0116 0.0031 0.0131 | 0.0074  0.0022 0.0357
xRFM  0.0080 0.0025 0.0128 | 0.0100 0.0046 0.0342
IDAT 0.0063 0.0008 0.0019 | 0.0070 0.0015 0.0139
IDAT w/o Ay 0.0077 0.0018 0.0020 | 0.0069 0.0007 0.0207

variants (SAND+NN and VT+NN) that do not condition on Y are more sensitive. Our model, as
well as most of the end-to-end transformer-based models, remain relatively robust to noise.

...............

(a) Without measurement error.

Figure 3: (log) MSE under different sparsity level in case 1.

...............

(b) With measurement error.

In Figure [6 (cf. Figure2b), removing inter-sample attention collapses the separation between clus-
ters: their profiles become much more similar, differing only slightly early in the trajectory. When
clustering is present, such averaging across groups can introduce bias in the approximation.
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Table 4: MSE under different sparsity level in case I. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in sparse regimes and remains competitive
as observations become denser; strong competitors include TabPFN and AutoGluon, while AdaFNN
is tailored to dense/fully observed data.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50% dense 80%  full 100%

LR 0.0207 0.0153 0.0029 0.0006 < 0.0001

FLR 0.0548 0.0589 0.0519 0.0519 0.0546
FPCA+NN 0.0356 0.0406 0.0365 0.0346 0.0335

© TabNet  0.0422 ~  0.0477 00169  0.0112  0.0064
SAINT 0.0734 0.0745 0.0727 0.0707 0.0757
FTTransformer 0.0224 0.0116 0.0050 0.0014 0.0006
Autolnt 0.0240 0.0168 0.0069 0.0056 0.0026
TabPFN 0.0157 0.0083 0.0018 0.0005 0.0001
VT+NN 0.0267 0.0116 0.0065 0.0074 0.0064
SAND+NN 0.0256 0.0103 0.0058 0.0063 0.0064

~  MLP  0.0214 0.0138 00048  0.0013  0.0011
ResNet 0.0307 0.0128 0.0052 0.0019 0.0009
AdaFNN 0.0321 0.0127 0.0030 0.0007 0.0001

- NODE  0.0199 00126 00051  0.0012  0.0007
CatBoost 0.0195 0.0113 0.0034 0.0012 0.0005
XGBoost 0.0264 0.0180 0.0078 0.0055 0.0034
LightGBM 0.0266 0.0189 0.0043 0.0036 0.0019
AutoGluon 0.0150 0.0116 0.0029 0.0007 0.0002
xRFM 0.0169 0.0080 0.0043 0.0022 0.0025
IDAT 0.0165 0.0063 0.0024 0.0006 0.0003
IDAT w/o A 0.0169 0.0077 0.0016 0.0006 0.0003

...............................

(a) Without measurement error. (b) With measurement error.

Figure 4: (log) MSE under different sparsity level in case II.

A.2 REAL DATA

We compare against mean imputation, MICE, and LOCF. LOCF is applied only to the synthetic
HIV data; in NCDS the measurement times are highly irregular and widely spaced, making last-
observation carry-forward (e.g., for BMI) inappropriate. FPCA-based methods, SAND, and VT al-
ready perform imputation internally; thus these baselines—and our imputation-free approach—are
unaffected by the external imputation choice. We use a 70/20/10 train/validation/test split and
randomly mask 10% of target values during training. To accommodate larger sample sizes and
more complex real-data scenarios, we use 128-dimensional encodings, a batch size of 256, and
a three-layer transformer with a 10% dropout rate. The server we equipped is a NVIDIA A100
80GB PCle GPU (driver 535.261.03, CUDA 12.2; MIG enabled) paired with an AMD EPYC 9554P
64-core CPU (128 threads) and 755 GiB system RAM, running Rocky Linux 8.10.
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Table 5: MSE under different sparsity level in case II. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in all sparsity regime; strong competitors
include TabPFN, AutoGluon and some ensemble models.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50%  dense 80%  full 100%

LR 0.0096 0.0108 0.0097 0.0101 0.0073
FLR 0.0064 0.0039 0.0080 0.0072 0.0059
FPCA+NN 0.0533 0.0336 0.0320 0.0240 0.0492

© TabNet 00198  0.0107  0.0018  0.0027 ~ 0.0033
SAINT 0.0110 0.0109 0.0107 0.0110 0.0025
FTTransformer 0.0066 0.0036 0.0015 0.0018 0.0015
Autolnt 0.0052 0.0046 0.0062 0.0040 0.0025
TabPFN 0.0036 0.0021 0.0006 0.0002 0.0002
VT+NN 0.0145 0.0224 0.0174 0.0135 0.0158
SAND+NN 0.0189 0.0172 0.0169 0.0136 0.0158

~  MLP 0008 ~ 0.0031 0003  0.0031 00023
ResNet 0.0114 0.0025 0.0035 0.0015 0.0015
AdaFNN 0.0281 0.0171 0.0066 0.0043 0.0006

~~ NODE 00050 ~  0.0034 00009  0.00I1  0.0005 -
CatBoost 0.0031 0.0041 0.0014 0.0004 0.0002
XGBoost 0.0028 0.0060 0.0011 0.0010 0.0003
LightGBM 0.0092 0.0070 0.0025 0.0006 0.0012
AutoGluon 0.0049 0.0031 0.0010 0.0003 0.0001
xRFM 0.0064 0.0025 0.0017 0.0024 0.0025

IDAT 0.0020 0.0008 0.0003 0.0002 < 0.0001

IDAT w/o A 0.0029 0.0018 0.0003 0.0001 0.0002

............................

(a) Without measurement error. (b) With measurement error.

Figure 5: (log) MSE under different sparsity level in case III.

A.2.1 NATIONAL CHILD DEVELOPMENT STUDY: AGE 62 BMI PREDICTION

The 1958 National Child Development Study (NCDS) is a nationally representative UK birth cohort
run by the Center for Longitudinal Studies (CLS) at UCL. Initiated as the Perinatal Mortality Survey,
it has followed over 17000 individuals born in a single week in March 1958 across eleven major
sweeps at ages 7, 11, 16, 23, 33, 42, 44, 46, 50, 55, and 62. Achieved sample sizes declined from
n = 17415 at birth (and age 7) to n = 9790 (age 55), and n = 9137 (age 62). Because all
participants were assessed at the same discrete ages, no further time alignment is required. After
restricting to participants with valid baseline covariates (measured at age 7) and a valid age-62 BMI,
the analytic sample comprises 4952 individuals. Adult BMI shows turning points near ages 65 and
80 (Dahl et al. 2014)); thus, predicting BMI at age 62 is reasonable, as the trajectory has not yet
crossed a change point.
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Table 6: MSE under different sparsity level in case III. The best method is in bold and the top three
methods are in italics. IDAT achieves the smallest MSE in sparse regimes and remains competitive
as observations become denser; strong competitors include TabPFN and AutoGluon, while AdaFNN
is tailored to dense/fully observed data.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50% dense 80%  full 100%

LR 0.0364 0.0187 0.0084 0.0012 0.0002
FLR 0.0604 0.0316 0.0291 0.0210 0.0245
FPCA+NN 0.0288 0.0176 0.0144 0.0128 0.0104
o TabNet ~ 0.0585 ~  0.0316 ~  0.0075  0.0065  0.0029
SAINT 0.2594 0.2591 0.2584 0.2601 0.2510
FTTransformer 0.0440 0.0248 0.0101 0.0047 0.0021
Autolnt 0.0550 0.0295 0.0147 0.0083 0.0068
TabPFN 0.0078 0.0029 0.0006 0.0003 0.0002
VT+NN 0.0409 0.0183 0.0054 0.0053 0.0056
SAND+NN 0.0282 0.0114 0.0070 0.0052 0.0056
~  MLP  0.0195 00174 00060  0.0042  0.0014
ResNet 0.0267 0.0206 0.0085 0.0050 0.0018
AdaFNN 0.0169 0.0032 0.0011 0.0005 0.0002
~~ NODE 0018 ~ 0.0060 ~ 0.003  0.00I18  0.0008 -
CatBoost 0.0358 0.0123 0.0037 0.0026 0.0008
XGBoost 0.0465 0.0287 0.0083 0.0091 0.0023
LightGBM 0.0476 0.0178 0.0064 0.0036 0.0011
AutoGluon 0.0172 0.0131 0.0019 0.0007 0.0002
xRFM 0.0287 0.0128 0.0053 0.0020 0.0010
IDAT 0.0043 0.0019 0.0006 0.0005 0.0003
IDAT w/o A 0.0055 0.0020 0.0011 0.0004 0.0005
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Figure 6: Embedding clustering in case III, in comparison with and without A;. All the attention
weights are are scaled by a factor of 1000. Removing inter-sample attention collapses the separa-
tion between clusters: their profiles become much more similar, differing only slightly early in the
trajectory.

Anthropometric measurements included body mass index (BMI) and other measurements such as
body fat percentage. The age, sex, and height of the respondent were recorded. Weight was mea-
sured in kilograms using Tanita BF-522W scales (upper limit 130 kg; those likely exceeding this
were not weighed). BMI was computed as

BMI = weight (kg)/ (height (m)2) .
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Table 7: MSE under different sparsity level in case I* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in the super
sparse regime and remains competitive as observations become denser; strong competitors include
TabPFN and xRFM, while AdaFNN is tailored only to fully observed data.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50% dense 80%  full 100%

LR 0.0272 0.0075 0.0030 0.0010 <0.0001
FLR 0.0548 0.0532 0.0515 0.0495 0.0520
FPCA+NN 0.0620 0.0561 0.0549 0.0499 0.0488
~ TabNet  0.0604 0.0433 00238 00115  0.0083
SAINT 0.0731 0.0731 0.0736 0.0734 0.0769
FTTransformer 0.0332 0.0136 0.0045 0.0026 0.0007
Autolnt 0.0357 0.0124 0.0068 0.0051 0.0019
TabPFN 0.0193 0.0067 0.0021 0.0008 0.0001
VT+NN 0.1758 0.1767 0.1570 0.1763 0.0064
SAND-+NN 0.2233 0.1979 0.1967 0.2140 0.0064
~  MLP 00378  0.0128 ~ 0.0035  0.0027  0.0010
ResNet 0.0407 0.0147 0.0037 0.0053 0.0020
AdaFNN 0.0182 0.0091 0.0034 0.0012 0.0001
- NODE  0.0289 00111 00049  0.0026  0.0006
CatBoost 0.0246 0.0102 0.0040 0.0018 0.0007
XGBoost 0.0307 0.0186 0.0086 0.0078 0.0047
LightGBM 0.0391 0.0152 0.0078 0.0047 0.0023
AutoGluon 0.0167 0.0074 0.0028 0.0012 0.0002
xRFM 0.0160 0.0100 0.0042 0.0029 0.0028
IDAT 0.0157 0.0070 0.0031 0.0013 0.0006
IDAT w/o A 0.0145 0.0069 0.0031 0.0007 0.0003

The longitudinal BMI series exhibit substantial missingness (mean 25%, range 8%—-96%), spanning
dense to super-sparse regimes; hence a model that remains robust across observation densities is
desirable. On average, subjects have 6.2 observations (SD 0.9) across the 10 sweeps (Figure[7). The
BMI outcome at age 62 averages 27.95 for females (n = 2489) and 28.25 for males (n = 2463);
values are truncated to [19.39, 41.14]. We adjust for birth BMI given its established association with
later-life BMI (Parsons et al., [1999; Rogers| 2003 |Gillman et al., 2003), and for a childhood stress
index defined as the average of 13 binary indicators in the NCDS (e.g., housing problems, finan-
cial hardship, parental divorce, unemployment, illness, disability, or bereavement) (Halliday et al.,
2014} |Stenhammar et al., |2010; |Garasky et al.,|2009). Because sex differences in BMI are marked
across the life course, we formally compared female vs. male BMI distributions at ages 7, 11, 16, 23,
33, 42, 50, 55, and 62 using two-sided Mann—Whitney U tests, obtaining p-values of 3.99x 1076,
9.92x1077, 1.93x107%2, 1.23x 10725, 6.74x 1074, 5.60x 10742, 3.52x 1072, 1.37x10~ !4, and
3.13x1075, respectively (all < 0.05; age 50 remains significant at p=0.035). Given persistent
differences along the entire trajectory, we fit sex-stratified models. Sex differences are well doc-
umented in obesity prevalence, maternal factors further contribute to sex-specific BMI trajectories
(Gillman et al.| |2003). Sex-stratified models thus help mitigate confounding bias in the estimated
effects of the primary predictors.

Following CLS guidance on handling missing data, we assessed whether our pre-specified covariates
predicted non-response for the outcome (Mostafa et al.,|[2021; Katsoulis et al., 2024). We found no
evidence that these covariates were significant predictors of attrition, suggesting negligible selection
bias in the analytic sample. Accordingly, we did not apply explicit non-response adjustments (e.g.,
inverse probability weighting), while noting that non-response in longitudinal studies can reduce
efficiency and, if unaddressed, potentially induce bias.

As shown in Figure [8| we cluster the learned dual-attention weights (unsupervised; k£ chosen by
cross—validated kNN) into two groups. The resulting labels are highly associated with ¥ (age-62
BMI), indicating that inter—sample attention captures prediction—relevant structure. The clusters
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Table 8: MSE under different sparsity level in case II* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in all sparsity
regimes; strong competitors include TabPFN and ensemble methods such as NODE and CatBoost.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50%  dense 80%  full 100%

LR 0.0133 0.0069 0.0077 0.0106 0.0075
FLR 0.0079 0.0066 0.0059 0.0055 0.0048
FPCA+NN 0.0328 0.0272 0.0383 0.0435 0.0383

©  TabNet 00133 0.0080  0.0071  0.0034  0.0014
SAINT 0.0110 0.0108 0.0110 0.0109 0.0110
FTTransformer 0.0099 0.0037 0.0016 0.0021 0.0017
Autolnt 0.0080 0.0049 0.0047 0.0094 0.0053
TabPFN 0.0065 0.0017 0.0006 0.0003 0.0003
VT+NN 0.0771 0.0757 0.0837 0.0820 0.0158
SAND+NN 0.0911 0.0856 0.0771 0.0854 0.0158

~  MLP 00091 0.0029  0.0021  0.0036  0.0062
ResNet 0.0089 0.0030 0.0020 0.0026 0.0018
AdaFNN 0.0282 0.0065 0.0031 0.0034 0.0035

~~ NODE 00075  0.0035 00010  0.0008  0.0004
CatBoost 0.0075 0.0029 0.0030 0.0009 0.0002
XGBoost 0.0073 0.0030 0.0034 0.0017 0.0009
LightGBM 0.0106 0.0079 0.0018 0.0010 0.0009
AutoGluon 0.0074 0.0022 0.0015 0.0007 0.0005
xRFM 0.0058 0.0046 0.0019 0.0027 0.0029
IDAT 0.0027 0.0015 0.0013 0.0004 0.0002
IDAT w/o A 0.0023 0.0007 0.0006 0.0002 0.0002

Number of observations in NCDS, T =10

1500 2000 2500
| 1

Frequency

1000
|

|
]
]

n;

Figure 7: Number of observations in the NCDS study of sample size n = 4952.

cleanly separate low vs. high BMI at age 62, demonstrating explanatory value and interpretability.
Panel (a) reveals two clear attention clusters and a consistently low—weight, non—informative region
at the 6th time grid (age-50); panel (b) shows that the attention—derived clusters align with sub-
sequent BMI separation, with the shaded non—informative interval being the only segment where
trajectories do not mirror the later outcome.

In the NCDS age—50 sweep, height was not newly measured: healthcare professionals first used the
measured height from the age—44 biomedical sweep; if unavailable, the self-reported height from
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Table 9: MSE under different sparsity level in case III* (with measurement error). The best method
is in bold and the top three methods are in italics. IDAT achieves the smallest MSE in sparse regimes
and remains competitive as observations become denser; strong competitors include TabPFN and LR
in dense/fully observed data.

Method/MSE  ssparse 10%  vsparse 20%  sparse 50% dense 80%  full 100%

LR 0.0853 0.0766 0.0367 0.0244 0.0002
FLR 0.1353 0.1341 0.1137 0.1184 0.1166
FPCA+NN 0.2192 0.1826 0.1604 0.1339 0.1968
- TabNet ~ 0.1120 02613 ~ 0.0377  0.0291  0.0198
SAINT 0.2585 0.2583 0.0734 0.0497 0.2579
FTTransformer 0.0801 0.0596 0.0354 0.0326 0.0202
Autolnt 0.0903 0.0666 0.0510 0.0385 0.0171
TabPFN 0.0522 0.0305 0.0115 0.0004 0.0002
VT+NN 0.0673 0.0311 0.0276 0.0231 0.0285
SAND+NN 0.0703 0.0308 0.0208 0.0272 0.0285
~  MLP 00769 0.0393  0.0307 = 0.0228 00127
ResNet 0.0846 0.0434 0.0320 0.0217 0.0085
AdaFNN 0.0582 0.0479 0.0148 0.0060 0.0112
- NODE = 0.0741  0.0397 00383  0.0275  0.0133
CatBoost 0.0740 0.0405 0.0220 0.0171 0.0075
XGBoost 0.0884 0.0525 0.0297 0.0255 0.0170
LightGBM 0.0817 0.0404 0.0272 0.0213 0.0114
AutoGluon 0.0617 0.0357 0.0182 0.0076 0.0012
xRFM 0.0417 0.0342 0.0141 0.0075 0.0044
IDAT 0.0386 0.0139 0.0016 0.0051 0.0033
IDAT w/o A 0.0378 0.0207 0.0045 0.0073 0.0059

the age—50 main interview. Consequently, the dedicated “height at 50” field appears missing for the
vast majority of cases (about 96% in the analyzed population), reducing the informativeness of BMI
at age 50. Together with the attention—based time—domain selection, these collection procedures
help explain why the age—50 window is identified as non-informative in Figure|g]

Attention Weights Attention clusters with response values

cluster =0
— Y > mean
cluster = 1
— Y < mean
357 Mon-informative

0.002 40

0.001

304

BMI

-0.000

Test samples

254

—0.001

204
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15 4

Grid points age

(a) (b)

Figure 8: Meaningful dual-attention structure and outcome alignment across time. (a) Attention
weights for test samples. Two clusters are clearly visible, and the masked region (6th time grid, age
50) receives consistently low attention, indicating a non-informative domain. (b) Attention-derived
clusters align with lower vs. higher BMI at age 62; the shaded non-informative domain is the only
region where cluster trajectories fail to mirror the subsequent BMI separation.
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A.2.2 SYNTHETIC HIV DATASET (HEALTH GYM): VL/CD4 CLASSIFICATION

Each dataset in the Health Gym HIV dataset (Kuo et all |2022) project is generated by training
a generative adversarial network (GAN) on a corresponding real cohort to reproduce marginal
distributions, temporal dynamics, and cross—variable correlations while maintaining a very low
re-identification risk. In this study, we use the EuResist—based (Zazzi et al., [2012) real HIV cohort
and then sampling fully synthetic patient trajectories from the trained generator. The GAN is opti-
mized to reproduce not only marginal distributions but also temporal dynamics and cross—variable
dependencies (e.g., the joint evolution of viral load, CD4, and regimen exposure). Utility is validated
by comparing synthetic to real data across distributions, correlations, regimen usage frequencies, and
time—series summaries; privacy is audited using best—practice membership— and attribute—disclosure
tests, yielding a very low re—identification risk while preserving clinically meaningful patterns.

The EuResist-based source cohort includes individuals who initiated antiretroviral therapy (ART)
after 2015 and were treated with the 50 most common regimen combinations (covering 21 drugs).
Variables comprise demographics, viral load (VL), CD4 T—cell counts, and regimen indicators (both
base combinations and auxiliary drug classes). Records are monthly time series with person—specific
therapy durations; to standardize sequence lengths for modeling, trajectories are truncated to the
nearest multiple of 10 months. Because the real cohort is sparse/irregular, each laboratory/clinical
variable includes a binary “(M)” flag marking whether a measurement was observed at a given
month, preserving real-world missingness for GAN training and downstream evaluation.

The HIV synthetic dataset is based on the work of [Parbhoo et al.| (2017) and |Organization et al.
(2013)). It encodes the core variables needed to model disease monitoring and treatment decisions
in HIV: (i) demographics (e.g., sex, age/age group, ethnicity), (ii) ART regimen indicators (base
combinations and auxiliary drug classes), (iii) VL, and (iv) CD4 counts. Two additional identifiers
(patient ID and month) index the panel structure. This schema supports supervised prediction, policy
learning, and descriptive analyses without access to identifiable records.

In terms of scale and structure, the synthetic HIV dataset contains 8916 patients followed at a fixed
monthly cadence for 60 months, yielding 534960 panel records (8916 x 60). The time index runs
from month 1 to month 60 with no gaps, so each patient contributes a complete 60—step trajectory (in
contrast to the variable—length, irregular trajectories in the underlying real cohort). The data schema
comprises 15 variables: 3 numeric (e.g., VL, CD4, and a continuous demographic), 5 binary (e.g.,
regimen or clinical flags), and 5 categorical (e.g., regimen classes, ethnicity), plus patient ID and
month index.

Clinical guidelines recommend frequent viral load monitoring until HIV-1 RNA is suppressed be-
low 200 copies/mL, followed by routine testing, establishing VL < 200 copies/mL as the clinical
threshold for virologic suppression (Eisinger et al., 2019; JG| 2008). Suppression at this level is
clinically meaningful: a systematic review reports essentially zero sexual transmission risk when
individuals adhere to antiretroviral therapy and maintain VL.< 200 copies/mL (Sabin et al., [2000).
Accordingly, predicting whether future VL will be < 200 copies/mL is a decision-relevant end-
point that informs monitoring intervals, adherence support, and risk communication, and is aligned
with clinical practice and epidemiologic evidence. The VL series in the feature window is highly
sparse (mean missingness 65%, range 47-88%). Subjects receive a mean of 5.8 observations (SD
1.8) during the 20-month covariate interval (Figure [0). The analysis cohort comprises n = 8683
synthetic patients meeting inclusion criteria for the two windows. We adjust for sex as a baseline
covariate. The detailed accuracy/F1 score under three imputation methods for the VL classification
task is provided in Table[I0}

We would like to report another analysis done on this HIV synthetic dataset in Table AIDS is
defined for surveillance by the U.S. CDC (Centers for Disease Control and Prevention, [2025) (and
harmonized with WHO (Organization et al.,2013)) as either: (i) CD4 T-cell count < 200 cells/mm?,
or (ii) the presence of any AIDS-defining illness. In this study we define a binary label indicating
whether a patient ever experiences CD4< 200 during the evaluation window. For each patient we
use the first 40 months of CD4 as the longitudinal covariate vector, and define the outcome as

Y:l{ min }CD4t <200},
,.-,60

i.e., whether CD4 ever drops below 200 in the last 20 months (prediction window). The CD4 se-
ries in the feature window is highly sparse (mean missingness 76%, range 49-93%). On average,
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Figure 9: Number of observations in the synthetic HIV study. On the left, VL task with total of 8683
subjects in 7" = 20 months interval. On the right, CD4 task with total of 7659 subjects in T' = 40
months interval.

subjects have 8 (SD 2.6) observations over the 40-month covariate window (Figure[9). The analysis
cohort comprises n = 7659 synthetic patients meeting inclusion criteria for the two windows. We
adjust for sex as a baseline covariate. With only a 6% minority rate, the task is highly imbalanced.
Dual-attention can struggle because both its objective and mechanics amplify majority signals while
diluting minority cues. Inter-sample attention forms softmax-weighted averages across the batch;
with few minority examples per batch, these averages are pulled toward dense majority neighbor-
hoods, washing out rare patterns. If a Y-token is included during training for classification, the
encoder can “cheat” by attending to that token instead of learning from covariates; at test time the
Y -token is masked, creating a distribution shift where the learned shortcut disappears and general-
ization degrades. Finally, imbalanced batches mean the model rarely attends to minority neighbors,
preventing stable minority prototypes and yielding poor F1 score and accuracy.

Ensemble methods perform strongly on the classification task, reflecting robustness under relatively
short grids and stable outcomes. In this setting, LOCF is reasonable because the observed grid is
small and VL varies modestly over successive months, while MICE, although a state-of-the-art
imputation strategy, mainly boosts competing models without closing the gap to our approach.
Across regression and classification, MICE tends to improve baselines, yet none match the proposed
dual-attention Transformer. For classification, especially under severe imbalance, a more tailored
class-balanced design, such as class-balanced batching, logit-adjusted losses and validation-based
thresholding, can further improve performance and better capture minority cases.

A.3 THEORY FOR SCALAR-ON-FUNCTION REGRESSION: NONPARAMETRIC
RANDOM-EFFECT MODELS

For subject ¢ in a batch of size B, the longitudinal measurements follows a random effect model
(Laird & Ware, |1982a;; Mu et al., |2008)),

X7 (t:) = p(ti) + i) + mi(h:), )
with#; = (ti1,...,tin;) C [0, 1], where n; may differ among subjects. The irregular samples X (;)
are then viewed as a noisy finite-dimensional samples from the continuous trajectory X;(-). The
effect y is the population mean effect which is shared among all subjects and captures the general
trajectory trend, while the subject-specific effect b; ~ subG(0, B) captures the effect on subjects
and is distributed independently of each other and of the measurement noise 7; ~ N(0,0%). We
impose smoothness on both 1 and b; via the Holder class C ([0, 1]; R). For @ € (0, 1], define

C*([0,1;R) = {g:[0,1] > R gl

co 1= llglloo + gl < o0},

where [|glloc = sup,efo,11 19()] lglen = sup,, LH=4 In particular, a = 1, C1([0, 1]) is

exactly the space of Lipschitz functions in the ¢, norm. The response Y; € R is generated by a
functional regression operator J acting on the entire trajectory:

Y; = F(X;(-)) + €, ¢ ~ N(0,0%). ©)
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Table 10: Classification performance on the synthetic HIV VL task under three imputation strategies
(mean, MICE, LOCF). We report accuracy (ACC) and F1; the best score is in bold and the top three
are in italics. IDAT matches the top methods, and LOCF performs comparably given stable VL
trajectories.

Synthetic HIV — VL
mean imputed MICE LOCF
Method ACC F1 ACC Fl1 ACC F1

LM/GLM 0.9505 0.9746 09517 0.9751 0.9448 0.9716
FLR/FGLM 09486 0.9736 0.9486 0.9736 0.9486 0.9736
FPCA+NN 09413 0.9698 0.9413 0.9698 0.9413 0.9698
77777 TabNet 0.9482 09734 0.9494 0.9740 0.9517 0.9752
SAINT 09517 0.9752 09505 09745 0.9517 0.9752
FTTransformer 0.9459 0.9721 0.9494 09739 0.9528 0.9757
AutoInt 09425 09703 0.9494 09740 0.9528 0.9758
TabPFN  0.9459 0.9722 09482 09734 0.9528 0.9758
VT+NN 0.9252 0.9611 0.9252 0.9611 0.9252 0.9611
SAND+NN 09321 0.9647 0.9321 0.9647 0.9321 0.9647

CatBoost  0.9379 0.9679 0.9448 0.9715 0.9517 0.9751
XGBoost 09333  0.9652 0.9471 0.9727 0.9505 0.9745
LightGBM 0.9379 0.9678 0.9448 0.9715 0.9482 0.9733
AutoGluon 0.9505 0.9746 0.9505 0.9745 0.9517 0.9751
xRFM 09413 09698 0.9413 0.9698 0.9413 0.9698

IDAT 09517 0.9752 0.9517 0.9752 0.9517 0.9752
IDAT w/o Ay 09517 0.9752 0.9517 0.9752 0.9517 0.9752

We assume F : C’O‘([O, 1]; R) — [-My, My] C Ris bounded and L ;-Lipschitz in supremum
norm, namely

|F(X) = FX)| < Ly IX = X'lsey |1X = X ||os = st]|X<t>—X'<t>\.
te[0,1

To accommodate irregular sampling to a Transformer model, we fix the ordered grids 7 =
{7j }le C [0,1]. In the sparse regime—where each trajectory contributes only a few time-points
relative to T—one may take {7} to be the union of all distinct observation times (optionally aug-
mented by equispaced points to guarantee full coverage).In the dense regime it is customary to
partition [0, 1] into 7" bins, and aggregate local measurements via averaging or interpolation. We
define the mesh size A = maxi<j<r |7j+1 — 7| and p = min << |7j41 — 75|, we will care-
fully show how the discretization incurs an approximation error of order A relative to the true
continuous trajectory in Lemma 3}

In the training phase, we align each subject’s irregular observations to the fixed grid 7 =
(11,...,7r) by introducing a binary mask M;(7) € {0,1}T and a zero-padded trajectory vector
X7 (7) € RT. Concretely, for each j = 1,..., T we define

1, 3Jksuchthatt; =t;,

M;(7;) = {07

X-*(tik) T':tik
X:k ) — [ sk J SR
otherwise, ¢ (73) {0, M;(7;) = 0.

Thus the elementwise (Hadamard) product X;(7)® M;(7) retains the observed values and zeros out
missing entries. Finally, we concatenate this length-7" vector with the scalar response Y; to obtain

D; = (X;(7) ® M;(7), Vi) € RTH,
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Table 11: Classification performance on the synthetic HIV CD4 task under three imputation strate-
gies (mean, MICE, LOCF). We report accuracy (ACC) and F1; the best score is in bold and the top
three are in ifalics. Tree/ensemble methods and TabPFN attain the highest ACC, while FPCA+NN
yields the best F1, with rankings broadly stable across imputations.

Synthetic HIV — CD4
mean imputed MICE LOCF
Method  ACC F1 ACC F1 ACC F1

LM/GLM 0.8158 0.3095 0.8327 0.2182 0.8210 0.1039
FLR/FGLM 0.8184 0.1026 0.8184 0.1026 0.8184 0.1026
FPCA+NN 0.8405 0.7648 0.8405 0.7648 0.58405 0.7648
77777 TabNet 0.8132 0.2258 0.8495 0.4579 0.8366 0.3942
SAINT 0.8249 0.1176 0.8171 0.3092 0.8262 0.1625
FTTransformer 0.8508 0.5022 0.8405 0.4279 0.8353 0.4641
AutoInt 0.8457 0.4138 0.8353 0.3981 0.8327 0.3385
TabPFN 0.8586 0.4631 0.8599 0.4653 0.8508 0.4700
VT+NN 0.7951 0.0366 0.7951 0.0366 0.7951 0.0366
SAND+NN 0.8080 0.2885 0.8080 0.2885 0.8080 0.2885

ResNet 0.8470 0.3516 0.8379 0.3590 0.8379 0.3961
AdaFNN 0.7406 0.1736 0.7406 0.1736 0.7406 0.1736
CatBoost  0.8521 0.3936 0.8534 0.4744 0.8457 0.4516
XGBoost  0.8495 0.4579 0.8444 0.4643 0.8353 0.4356

LightGBM 0.8482 0.4179 0.8521 0.4722 0.8392 0.4414
AutoGluon 0.8470 0.4327 0.8508 0.4279 0.8288 0.4211
xRFM  0.8145 0.3129 0.8145 0.3129 0.8145 0.3129

IDAT 0.8171 0.3092 0.8171 0.3092 0.8171 0.3092
IDAT w/o A;  0.8171 0.3092 0.8171 0.3092 0.8171 0.3092

which is then passed to the embedding along with the positional information. In order for the model
to make use of the order of the time sequence, we must inject some information about the relative or
absolute position of the observation in the time trajectory. We apply two learned linear maps with
embedding dimension d,

Ex :R — R, Ey :R — RY,

pointwise across the sequence and then add sinusoidal positional encodings P(7).
D; = (Ex - [X](7) © M;(7)] + P(7), By -Y;) € R>*T+HD,
for dimension i € [d] and j € [T'], we define the relative position as p = 3, _ . 7i/p, then
P (1;) = sin(p - 10000~2/4), PG+ (1) = cos(p - 10000~ 2/4).

Intuitively, the geometric progression of wavelengths ensures each timepoint is mapped to a unique
location in R¢, which underpins the universal approximation property over sequences of bounded
length.

Consider a mini-batch embedding of size B, we define D = {D;}2, € REX4X(T+1) a5 a training
batch. The dual-attention Transformer block 78 : REX4x(T+1) _y RBExdx(T+1) ig defined by

TB(D) = FFy 0 A; o FFy 0 Ap(D) = FFy (A, (FFQ(AT(f))))) € RBxdx(T+1) (10)
where FF, FF, : RExdx(T+1) _y RBxdx(T+1) position-wise feed-forward network (e.g. a two-
layer ReLU MLP with hidden dimension dpr). WLOG, we assume FF; = FF; = FF. For

analytical simplicity we omit layer normalization, while preserving the basic architecture of the
Transformer.
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We next introduce the dual-attention mechanism, which combines classical self-attention over time
points with an inter-sample attention across the batch. Let o[-] denote the column-wise softmax op-
erator, which maps any real matrix to a column-stochastic matrix (nonnegative entries, each column
summing to one). Both attention modules employ H distinct heads of size d 4. For each head h, the
time-point projections satisfy W/, Wi, W{t € R%4>¢ and W/ € R?*¢1, while the inter-sample
projections satisfy VCS, VE, V‘ﬁ‘ € R¥*d4 and Vg € R¥4*4_ This design follows [Yun et al[(2019),
augmented by inter-sample attention to borrow strength across subjects.

Time-Point Attention. Applied independently to each sample i = 1,..., B. Let D; € R**(T+1)
be the input embedding of the ¢th subject. For head h we form

Q=whLD;,, KhM=WLD, V'=whD, WEWL W} cRIaxd
i Q i K i 1% Q K 1%
We then compute the attention weights

Sh = U[ (Kih)TQﬂ e RIT+HX(T+1)

and update the sequence by

H
AT(Di) —D; + ng (Vih Slh) e RX(THY), Wg c Réxda
h=1

I~nter-S~ample Attention. Operates across the batch at each time index ¢ = 1,...,7T + 1. Denote
Dt =D.., € RB*4 For head h set
Qr=DtUb, KM=D'U}, VI'=D'UL, UL UL UL eRrR>,
The batch-wise attention weights are
St = o[Ql (KM)T] € REXE,

and the updated features

H
A(DYy=D' + > (SrvM UL € REX vh e Riaxd
h=1

Reassembling over all ¢ yields A;(D) € RBxdx(T+1),

Composing L Transformer blocks defines the full dual-attention Transformer embedding

T(D)=TBo---oTB(D) = TB (D) : RFXTH) _ gExdx(T+1), (1)

L times

Regressor Layer. After learning an embedding from the dual-attention mechanism, let the
dual-attention encoder output

T(D;) e RTHD . T(Dy) = [ Zx | Zv],,
where Zx = T(Di):7;,1:T € R¥*T contains the token-wise representations of the longitudi-
nal covariates and Zy = T(Di);,;}TH € R? is the embedding of the response token. Define
¢: R¥*T — R? is any deterministic pooling operator that aggregates the first length-T" sequence of
d-dimensional vectors from T(f)z) into a single d-dimensional summary. Common choices include
mean pooling or attention pooling, which is designed to learn the nonparametric regression weight
between the embedding. In any case ¢ is a fixed, deterministic function—once its parameters are
trained, it introduces no additional randomness at inference. We assume ¢ is Lipschitz, with constant
Ly, so that for any two sequences Z, Z i

16(Z2) = ¢(Z)||w < LollZ — Z'||c-
We take g: R? — R to be a two-layer ReLU network of the form
9(z) = WP o(WWz 4 M) 4 p@),
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where
W(l) c RdFFXd’ b(l) c RdFF, W(Q) c RleFF, b(2) eR.

Here o(z) = max{0, 2} acts element-wise. This network is Lipschitz in the sup-norm with constant
Ly = ||W(2) llop HW(l) [lop:

since each linear map has operator norm equal to its largest singular value and ReLU is 1-
Lipschitz. The model prediction is therefore Y; = g(¢([Zx];)). During training we minimise a

loss E()A/i, 9([Zy],)), treating the response embedding Zy as an informative target. We train g so
that it uniformly approximates (Hornik} 1991} [Stinchcombe, [1999; |(Cybenkol |1989; Hornik et al.,
1989; |Yarotskyl, [2017) the true functional on the oracle embedding range; that is, for z = ¢([Zx];),

sup ‘g(z)—f(sl)’ < gg.
[zllec <R

A.3.1 OVERVIEW

The theoretical development proceeds as follows. We first embed irregular, noisy longitudinal mea-
surements on a fixed grid and control the resulting input-embedding discrepancy (Lemma [3). In
training phase, the components of the dual-attention block (time—point self-attention Ap, posi-
tion—wise feed—forward FF, and inter—sample attention A;) are Lipschitz (Lemmas E], and ad-
mit uniform approximation on compact sets (Lemma 3]6][7), yielding a deterministic approximation
bias. Inter—sample attention further reduces stochastic embedding variance by up to a B~/ factor
(Lemma [9). Stacking L blocks yields the training phase embedding error e (Theorem[I). Gener-
alization bounds for a single block and for L stacked blocks are given in Lemma[I0]and [L I} and the
train MSE deviation appears in Theorem 2] Combining these with the approximation bounds from
Theorem [I] shows that the training MSE is controlled by (i) input discretization, (ii) model approx-
imation and variance terms, and (iii) a Rademacher generalization term. Under standard structural
risk minimization scaling: refining the grid so A — 0, increasing capacity so err,£4,,€4,,E9—0,
enforcing norm control so the encoder Lipschitz L7 remains bounded and letting p = Bd (T'+1)
grow with n so that y/p/n— 0 (or an analogous spectral complexity term — 0), the generalization
term vanishes and the training MSE is consistent.

During the testing phase, Theorem |13| bounds pointwise and uniform test prediction error via a
decomposition into embedding error, regressor approximation error, discretization bias, and label
noise. It then controls the population test MSE via the training MSE plus a Rademacher complexity
term and an expectation bridge that propagates the test-phase perturbation from the missing Y -token;
the empirical test MSE further adds a standard test concentration term. As shown in Corollary [T4]
the test MSE is consistent if: (i) the mesh shrinks A — 0, (ii) the training MSE is consistent, (iii)
the bridge term vanishes with Ly — 0 or Y -token masking, and (iv) N — oo so the test concentra-
tion term vanishes; under these structural risk minimization-style conditions, both population and
empirical test MSE converge to the Bayes risk.

A.3.2 TRAINING PHASE.

Lemma 3 (Input Embedding Discretization Error). Under the random effect model with assump-
tion that j1,b; € C([0,1];R) with Holder constant L/2, sup,c(oq1) |1(t)| = [lplloo, and b; ~

i.i.d.

GP(0, B) with 02 = supye(o1] B(tt). The measurement noise satisfies 1;(7;) "~ N(0, %),
and the label noise ¢; "% N(0,0%). Let D; = (Ex(X;(7)® My(7)) + P(7), EyY;) and

S; = (Ex (si(7)) + P(7), Ey f(s;)), where s;(1;) = pu(7;) + bi(7;). Then with probability at
least 1 — 0,

0o = [ID — Sl
< A% 2BT 2BT 2B
< (LX+Lny)<L +ox (/210 28T 4l + 0 2lnT)—|—Lyay 2In ==,
where A = max; |Tj41 — 7| is the mesh size, Lx = ||Ex ||op and Ly = || Ey||op-
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Remark 1: The true response is generated by the functional
Yi = F(Xi() + e, F:C([0,1;R) = R, [lei]| ~ N(0,0%).
We never observe X; continuously, only at grid points {7;}1_,. Write s;(7;) = pu(7;) + bi(7;), and
extend s; to a continuous function §; € C*([0,1];R) (e.g. by linear interpolation). We then define
the oracle scalar
Since F is Ly—Lipschitz in the supremum norm, with mesh size A we have
| FXi() = f(s0)| = [ F(Xi()) = FGi)| < Ly [1Xi = 5ills < Ly A

Thus f(s;) approximates the true functional 7 (X;(-)) with a discretization error of order A®.

Remark 2: In the sequel, we establish high-probability, non-asymptotic bounds showing that our

learned Transformer embedding 7 (D) approximates the oracle embedding H (S) up to some error
terms. One term is regarding to discretization error of order A®, arising from sampling an a—Holder
trajectory on a grid of mesh size A. While reducing A tightens the discretization bound, it also
increases the sequence length 7" and hence computational cost. In practical applications, A must
therefore be chosen to balance statistical accuracy against the available computational budget.

Proof. Fix i € [B] and j € [T]. If M;(7;) = 1, then X (1) = s;(tir) + mi(tix) = p(tix) +
bi(tir;) + mi(tix) for some ¢;;, with |¢;, — 7;] < A. Hence by continuity assumption on y and b;,
| X7 (m5) = si(m)| < [siltie) = sa(my)| + Ini(m)] < LAY + [mi(7y)]-
If M;(7;) = 0 then X/ (7;) ® M;(7;) = 0 and |0 — s;(;)| = |s:(7;)|- Therefore for every i, j,
| X7 (1)) Mi(75) = si(7j)| < Isi(my)| < LAY + |mi()] + [si(7))].
By standard Gaussian-maxima bounds and a union bound over ¢ and j,

2BT 2BT
max|771(7'])| < UXW/QIHT, m@x\bi(Tjﬂgab QIHT

each with probability > 1 — ¢/2. Hence with probability > 1 —

2BT
maX’X (15)M;(15) — 54 (TJ)‘ < LA® + UX\IQIH— + ||M||oo+0b1/2hl7

Applying Ex (operator-norm L) to each token and noting that the positional encoding P(7;)
cancels, we get

5600~ Bt < £ (28° o2 T ¢ i 2 ).

Finally, for the Y -token, since f is L f—Lipschitz in the sup-norm,

Vi = f(si)| = [£(X0) = f(si)| +les] < Ly [|1Xi = silloo + leil-
Then with probability at least 1 — $, max; ; | Xi(7;)M;(7;) — si(7;)| yields the same upper bound
as LAY + ox1/2In 22T + || 4| + 034/21n 22X A Gaussian-maxima bound and union bound

over i = 1,...,B give maxi<;<ple;| < oy4/2ln % with probability > 1 — g. Hence with
probability at least 1 — 6,

2BT 2BT 2B
1r<na<x ’Y f(sl)’ < Lf(LAO‘ + UXHQIHT + ||u||oo+ab\/21nT) + ay1/2ln7.

Finally, applying the linear embedding Ey (with operator norm Ly) to each scalar yields
max || Ey (Vo) = By (f(s:))]

< Ly(Lf LA + UX\/21n— + ||,u||oo—|—ab1/21n— +UY”21nT)

Combining these bounds yields the stated result. O
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Lemma 4 (Lipschitz Continuity of the Feed-Forward Network). Let
FF : RBxdx(T+1) N RBxdx (T+1)

be the position-wise two-layer ReLU network defined by, for each sample i € [B| and time-index
JEer+1]

FF(Z);; = Wa|max{0, Wy Z; ;}| +ba, Wy € R¥FFXd 1, ¢ RIXdr ) ¢ RY,

where the ReLU (max{0, x}) acts element-wise on x € R¥* and Zij € R? denotes the embedding
of the jth token of the ith sample. Then FF is Lipschitz continuous in both the sup-norm and any L,
norm, with constant

Lrr = [[Wallop [[Wi1llops

where the operator norm of a matrix W € R™™ is || W||op = sup,crn g0y |W 2|2/ |2 |2-

Proof. Observe that: & — Wiz is || W7 ||op-Lipschitz in £o. The ReLU activation x — max{0,x}
is 1-Lipschitz in ¢y. = — Wax + b is ||Wa||op-Lipschitz in ¢5.Composing these shows each
token map Z; ; — FF(Z),; is Lpp-Lipschitz. Applying this position-wise yields, for any
Z,7" € REXX(THY) with || Z|| o = max; j || Z; j||2s

IFF(Z) = FF(Z')llsc < Lrr1Z = Z'||x.

Lemma 5 (Approximation Power of the Feed-Forward Network). Let R > 0 and let
G- [—R R]Bxdx(T+1) — RBxdx(T-‘rl)
be any position-wise operator satisfying the Lipschitz condition
1G(2) = G(Z)loe < LallZ =2l V2,2 with||Z]co, [ Z']l0c < R.

Then for every epp > 0 there exists a two-layer ReLU network FF : RExdx(T+1) _y RBExdx(T+1)
applied position-wise (i.e. independently to each (i, j) token) with hidden width

drr = [(2Lg R/epr)?]
such that sup) 7 _<r |FF(Z) — G(2) HOO < epF.
Proof Sketch. This lemma follows classical universal approximation results (Hornikl, 1991} |Stinch-

combel, [1999; |Cybenko}, [1989; [Hornik et al.| [1989} [Yarotsky}, [2017). Since G acts independently
on each d-dimensional token Z; ; € [—R, R]* and is L¢-Lipschitz in the sup-norm, the classical
two-layer ReL U universal approximation construction on [— R, R]¢ yields a network h : R? — RY
of width [(2LgR/epr)?] satisfying Sup|jz.<r |A(®) — G(Z)ijllcc < err. Applying h to each
token position-wise produces the desired FF. [

Lemma 6 (Uniform Approximation by Multi-Head Time-point Attention). Ler X = {U €
R(THD)  ||U]|oo < R} be a compact subset in the sup—norm, and let

fT X RdX(T-‘rl)

be any Lyemp-Lipschitz continuous mapping. Then for every ea, > 0 there exist H > Hy(e) and
da > do(e), and weight matrices {W(, Wi, Wiy € RI4x4 Wl e RV | such that the
multi-head time-point attention operator satisfies

sup ||[Ar(U) — fT(U)HOO < EAr-
Uvex

Remark: In particular, ifD,S € REXIX(T+Y) satisfy || Dilloo < R and ||S;||oo < R for all i, then
with |D — S||oo bounded in Lemma

|A7(D) = fr(S)llec < ear + L1 |D =S| =ea, + Lrdo.

This is the total embeddind error if we only apply time-point attention mechanism to get embedding.
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Proof Sketch. The time-point attention is identical to the classical multi-head self-attention. The
time-point attention operator Ap is realized by first projecting the input U via the matrices
Wg, Wk, W{}, then computing the scaled dot-products (K”)" Q" and normalizing each row by

a softmax to obtain S™. These attention weights are used to re-weight the values V", the re-
sults are linearly combined by Wg, and finally a residual connection adds the original U. Each
of these steps—Ilinear projection, softmax-normalization, weighted summation, and residual addi-
tion—is a continuous map on the compact domain X. By the universal-approximation theorem for
Transformer self-attention (Yun et al., 2019; Takeshita & Imaizumil, 2025} Kajitsuka & Sato,|[2023)),
networks of this form with sufficiently many heads H and head-dimension d4 can uniformly ap-
proximate any continuous target mapping fr on X to within . The residual connection preserves
this approximation while enhancing expressivity, yielding the claimed bound. The final residual

ensures exact interpolation of the noiseless input when D = S, and the Lipschitz continuity of fr

propagates any input mismatch |D — S|| to an additional error of at most Lt ||D — S| s, yielding
the stated bound.

Lemma 7 (Uniform Approximation by Multi-Head Inter-Sample Attention). Let
Y = {Z e REXTHD |1 Z| < R}
be the closed sup-norm ball of radius R, and let
fI Y — RBXdX(T-‘rl)

be any Li—Lipschitz continuous mapping across the batch dimension. Then for every € 4, > 0 there
exist integers H and d 5 (depending on €, R, B,d, T, L1) and weight matrices

{Vh, Vg, Vi e R4V e RAIaxIT
such that the multi-head inter-sample attention operator satisfies
sup HAI(Z) — fI(Z)Hoo < €4,.
Zey
Remark: Consequently, ifD,S € REXX(T+Y) sarisfy || Dslloo < R and ||Si||oe < R forall i, then
with |D — S||ec bounded in Lemma then
HAI(E) - fI(S)H

This is the total embedding error if we ignore the time-point embedding.

< €4, + LIHDiSHoo = €.

oo

Proof Sketch. Inter-sample attention at each time-step ¢ is exactly self-attention over the “batch-
axis” vectors Z. ;. € RP*4 As in Lemma @ one shows that a finite number of heads H and
head-dimension d 4 suffice to uniformly approximate any continuous, Lipschitz mapping f; on the
compact set Y. The argument parallels that for time-point attention: each step (linear projections,
scaled-dot-product plus softmax, weighted summation, residual addition) is continuous, so by the
universal-approximation property of multi-head self-attention (Yun et all 2019) one can achieve
error at most €. The final residual ensures exact interpolation of the noiseless input when D = S,
and the Lipschitz continuity of f; propagates any input mismatch ||[D — S||o, to an additional error

of at most Li||D — S||s. yielding the stated bound. O

Lemma 8 (Lipschitz Continuity of Dual-Attention Transformer Block). Let
TB=FF o A; o FF o Ap : REXX(TH) _y pExadx(THD)

be the dual-attention Transformer block. Suppose (1) The position-wise MLP ¥'F is Lypp—Lipschitz in
the sup-norm. (2) The time-point attention Ar is Ly—Lipschitz in the sup-norm. (3) The inter-sample
attention Ay is Lj—Lipschitz in the sup-norm. Then T B is Lipschitz continuous in the sup-norm with
constant Lt = Ly Ly Ly, ice. forall X, X', |TB(X) = TB(X')||,, < LipLrLr || X —

X’ H - Note that the Transfomer of layer L is naturally L%—B—Lipschitz.

Proof. By assumption FF, Ap, and A; satisfy ||[FF(U)~FF(U")| s < Lrp||U~U'||co, || A7 (V) —
Ar (Voo < Lr||V = V'|loos [[Ar(W) = Ar(W')[loe < L [[W — W'||oo. Now set U = Ap(X),
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U =Ap(X'),V =FFU),V' =FFU"), W = A;(V), W = Ar(V’'). Then for any X, X’ €
RBxdx(T+1)
ITB(X) = TB(X") |« = [[FF(Ar(FF(A7(X)))) — FF(A7(FF(Ar(X")||
< Lpr || Ar(V) = Ar(V)||
S LrrLr [V = V]l
= Lyr L1 |[FF(U) = FF(U') ||
< Lp Lr U = Ul
= Lip L1 A7 (X) — A7(X') [l
< Lip Lr Ly || X = X[,
establishing the stated Lipschitz constant. O

Lemma 9 (Variance Reduction by Inter-Sample Attention). Let
Z; = FF(Ar(Dy)),  m; = FF(Ar(S))),

be the feed-forward outputs of the time-point attention on the observed embedding D; and the oracle
embedding S;. For each time-stept =1,...,T + 1, write

Zt:[Zf;...;ZfB]ERBXd, mtz[mi;...;mtB]eRBXd,
where each row decomposes as
Zh=mh 4k, kY N0,0%.), kefl,...,B}, je{l,...,d},

under the assumption that |m'||oc < M,,, the map (' is Lg-Lipschitz and the FF network prop-

agates the Gaussian embedding noise from AT([%) with Lipschitz constant absorbed into Gepc.
Define the inter-sample attention weights at time t by

_ ew((QL Kp)/Va)
TSE exp((QL- KL)/VdA)

where Q' = Z'Wq, K' = Z'Wy € RB*4a_ Then the inter-sample attention output for subject i
attis [AI(Zt)] =37, Bt Z}. Forany § € (0, 1), with probability at least 1 — 4,

2Bd
21n

2 [ Ar (2 = Ar(m)ll, < e i

which is of order between Op <i;%“ +/21n 2?‘1> and Op <Jenc +/21n 2Bd>,

Taken consideration across all time-step, we have

| A (FF(Ar(D))) — A (FF(Ar(S)))||

B

St 20 22T 1,0, L) [FP(AS (D) — FE(42(8) ]«

< Oenc Max
= 1)
k=1

[B]

= Evar-

In particular, if the subject-specific effect is absent so that ,Bf’ w = 1/B, then the bound is

Oenc [y 2B +1)d

T |2 ) +min{LsM,,, L;} |[FF(Ar(D)) — FF(A7(S))]|oe-
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Remark 1: In the general random-effects case, attention implements a non-uniform weighted av-
erage. As long as the learned weights (¢, s are reasonably spread over multiple subjects (typi-

cally because similar h}, get grouped), we can obtain a variance reduction of order Op(1/ \/E) <
Op( ZEZI( 1 )2 < Op(1). In particular, if subject-specific effect is absent, all queries are
identical so that Bf, » = 1/B, then inter-sample attention is equivalent to simple averaging, and we
could achieve the 1//B variance reduction.

o 2Bd

max|[A;(Z") — Ar(m")], | < == /2In —.

i, i, VB 5

By contrast, without inter-sample attention each coordinate error 'y,i’ j satisfies maxy, ; |’y,t€’ j\ <

Oency/2In(2B d/6) with the same probability. Thus inter-sample attention achieves a Op(1/+/B)

reduction in the dominant noise term when the attention weights are uniform.

Remark 2: (Effective Embedding-Noise Standard Deviation.) Let 1;(T;) WN (0,0%) and €; “
N(0,0%). Define

Di = (Ex(Xi(7) © My(7)) + P(7), Ey(Y:)), Si = (Ex(s:(7)) + P(7), By (f(s:))),

with s;(1;) = p(1;) + bi(j). Write Lx = ||Ex|lop and Ly = ||Ey|cp. Then after embed-
ding, measurement noise becomes Ex n;(1j) ~ N(0, L% 0% ) and label noise becomes Ey ¢; ~
N(0,L3% 0%). Passing through a Lr-Lipschitz time-point attention and an Lyg-Lipschitz feed-
forward network multiplies each variance by (Lt Lyr)?. Hence the effective embedding-noise stan-

dard deviation is
Oenc = Lyp LT max{Lx ox, Ly oy}.

Proof. Define the error
B
Uij=Y_ Blevhy-
k=1

. . . . . . 2 B t 2
For fixed i and j, D; ; is Gaussian with mean zero and variance 03, > ;. (5; ;)*. Hence

u2
Pr(|D; | >u) < 2€Xp(——>.
( ! ) 2O-gnc ]c( f,k)Q

By a union bound over all ¢ € [B] and j € [d],
2

Pr(nﬁx\Di,j\ > u) < 2Bd exp(—2(72 4 )

enc MNax; Zk(ﬂf,k)2

2Bd
U = Oene MAX Z( f’k)2\/2ln 3
CV R

makes the right-hand side < §. This yields the first displayed bound. The uniform-weight case
follows by substituting 3/, = 1/B. Finally, for iid. v ; ~ N(O, 02..), a standard Gaussian-

Setting

enc

maxima bound gives maxy, ; [V, ;| < Tency/21n(2 B d/§), completing the comparison.

For each row 1,

B B
AL(Z")i = Ar(m') =Y Bi(Z) % + Y (Bix(ZY) = Bi (")) mi.
k=1 k=1

=:U; =:V;

Uniform bound across all time-steps U; ; gives the additional (7'+1) in the first term of U;. Lipschitz
continuity of the weight map gives ||V;|loc < M, [|1(Z%) — BH(mY)||1 < My, Lg [| 2 — m?| o,

O
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Theorem (Theorem [} revisit, Training-phase embedding error and consistency of 7). Let D e
REXAX(T+1) pe the observed, masked embedding and let S € RE*X(T+1) be the “oracle” em-

bedding obtained from the noiseless, fully-observed trajectories s; = p(7) + b;(T) and noise-
less responses f(s;). The corresponding fully observed positional embedding would be 3; =
(Exsi + P(7), Ey f(si)), with all the masks are defined as I, implying fully observed. We define
S={S}8, ¢ REXAX(THY) thep the ideal block-wise mapping by

H(S) = Go fioGo fr(8) = G(fi(G(+(9))).
For the approximation errors, by Lemmal3] the position-wise feed-forward network FF satisfies

IFF(Z) — G(Z)|loo < epr forall |Z| < R.
Lemmal6] guarantees

[A7(Z) = fr(Z)loe < ear forall||Z||lso < R,
and Lemmal7| guarantees

1A1(Z) = fi(Z)|lse < €a, forall||Z]loc < R.

Then with the stochastic error we obtained in Lemma @] we have that for any 6 € (0,1), with
probability at least 1 — ¢,

1A (FF(A7(D))) — Ar(FF(A7(S))) e < var-

With the assumption that G, fr, and f1 are Lipschitz continuous in the sup-norm with constants
Lyg, L, and Ly, respectively. Then the a single dual-attention block for any 6 € (0,1),

TB(D) = FF(A;(FF(Ar(D)))),
obeys the embedding error bound with probability at least 1 — 6,
||TB(]3) — H(S)HOO < LFF<5var +ea, + L1 (5FF + Lrp SAT)) + epFr = 7B- (12)

Consequently, with Lipschitz continuity of T B showed in Lemma 8| composing L blocks yields em-
bedding error of the dual-attention transformer

|TD) - H(S)|, < LEs (00 +er8) =c7T, (13)

with probability at least 1 — 6 and input embedding discretization error &y derived in Lemma3}

Proof. Employ the following decomposition

ITB(D) — H(S)lls = |[FF(Ar(FF(A7(D))) — G(Ai(G(fr(S))]|

< |[FF(A;(FF(Ar(D)))) — FF(A;(FF(A7(S))))] o

(D) inter-sample embedding stochastic error

+ |[FF(A;(FF(A7(S)))) — G(A(FF(A7(S))))ll
(ID) FF bias
+|G(AL(FF(A7(S)))) — G(fi(FF(A7(9)))) s
(III) inter-sample attention approximation error
+|G(AEF(A(S))) ~ G(A(G(AT(S))))ll
(IV) FF bias
+ G ((G(Ar(8))) = G(AG(Fr(S)))lle -

(V) time-point attention approximation error

By Lemma@]and continuity assumption, (1) < Lrp&yqr. By Lemma (1) and (IV) can be bounded
by err and LyrLierr, respectively, with Lipchitz assumption. (IIT) and (V) can be bounded with
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Lemma @ and [7| by Lrpea, and LI%FL 1€4A,. Rearranging yields the stated bound. Define the
sequence 0 = || TB* (D) — H(S)| oo, k = 0,1,..., L. Since & = || D — H(S)|| and H is fixed,
we use only the block-level bound and Lipschitz property (Lemmag)):

81 = |TB(D) = H(S)|lo < e78,
and for k > 1,
k1 = [|[TB(TBM(D)) — H(S) |l
< || TB(TB*(D)) = TB(H(S))||oo + I TB(H(S)) = H(S)l|oo
< Ly ok +erB.

Unrolling this recursion gives

L—-1
- LL,—1
or < L%’B do + Z L%’B ETB = L%’-B do + % e < LE/‘B (50 + 57‘3).
j=0

Note that dy is related to the embedding error from discretization and is bounded under the random
effect model by Lemma 3] O

Remark: (Oracle Approximation by a Dual-Attention Transformer) Theorem [I| directly im-
plies that oracle approximation from dual-attention transformer is achievable. Let X = {Z €
RE*dx(T+1) . || Z|| . < R} be compact. Let the oracle operator be

H = GofioGo fr : X — RExX(T+1)

where G, fr, and fi are continuous and Lpp-, Lp-, Ly—Lipschitz on X, respectively. Then for any
€ > 0 there exist: a position-wise two-layer ReLU network FF, a multi-head time-point attention
A7, a multi-head inter-sample attention A;, with sufficiently large hidden width and number of
heads/head-dimension (as guaranteed by Lemmas [5] [6] and [7), for any fixed depth L € N stacks of
the dual-attention block 7 = TB°" with TB = FF o A; o FF o Ap. T satisfies the uniform
oracle-approximation bound

sup HT(]ND)—H(S)HOO < er.
Dex

Remark: In particular, if the mesh shrinks A — 0 so that 5 — 0, the approximation and stochas-
tic terms vanish epp,€4,,€4;,Evar — 0 with increasing capacity, and supg L75(B) < oo (the
block Lipschitz constant remains uniformly bounded as batch size B grows for fixed L), then

||T(f)) — H(S)Hoo — 0,
i.e., the daul-attention Transformer embedding 7 is consistent for the oracle mapping H.

Lemma 10 (Generalization error for a dual-attention block). Let TB = FF o A;j o FF o A :

REXAX(T+1) — REXAX(TH) pe Lry-Lipschitz in || - ||og (Lemmalg). Let ¥ : REXax(T+1)

[0,1] be Ly—Lipschitz in || - ||oo. Assume inputs satisfy | D|lcc < Rin almost surely and set p =
Bd(T +1). Then the class G :== {¥ o TB} obeys

3,(G) = E, | 1zn: (D)] < LuLys Ry |22

n = Lg | SUp — 0 g\l >~ Lyl fin \) —-

geg M i n

Consequently, for [0, 1]-valued V o T B, with probability at least 1 — 6,

- In(2/0)

BUTBD))] < LS WTBBY) + 2LuLrs Ry 2L + 3y 220,

=1

Proof. WoTBis LyLyp-Lipschitzin || - ||, hence also Ly L7p-Lipschitzin || - ||2. By Lemmal8]
forall X, X', |TB(X) — TB(X")|oo < L78||X — X'||so. Since ¥ is Ly—Lipschitz in || - ||,

(W(TB(X)) = ¥(TBX"))| < Ly [TBX) = TB(X')[loo < LuLys||X = X'||w.
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Because [|v]jcc < |lv||2 for all v € RP, this also implies |¥(TB(X)) — ¥(TB(X"))| <
LyLyp||X — X'||2; ie., the same Lipschitz constant works in ¢, (no dimension factor is intro-
duced when passing from ¢, to ¢3). From ||DZ||OO < R, we get ||Dz||2 < /P Ri, for each i.
It is a standard fact (Bartlett & Mendelson, 2002; |[Shalev-Shwartz & Ben-David, [2014) that for an
L-Lipschitz (in ¢5) function class on a set with max; || D; |2 < Ra,

- 2
R, < LR, \/7
n

Applying this with L = Ly L7 and Ry = /p Ry, yields ii%n(g) < Ly L7 (/P Rin) /2/n =
LyLyg Rin v/2p/n. Finally, apply the standard Rademacher generalization inequality for
[0, 1]-valued functions: for all g € G, with probability at least 1 — 4,

2n

3\'—‘

i () + 3 111(2/5)’

which gives the stated bound. O

Lemma 11 (Generalization error for an L-stack dual-attention Transformer). Let TB = FF o
Ap o FF o Ap : REXX(THY) _y REXAX(TH) pe [ Lipschitz in || - || oo (Lemmal) S) and define

the L-block Transformer T := TBY, T is Ly—Lipschitz in || - ||oo with Ly = Lkg Let
U REXX(THY) 5 [0,1] be Ly—Lipschitz in || - ||oo. Assume inputs satisfy | D|so < Rin almost
surely and set p :== B d (T + 1). Then the class Gy, := {¥ o T } obeys

2 2
R, (Gr) =E [bup *ZUz } < L\DLTRin\/l = L‘IIL7L’BRinV7p-
gegr M n n

=1

Consequently, for [0, 1]-valued U o T, with probability at least 1 —

EW(T(D)] < -3 W(T(D) + 2Ly Ly R \f W
i=1

Proof. By Lemma l TB is LTB—LlpSChltZ in || - ||oo. Therefore the composition 7 = 7B~
is Ly—Lipschitz with Ly = L%, Since ¥ is Ly—Lipschitz in || - lloo, the composition ¥ o T
is Ly Ly-Lipschitz in || - ||, hence also Ly Ly—-Lipschitz in || - |2 (because ||v]|o < ||v]2)-

From ||D;|loc < Rin we get |D;]> < /pRin. The standard Lipschitz Rademacher bound
(Shalev-Shwartz & Ben-David| (2014), Lemma 26.9) yields R, < (LwL7) (/P Rin) V2/n =

Ly L7 Rin+/2p/n. Applying the usual [0, 1]-valued Rademacher generalization inequality com-
pletes the proof. O

Theorem (Theorem |2| revisit, Training phase Generalization Error for Dual-Attention Transformer
Embedding). Let TB = FF o A; o FF o Ap : REXdx(T+1) _, RExdX(T+1) pe [ p—Lipschitz in
I 1loo (Lemma and let T := TB°F denote L stacked blocks. Then T is Ly—Lipschitz in || - || oo
with Lt = Lk, Assume inputs satisfy |D||sc < Rin almost surely and set p := Bd (T + 1).
Let ¢ : RXT — R? pe Ly—Lipschitz in || - ||oo, and g : R — R be L,~Lipschitz in || - || . Let
¢:R xR — [0,1] be Ly-Lipschitz in its first argument. Define the predictor (using the covariate
tokens of the encoder output)

YD) = g(éb([T(D)];}:g;T))'

Then, fori.i.d. (DZ, Y;)™_,, with probability at least 1 — 6,

: n n
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Proof. By Lemma[§} 7 = TB°" is Ly = LEg—Lipschitzin || - [|o. Let § : REXAX(T+1) _y RixT
be the slicing operator S(U) = U.. 1.7, which is 1-Lipschitz in || - || since it only removes
coordinates. Therefore, the scalar predictor

h(D) = ¢(o(S(T(D))))
is Lp-Lipschitz in || - ||oc With L, = Ly Ly L¥4.

For any vectors v, ||v]|s < ||v]2, s0 h is also Lp—Lipschitz in || - ||2. With p = Bd (T + 1) and
| D]|os < Riy almost surely, we have || D||2 < /p Ry, for each sample.

Consider the class #r, := { h(-) = go ¢ o SoT(-) } over all parameterizations with the same L3
(thus the same L7). A standard bound for L-Lipschitz real-valued functions on a set of Euclidean
radius Ry (Shalev-Shwartz & Ben-David|(2014) Lemma 26.9, Bartlett & Mendelson|(2002))) gives
the empirical Rademacher complexity

N 2 2 Ib)
R.(Hr) < Ly RQ\/; < (LyLyL¥g) (\/p?Rin)\/; = L, Ly LEg Ry ;p.

Define the loss class Fr, := {(D,Y) — ((h(D),Y) : h € Hr}. By the Ledoux—Talagrand
contraction (Ledoux & Talagrand, [2011) (Lipschitz in the first argument and [0, 1]-valued loss),

. ) 2
R, (FL) < LeR,(Hy) < LngL¢L%BRiM/;p.

Finally, the standard Rademacher generalization inequality for [0, 1]-valued functions gives, with
probability at least 1 — ¢, uniformly over F,,

- 1 & - < In(2/6)
El(h(D),Y)] < =) L(h(D;),Y; 2R, 3 ——=.
(DY < 33U ¥) + 23(Fn) + 3y 5]
Substituting the bound on ‘fin(]: 1) completes the proof with h = Y@, O

Remark 1: (Heterogeneous layers and spectral complexity) If the L blocks have possibly different
Lipschitz constants L%%, ceey LE,-L,;, replace L%B by HeL:1 L%% throughout. Alternatively, with
spectral-norm constraints on all linear maps (including attention projections Wq, Wy, Wy, Wo
and FF weights W7, W5), one can replace the ,/p factor by a Bartlett—type spectral complexity
involving products of operator norms and a sum of normalized Frobenius norms, and include the

softmax sensitivity via a factor ||Wg ||opl| Wi ||lop/Vd 4.

Remark 2: (Training phase MSE) Define the training predictor and empirical MSE

YD) = g(o(IT(D)rr)),  MSEL™™ = %i(f/(m(bi)_m?
i=1

Assume |Y (D) (D)| < Roys and |Y] < M almost surely, so the squared loss £(u,y) = (u — y)? is
L,~Lipschitz in v with Ly = 2(Rou + My). Then, with direct application of Theorem [2| for any
0 € (0, 1), with probability at least 1 — 4,

MSEgainiE(i}(LM‘D)iy)z‘ < QLZLqusLTRin\/? + 3 w

A.3.3 TESTING PHASE.

Lemma 12 (Testing phase Dual-Attention Transformer Embedding Perturbation). In festing stage,
as the Y information is fully unobserved, we define the input positional encoding as

Df = (Ex(Xi(7) © My(7)) + P(7),0-1,,) € R T+,
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assume test sample size is N and D* = {bz* N |, comparing to the oracle embedding, with all the
batch size notation in error set as N,

|T(D*) = H(S)|, < |[TD*)-TD)|_ +||7D)-HS)|_
< sup L%—BLy|Yi| +e7 = sup LrLy(My +|e]) + 7,
i€[N] i€[N]

with Ly = ||Ey ||op, LT8 defined as Lipchitz constant in Lemma @ and e defined by the training
phase transformer embedding error showed in Theorem(l} So with probability at least 1 — 6,

|T(D*) — H(S)||, < LTLy (M + 0y\/2In(2N/5) + e7 = e~
Theorem 13 (Test MSE via Train Generalization and Expectation Bridge). We assume
* (Bounded inputs.) || D||oo < Rin almost surely. Setp := Bd (T +1).

* (Bounded outputs.) |Y| < M;y almost surely, and the predictor is uniformly bounded
[Y(E)(D)| < Rous almost surely.

* (Squared-loss Lipschitzness and boundedness.) For {(u,y) = (u — y)?, £ is L,~Lipschitz,
Li == 2(Row +My), 0 < L(u,y) < (Row +My)? as.

* (Independence for test concentration.) When a train set of size n is used, it is independent
of the test set (size N ).

Moreover, Lipschitz encoder and head are guaranteed in Lemma [§] the dual-attention encoder is
T = TB°Y with Lipschitz constant L1 = LEigin || - |- The pooling ¢ : R™>*T — RY and
regressor g : RY — R are Ly— and Ly—Lipschitz in || - ||, respectively. Define the predictors

YD) = g(o(IT(D)enr))s VD) = g(o(IT(D)]esnir) )

where the test input uses the zeroed response-token D} = (Ex(Xi(7) © My(7)) + P(7), 0- 1,,).
Suppose Y = F(X(-)) + € with € ~ N(0,0%) independent, and that the head approximates the
oracle on the oracle embedding range with error € 4:

sup |g(z) — f(3)| <e4, where §is the Holder interpolation of{s(Tj)}?:l.
llzllcc <R

Let the testing phase encoder perturbation from Lemmal[I2)be 7.

(i) (Test set prediction error) For each test point
V*(D}) = Yi| < LyLoer + &g + Ly A% +|eil,

Moreover, uniformly over test set of size N,

122’5\,\5/1‘—5@'\ < LyLyer + €4 + LAY + ay\/@.

(ii) (Train—test MSE relationship) For any § € (0,
training sample (D;)"_, and testing sample (D}

K2

1),ith probability at least 1 — § over the
) of size N,

E(V* (D7) - V)’ < ©

22 (YD) - vi)”

i=1

2 In(2/5
2Ly Ly Ly Ly Ry 2 + 3¢/ 20
n 2n

+ LeLy Lo LyLy (My + oy \/2]7).

n
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(iii) (Test empirical MSE) For any § € (0,1), with probability at least 1 — §, for a universal
constant C' > 0,

1 N 1 « ~ 2
Z (Y*(D") ;Z (YD) - Y5)
z:l i=1

+2Lg Ly Ly L Riny/ 2 + 3¢/ 250

2n

+ Ly Ly Ly LyLy (Mf + ay\/2/7r)

+ C (Rous + Mj)?y/ 2870

Proof. Define [Zx]; = T(D})...1.r and [Zx]; = T(S;)...1.7, we employ the following decom-
position

Y = Y| =|g(¢ ([2x]})) — F(Xi()) — &
l9(6 (12x17)) — 9(¢ (1Z2x]7))| + |9(o (12x]7)) — f(si)]

(I) embedding error (II) regressor
approximation bias

IN

+ [f(s) = F(Xi())] + el

(IIT) functional
discretization

=LgLyer- + €4 + Ly A% + g

Here f(s;) = F(8;) is the value of F' on the piecewise-interpolated, Holder-continuous extension
3; of the grid-values s; (Tj), as the remark showed in Lemma we have the bound of (III)

| F(X5(-) = f(s0)| = | F(Xa())) = F(8:)| < Lyl Xi —Sille < Ly A%

Thus f(s;) approximates the true functional F (X, (-)) with a discretization error of order A%*. More-
over, for (i) as shown in Lemma @ under hlgh probablhty, the testing embedding error from the
dual-attention Transformer is < Ly Ly|| [Zx]; — [Zx]; |looc < Lg Lye7+, We also have the ap-
proximation error of the regressor layer sup ., <p [9(2) — f(s:)| < g4, with z = ¢ ([Zx];) then
with Gaussian maxima bound on label error term, the probability at least 1 — §, we show uniform
prediction error bound,

< . o 2N
lglzzzvhf Y| LyLger- + €4 + Ly A" + oyy/2In =

Let u := ?*(D*) and v = ?(L)( D). If |u| < Rous, [v] < Roys and |Y| < My as., then

(u—Y)?2—(w—-Y)?=(u—-v)(ut+v—2Y)and |u+v—2Y]| < Ly, we get

E(u—-Y)? < E(v—-Y)? 4+ L;Elu—v|.
The difference term is controlled by Lipschitzness of g, ¢, T and linearity of Ey:
lu—v| < LyLy |T(D*) = T(D)|loe < LgLg L7 Ly Y],

hence Elu — v| < LyLyLrLy E|Y| < LyLsLyLy(My + oy+/2/m). For the first expecta-
tion, apply the high-probability generalization bound for the squared loss class F = {(D, Y) —

(YE(D) - Y)2}: by Lemma and Ledoux—Talagrand contraction. Combine the pieces and the
generalization terms, with probability at least 1 — 9,
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S (PO(D,) - v))?

i=1

E(Y*(D*) - Y)* <

S|

MSE:Lr"Lm

/2 [In(2/0
4+ 2L€LqL¢LTRin £ + 3 M
: n 2n

Rademacher generalization
+ LyLyLyLyLy (Mf n Uy\/2/7r) .

test perturbation

We split the argument into a training-side generalization step and an independent test-side concen-
tration step, then union bound the two events. By the train—test MSE relation (ii), for any d;, with

probability at least 1 — d;, over the draw of the training sample {(D;)}?_,, we have the bound for
]E(Y* (f)*) — Y) % in terms of MSE of train samples, Rademacher generalization and test perturba-
tion. Consider independently drawn test set {(D})} Y, define

2

N
Ziy = (Y*(D})-Y;)",  MSEY® = %ZZZ», p = E[Z] = E(V*(D") - V)~
=1

Since |}7*()| < Rout and Y| < M almost surely, we have 0 < Z; < (Rous + My)? =: B2. By
Hoeffding’s inequality, for any d., with probability at least 1 — Jy,

N
1 In(1/6c)
MSER™" = =) Z; < B\ ——=
SEN N; s Ht IN
S In(1
< E(Y*(D*)—Y)2 + C (Row + My)? %

where C' > 0 is a universal constant (e.g., C' = 1/+/2 for the displayed Hoeffding form). Combining
these two parts with &, = 0o = /2 gives

R % ., W)
M Etebt < = Y(L) D;)-Y; 2L,L,Ly L in\/7 \/7
SEN" < n ; ( (Di) ) +2LeLgLs LT R n " s 2n

In(2/6
+ LngL¢LTLy (Mf+0'y\/2/7T>+C(Rout+Mf)2 %,

with probability at least 1 — d. Absorbing harmless changes of logarithmic arguments into constants
(and writing In(4/0) and In(4N/§) uniformly) yields the stated corollary form:

MSER™ < MSE}™"

+2Lo Ly Ly L Riny/ 22 + 3,/ 250

2n

+ Lo Ly Ly Ly Ly (My + oy /2/7)

+C(Rout +Mf)2 \/ %

Remark: (Y -token perturbation) Lemma gives, wp. > 1 — 4, e« = LTLY(M r+

O

oy+/21In %) + 7. In the (ii) part we use the expectation bound, which does not involve uni-

formly bounding the entire N sample errors, so the E|Y'| < L Ly (M rt+oyvy/2/ 77). If, by design,
the response-token embedding is scaled so Ly — 0 (or the Y-token is masked from influencing X-
tokens), the bridge term vanishes asymptotically, and the test MSE inherits the train generalization
rate.
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Corollary 14 (Consistency of test MSE). Assume the conditions of Theorem Suppose, along a
sequence indexed by n (training size) and N (test size):

1. Training fit consistency: MSE™" = 15" (Y(1)(D;) - Y;)? 202,

2. Capacity term vanishes: LyLyL1Rin\/pn/n — 0 (or an analogous spectral complexity
term — 0).

3. Expectation bridge vanishes: Ly — 0 (e.g., response-token scaling/masking), hence
L@L9L¢L7Ly(Mf + oy +/ 2/71’) — 0.

4. Test sampling concentrates: N — 00, 50 (Rout + Mf)*+/In(1/8)/N — 0.

Then the population and empirical test MSE are consistent:

N
E(Y*(D*)-Y)* 5502,  MSEY! = Z (D) -Y)? s 02,

Proof. MSE Lower bound is E(Y* — Y)2 = E(Y* — F(X))2 4+ 02 > o2. The population MSE
upper bound is given by Theorem [T3[ii),

E(Y*—Y)? < MSEY™" 421y Ly Ly L7 Rinv/2pn /143y 22 4 [, Ly Ly Ly Ly (My+0y\/2/7).

By assumptlons 1-3, the RHS is 0% + op(1). Together with the lower bound, this gives E Yy —
Y)? — o in probability. Similarly, empirical test MSE upper bound is given by Theorem 13[iii).
By assumption 4,

MSER™ < E(V* = V)2 + C(Rou + My)?/ 242 — 52 4 05(1),

and since MSE*" > 0% in expectation, convergence in probability follows. [

LIMITATIONS

Our approach uses absolute sinusoidal positional encodings to inject temporal information into
sparse, irregular longitudinal sequences. While such encodings enable universal approximation on
a fixed maximum sequence length (Yun et al., [2019), they do not guarantee extrapolation beyond
the largest horizon T seen during training, nor to previously unseen temporal spacings; performance
may deteriorate under substantial extrapolation. Moreover, when prediction depends primarily on
relative timing (lags, local neighborhoods) rather than absolute timestamps, absolute encodings can
be suboptimal. Alternative time encoders from time—series forecasting (e.g., calendar/seasonal fea-
tures as in Informer and ETSformer (Zhou et al.,2021;Woo et al.,2022))) or continuous-time/relative
encodings may better capture temporal structure in some applications; a systematic comparison is
left to future work. The second limitation is computational. With sequence length 7" and batch
size B, time-point attention costs O(d T?) in compute and O(7?) in memory per subject, while
inter-sample attention (across subjects at a fixed time) costs O(d B?) in compute and O(B?) in
memory per time step. Consequently, dual-attention becomes expensive for very long sequences
or large batches. Practical deployments require tuning 7" and B (and/or using sparsified/windowed
attention) to balance accuracy and efficiency. Although dual-attention can increase computation,
Table 2] shows IDAT is relatively lightweight compared with existing Transformer-based methods.

FUTURE WORK

We conjecture that a Transformer architecture that exploits this intrinsic dimension via ba-
sis/smoothness constraints or spectral regularization, so one can achieve the same statistical perfor-
mance with substantially fewer parameters. We plan to design parameter-efficient attention blocks
constrained by functional bases or effective rank, and establish theoretical guarantees whose model
complexity depends on intrinsic dimension rather than ambient grid length.
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