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Appendix A.

Proposition 8 If X = x is directly sufficient for Y = y then X = x is strongly sufficient for
Y = y along some N , and if X = x is strongly sufficient for Y = y along some N then X = x
is weakly sufficient for Y = y.

Proof: Follows directly from the definitions.

Theorem 12 If a causal model M that agrees with h satisfies Independence then the following
statements are all equivalent:

• X = x is weakly sufficient for Y = y in M .

• X = x is strongly sufficient for Y = y in M .

• X = x is directly sufficient for Y = y in M .

Proof: The implications from bottom to top are a direct consequence of Proposition 8.
Assume X = x is weakly sufficient for Y = y in M . This means that for all u ∈ R(U) we

have that (M,u) |= [X ← x]Y = y. Let C = R(V − (X ∪ {Y })).
Given that M agrees with h, either the equation for Y is of the form Y = U for some U ∈ U ,

or Y only has parents in V \ {Y }. Since the former contradicts our assumption that in all contexts
(M,u) |= [X ← x]Y = y, it has to be the latter.

As a consequence, interventions on all endogenous variables make the particular context irrel-
evant, i.e., for all c ∈ R(C) and all u1,u2 ∈ R(U), we have that (M,u1) |= [X ← x,C ←
c]Y = y iff (M,u2) |= [X ← x,C ← c]Y = y.

Further, for each Vi ∈ V \ {Y } the equation is of the form Vi = Ui. Although technically one
could choose to define R(Vi) such that R(Vi) 6⊆ R(Ui), this comes down to defining a variable
with values that it cannot obtain, which serves no purpose. Therefore we can assume that for each
c ∈ C there exists a context u′ such that (M,u′) |= C = c. Given that no members of X are
parents of members of C, it also holds that (M,u′) |= [X ← x]C = c. Since X = x is weakly
sufficient for Y = y, we also have that (M,u′) |= [X ← x]C = c∧ Y = y, from which it follows
that (M,u′) |= [X ← x,C ← c]Y = y. Taken together with the previous observation that the
particular context is irrelevant, we get that for all c ∈ R(V − (X ∪Y )) and all u ∈ R(U) we have
that (M,u) |= [X ← x,C ← c]Y = y, which is what we had to prove.

Theorem 16 Given a causal setting (M,u), the following two statements are equivalent:
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• there exist W1 and w1 ∈ R(W1) so that Y = y counterfactually depends on X = x rather
than X = x′ relative to W1 = w1 in (M,u).

• there exist W2, w2 ∈ R(W2), and N so that (X = (x,x′),W2 = w2,N) is a good
counterfactual explanation of Y = y.

Proof:

Observation 1 Recall from Definition 3 that exogenous variables only appear in equations of the
form V = U . Say R ⊆ V are all variables which have such an equation, and call these the root
variables. It is clear that if we intervene on all of the root variables, they take over the role of the
exogenous variables. Concretely, given strong recursivity, for any setting r ∈ R(R) there exists a
unique setting v ∈ R(V) so that for all contexts u ∈ R(U) we have that (M,u) |= [R← r]V = v.

Assume that Y = y counterfactually depends on X = x rather than X = x′ relative to
W1 = w1 in (M,u). This means that (M,u) |= X = x ∧W1 = w1 ∧ Y = y, and (M,u) |=
[X ← x′,W1 ← w1]Y 6= y.

Let S = R \ (W1 ∪X), and let s ∈ R(S) be the unique values so that (M,u) |= S = s.
As R ⊆ (S ∪W1 ∪X), we have that (X = x,S = s,W1 = w1) is strongly sufficient for

Y = y along N = V \ (X ∪W1 ∪ S), and thus ((X = x,S = s,W1 = w1),N) is an actual
sufficient explanation of Y = y.

Furthermore, changing X from x to x′ obviously has no effect on any of the other values
in R. Therefore (M,u) |= [X ← x′,W1 ← w1]S = s, and thus we get that (M,u) |=
[X ← x′,W1 ← w1,S ← s]Y = y′ for some y′ 6= y. As before, we can conclude that
(X = x′,S = s,W1 = w1) is strongly sufficient for Y = y′ along N , and thus ((X = x′,S =
s,W1 = w1),N) is a sufficient explanation of Y = y′.

Combining the two previous paragraphs, we get that (X = (x,x′), (S = s,W1 = w1)),N)
is a counterfactual explanation of Y = y. Let (X = (x,x′),W2 = w2),N2) be a dominating
counterfactual explanation that is not strictly dominated by any other explanation that contains X =
(x,x′). (It is easy to see that such an explanation must exist: one can simply keep removing
elements from W1, S, and N until no further element can be removed while still remaining a
counterfactual explanation of Y = y.)

Now assume that there exist W2, w2 ∈ R(W2), and N so that ((X = x,W2 = w2),N) is
an actual sufficient explanation of Y = y and ((X = x′,W2 = w2),N) is a sufficient explanation
of some Y = y′ with y′ 6= y. Since the first explanation is actual, it follows immediately that
(M,u) |= X = x ∧W2 = w2 ∧ Y = y. Combining the second explanation with Proposition 8
we get that (M,u) |= [X ← x′,W2 = w2]Y = y′.

Note that we did not require X to be minimal in either direction, and thus the conditions as
stated without minimality of X are equivalent. Therefore the conditions that include the minimality
of X are also equivalent, which is what we had to prove.

Proposition 18 If ((X = x,W = w),N) is a sufficient explanation of Y = y and there exists a
dominating explanation ((X = x′,A = a),B) for some values x′ and a ⊆ w, then X = x′ can
replace X = x.
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Proof: Assume ((X = x,W = w),N) is a sufficient explanation of Y = y and ((X = x′,A =
a),B) is a dominating explanation of Y = y, with a ⊆ w. We show that ((X = x′,W = w),B)
is a sufficient explanation of Y = y, from which the result follows.

Let C = V \ (X ∪A∪B). From the definition of sufficient explanations, we know that for all
u ∈ R(U) and all c ∈ R(C), we have that (M,u) |= [X ← x′,A← a,C ← c]B = b for some
b ∈ R(B) that includes y.

Let D = V \ (X ∪W ∪B), F = W \A, and let f be the restriction of w to F . Note that
C = F ∪D. From the previous paragraph it follows that for all u ∈ R(U) and all d ∈ R(D,
we have that (M,u) |= [X ← x′,A ← a,F ← f ,D ← d]B = b, and thus (M,u) |= [X ←
x′,W ← w,D ← d]B = b, which is what had to be shown.

Theorem 20 If X1 = x1 rather than X1 = x1
′ is a counterfactual explanation of Y = y in

(M,u) (relative to some (W = w,N)) then for some X2 ⊆X1, X2 = x2 rather than X2 = x2
′

is an actual cause of Y = y in (M,u) (where x2 and x2
′ are the relevant restrictions to X2).

Proof: Assume X1 = x1 rather than X1 = x1
′ is a counterfactual explanation of Y = y in

(M,u) relative to (W = w,N). This means that ((X1 = x1,W = w),N) is an actual sufficient
explanation of Y = y and ((X1 = x1

′,W = w),N) is a sufficient explanation of Y = y′ with
y′ 6= y.

Let (T = t,S) be a good sufficient explanation of Y = y, i.e., an actual sufficient explanation
of Y = y that dominates ((X1 = x1,W = w),N) and cannot itself be dominated by another
actual sufficient explanation of Y = y. (It is easy to see that such an explanation must exist: one
can simply keep removing elements from ((X1 = x1,W = w),N) until no further element can
be removed while still remaining a sufficient explanation of Y = y.)

Let X2 = X1 ∩ T . We now show that X2 6= ∅ by a reductio.
Assume X2 = ∅. This means that T ⊆W . Also, S ⊆ N . Let s ∈ R(S) and n ∈ R(N) be

the actual values of S and N in (M,u).
Let C = V \ (X1∪W ∪N). Given that ((X1 = x1

′,W = w),N) is a sufficient explanation
of Y = y′, we have that for all c ∈ R(C), (M,u) |= [X1 ← x1

′,W ← w,C ← c]Y = y′.
Let D = V \ (T ∪S). Given that (T = t,S) is a sufficient explanation of Y = y, we have that

for all d ∈ R(D), (M,u) |= [T ← t,D ← d]Y = y.
By our assumption, X1 ⊆ (W \ T ). Thus D = X1 ∪ C ∪ (W \ (T ∪X1)) ∪ (N \ S).

Therefore from the previous paragraph we get that for all c ∈ R(C), (M,u) |= [X1 ← x1
′,W ←

w,C ← c]Y = y. This contradicts the paragraph before the previous, and therefore X2 6= ∅.
Let W2 = T \X2. Then we can conclude that (X2 = x2,W2 = w2,S) is a good sufficient

explanation of Y = y, where x2 is the restriction of x1 to X2, and w2 is the restriction of W to
W2.

Remains to be shown that x2
′ cannot replace x2 in this explanation, where x2

′ is the restric-
tion of x1

′ to X2. The former just means that ((X2 = x2
′,W2 = w2),S2) is not a sufficient

explanation of Y = y for any S2 ⊆ S.
Again we proceed by a reductio: assume that ((X2 = x2

′,W2 = w2),S2) is a sufficient
explanation of Y = y. Let F = V \ (X2 ∪W2 ∪ S2). We have that for all f ∈ R(F ), (M,u) |=
[X2 ← x2

′,W2 ← w2,F ← f ]Y = y. In particular, we have that (M,u) |= [X1 ← x1
′,W ←

w]Y = y.
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Recall that ((X1 = x1
′,W = w),N) is a sufficient explanation of Y = y′ with y′ 6= y. Using

Proposition 8, we get that (M,u) |= [X1 ← x1
′,W ← w]Y = y′. This contradicts the result in

the previous paragraph, which concludes the proof.

Proposition 22 If X = x is a direct cause of Y = y in (M,u) then there exist values x′ such that
X = x rather than X = x′ is an actual cause of Y = y.

Proof: Assume X = x is a direct cause of Y = y in (M,u), i.e., it is part of a direct good
sufficient explanation (X = x,W = w) of Y = y in (M,u). This means that all that remains
to be shown, is that there exist values x′ ∈ R(X) such that (X = x′,W = w) is not a direct
sufficient explanation of Y = y.

We know that (X = x,W = w) is directly sufficient for Y = y, and this does not hold if we
remove any subset from either X or W . Let C = V \ (X ∪W ∪ {Y }). Then we have that for all
c ∈ R(C), (M,u) |= [X ← x,W ← w,C ← c]Y = y. From the minimality of X , it follows
that there exists a c ∈ R(C) and x′ ∈ R(X) so that (M,u) |= [X ← x′,W ← w,C ← c]Y 6=
y. Therefore (X = x′,W = w) is not a direct sufficient explanation of Y = y.

Theorem 23 If a causal model M satisfies Independence then for any W1,W2,N1,N2, it holds
that there exist values w1 ∈ R(W1) so that (X = (x,x′),W1 = w1,N1) is a good counterfac-
tual explanation of Y = y iff there exist values w2 ∈ R(W2) so that(X = (x,x′),W2 = w2,N2)
is a good counterfactual explanation of Y = y.

Proof: Given the symmetry, it suffices to prove the implication in one direction. We invoke Theorem
16 so that we can use counterfactual dependence instead of good counterfactual explanations.

Assume Y = y counterfactually depends on X = x rather than X = x′ relative to W1 = w1.
This means that X is a minimal set such that (M,u) |= X = x ∧W1 = w1 ∧ Y = y and
(M,u) |= [X ← x′,W1 ← w1]Y 6= y. Take any set W2 ⊆ (V \ (X ∪ {Y })), and let w2 be
the values of W2 in (M,u). First, note that we have (M,u) |= X = x ∧W2 = w2 ∧ Y = y.
Second, since none of the members of X are parents of any of the members of W2, we also have
that (M,u) |= [X ← x′]W2 = w2 ∧ Y = y′. Thus we also have that (M,u) |= [X ←
x′,W2 ← w2]Y = y′. As we did not use the fact that X is a minimal set, and thus both statements
are equivalent when ignoring minimality on both sides, they are also equivalent when including
minimality on both sides, which is what we have to prove.

Theorem 24 If a causal model M satisfies Independence then the following statements are all
equivalent:

• X = x is a direct cause of Y = y in (M,u).

• there exist values x′ so that X = x rather than X = x′ is an actual cause of Y = y in
(M,u).

• X = x is part of a good sufficient explanation of Y = y in (M,u).
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Proof: The implication from the first statement to the second is a direct consequence of Proposition
22.

The implication from the second statement to the third follows from the definition of actual
cause.

The implication from the third statement to the first follows from Theorem 12, which shows that
under Independence we may replace sufficiency with direct sufficiency, and thus the result follows
from the definition of direct cause.
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