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Appendices

A Implementation Details

Code Release All code for implementations are provided in the supplemental material along with
instructions for how to run experiments. The only experiment that cannot be run are the “real” cases
for tokamak control.
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Figure 5: General Policy and Q Function Architectures. This architecture is heavily inspired by Ni et al.
[44]. The gray box shows the history encoder modules, and this is the only thing that changes between baseline
methods in the tracking problems. Note that there are two encoders: one for the policy function and one for the
@ value function. The purple boxes show the input encoders, and hyperaparmeters for these can be found in
Table[f] We found the shortcut encoders to be essential to good performance. The architecture when using GRU
is nearly identical; however, there is no “Transition Encoder” since Ni et al. [44] encodes (0;, a;—1,7i—1) for
each time step instead.

Architecture We use the same general architecture for each of the RL methods in this paper
(see Figure[5). Each input to the history encoders, policy functions, and Q-value functions have
corresponding encoders. This setup closely follows what was done in Ni et al. [44]. The encoders are
simply linear projections; however, in the case of our GRU history encoder we do linear projections
followed by a ReLU activation (as done in Ni et al. [44]). Although hypothetically the policy only
needs to take in history encoding, z;, since the current observation, we found it essential for the
current observation to be passed in independently and have its own encoder.

A.1 GPIDE Implementation Details

In addition to what is mentioned in Section[3] we found that there were several choices that helped
with training. First, there may be some scaling issues because o; — 0,1 may be small or the result of
summation type heads may result in large encodings. To account for this, we use batch normalization
layers [30] before each input encoding and after each ¢".

There are very few nonlinear components of GPIDE. The only one that remains constant across all
experiments is that a tanh activation is used for the final output of the encoder. For tracking tasks, the
decoder gy has 1 hidden layer with 64 units and uses a ReLLU activation function. For PyBullet tasks,
gp 1s a linear function.

A.2 Recurrent and Transformer Baseline Details

Recurrent Encoder. For the recurrent encoder, we tried to match as many details as Ni et al. [44] as
possible. We double checked our implementation against theirs and confirmed that it achieves similar
performance.
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Transformer Encoder. We follow the GPT2 architecture [52] for inspiration, and particularly the
code provided in Karpathy [33]]. In particular, we use a number of multi-headed self-attention blocks
in sequence with residual connections. We use layer normalization [6] before multi-headed attention
and out projections; however, we do not use dropout. The out projection for each multi-headed
self-attention block has one hidden layer with four times the number of units as the embedding
dimension. Although Melo [40] suggests using T-Fixup weight initialization, we found that more
reliably high performance was achieved with the weight initialization of Radford et al. [52]). Lastly,
we used the same representation for the history as GPIDE, i.e. (0¢—1,a;—1,7¢—1,0: — 0¢—1), since it
results in better performance.

A.3 PID Baseline

To tune our PID baseline, we used Bayesian Optimization over the three (for SISO) or six (for
MIMO) dimensional space. Specifically we use the library provided by Nogueira [45]. The output
of the blackbox optimization is the average over 100 different settings (independent from the 100
settings used for testing). We allow the optimization procedure to collect as many samples as the RL
methods. The final performance reported uses the PID controller with the best gains found during the
optimization procedure. The bounds for each of the tracking tasks were eyeballed to be appropriate,
which potentially preferably skews performance.

B Hyperaparameters

Because of resource restrictions, we were unable to do full hyperparameter tuning for each benchmark
presented in this paper. Instead, we focused on ensuring that all history encoding methods were
roughly comparable, e.g. dimension of encoding, number of parameters, etc. Tables [5| show
selected hyperparameters, and the following subsections describe how an important subset of these
hyperparameters were picked. Any tuning that was done was over three seeds using 100 fixed settings
(different from the 100 settings used for testing).

Task Type | Learning Rate Batch Size Discount Factor  Policy Network Q Network Path Length Encoding
Tracking 3e 32 (256 for PIDE) 0.95 [24] [256, 256] 100
PyBullet 3e 32 (256 for PIDE) 0.99 [256, 256] [256, 256] 64

Table 5: SAC Hyperparameters. The “Path Length Encoding” is the amount of history each encoder gets to
observe besides PIDE which, because of the nature of it, uses the entire episode.

| Observation Action Reward Transition Policy Shortcut @ Shortcut  History Encoding

GPIDE (Tracking) 8 N/A N/A 8 8 64 64
GRU (Tracking) 8 N/A N/A N/A 8 64 64
Transformer (Tracking) 16 N/A N/A 16 8 64 64
GPIDE (PyBullet) 32 16 16 64 8 64 128
Transformer (PyBullet) 48 16 16 48 8 64 128

Table 6: Dimension for the Input Encoders and Final History Encoding. The input encoders correspond to
the output dimensions of the purple boxes in Figure[5] By “History Encoding” size we mean the dimension of z;.

Task Type | D gy Hidden Size

Tracking | 16 [64]
PyBullet | 32 N

Table 7: GPIDE Specific Hyperparamters. Recall that D corresponds to the output dimension of fp. Empty
brackets for the hidden size means that gy is a linear function.

B.1 Hyperparamters for Tracking Tasks

For tracking tasks, we tried using a history encoding size of 32 and 64 for GRU, and we found that
performance was better with 64. This is surprising since PIDE can perform well in these environments
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Task Type | Number of Layers Number of Heads Embedding Size per Head

Tracking 2 4 8
PyBullet 4 8 16

Table 8: Transformer Specific Hyperparamters

Encoder | SISO Tracking MIMO Tracking (2D) PyBullet
Transformer 25,542 25,644 793,868-795,026
GRU 14,240 14,264 74,816-75,248
GPIDE 13,228 13,288 75,296-76,486
GPIDE-ES 12,204 12,264 50,720-51,910
GPIDE-ESS 12,204 12,264 50,720-51,910
GPIDE-Attention 15,276 15,336 99,872-101,062

Table 9: Number of Parameters in History Encoder Modules. The number of parameters corresponds to
the gray boxes in Figure[5} The difference in SISO vs MIMO and the PyBullet tasks is due to the different
observation and action space dimensionalities.

even though its history encoding is much smaller (3 or 6 dimensional). To make it a fair comparison,
we set the history encoding dimension for GPIDE and transformer to be 64 as well. We use one
layer for GRU. For the transformer-specific hyperparameters we choose half of what appears in the
PyBullet tasks.

B.2 Hyperparameters for PyBullet Task

For the PyBullet tasks, we simply tried to emulate most of the hyperparameters found in Ni et al.
[44]. For the transformer, we choose to use similar hyperparameters to those found in Melo [40]].
However, we found that, unlike the tracking tasks, positional encoding hurts performance. As such,
we do not include it for PyBullet experiments.

B.3 Hyperparameters for Ablations

For the ablations of GPIDE, we use o = 0.01, 0.1, 0.25, 0.5, 0.9, 1.0 for the smoothing parameters
when only exponential smoothing is used. When using exponential smoothing and summation, the
a = 0.01 head is replaced with a summation head. The attention version of GPIDE replaces all six
of these heads with attention.

C Environment Descriptions

C.1 Mass Spring Damper

For both MSD and DMSD, the observations include the current mass position(s), the target reference
position(s), and the last action played. Each episode lasts for 100 time steps. For all RL methods,
the action is a difference in force applied to the mass, but for the PID the action is simply the force
to be applied to the mass at that time. The force is bounded between -10 and 10 N for MSD and
-30 and 30 N for DMSD. Each episode, system parameters are drawn from a uniform distribution
with bounds shown in Table 10| (they are the same for both MSD and DMSD). Targets are drawn to
uniformly at random to be —1.5 to 1.5 m offset from the masses’ resting positions.

C.2 Navigation Environment

Like the MSD and DMSD environments, the navigation experiment lasts 100 time steps each episode.
Additionally, the observation includes position signal, target locations, and the last action. For all
methods we set the action to be the change in force, and the total amount of force is bounded between
-10 and 10 N. The penalty on the reward is equal to 0.01 times the magnitude of the change in force.
In addition, the maximum magnitude of the velocity for the agent is bounded by 1.0m/s. The agent
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Figure 6: Diagram of the Mass Spring Damper Environments. The diagram on the left the Mass Spring
Damper (MSD) environment, and the diagram on the right shows the Double Mass Spring Damper (DMSD)
environment. In the diagram, we have labelled the system parameters and the parts of the observation. The
dotted line shows where the center of the mass is located with no force applied, and the current position of the
mass is measured with respect to this point.

System Parameter | Fixed Small Large

Damping Constant | /(4.0,4.0) U(3.5,5.5) 4(2.0,10.0)
Spring Constant U(2.0,2.0) U(1.75,3.0) U(0.5,6.0)
Mass 4(20.0,20.0) U(17.5,40.0) 2(10.0,100.0)

Table 10: MSD and DMSD System Parameter Distributions. Each episode system parameters are uniformly
at random drawn from these bounds.

always starts at the location (0, 0), and the target is picked uniformly at random to be within a box of
length 10 centered around the origin.

Every episode, the mass, kinetic friction coefficient, and static friction coefficient is sampled, The
friction is sampled by first sampling the total amount of friction in the system, and then sampling
what proportion of the total friction is static friction. All distributions for the system parameters are
uniform, and we show the bounds in Table [T1]

C.3 Tokamak Control Environment

Simulator Our simulator version of the tokamak control is inspired by equations used by Boyer
et al. [8], Scoville et al. [57]. In particular, we use the following relations for stored energy, I, and
rotation, vyoq:

. E

E=pP-—
TE

@rot = CrotT - @

m

where P is the total power, T is the total torque, 7z is the energy confinement time, 7, is the
momentum confinement time, and C\ is a quantity relying on the ion density and major radius of
the plasma. We treat 7,,, and C;, is constants with values of 0.1 and 80.0 respectively.

System Parameter | No Friction Friction
Total Friction U4(0.0,0.0)  14(0.05,0.25)
Static Friction (Proportion) | 2£(0.0,0.0)  #£(0.25,0.75)
Mass U(15.0,25.0)  U(5.0,35.0)

Table 11: Navigation System Parameter Distributions. Each episode system parameters are uniformly at
random drawn from these bounds. The static friction parameter drawn is the proportion of the total friction that
is static friction.
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Minor Radius (m) Plasma Current (MA) Toroidal Magnetic Field (T)

N(0.589,0.02) N (le6, 1eb) N(2.75,0.1)
Table 12: Tokamak Control Simulator Distributions.

» »

Total Torque (Nm)
N

2000 4000 6000 8000 10000 12000 14000
Total Power (kW)

Figure 7: Power and Torque Bounds. The region outlined in blue shows the possible power-torque
configurations. The dots show possible requests, and the corresponding red X marks show the actual achieved
power-torque setting.

We base the energy confinement time off of the ITERH-98 scaling [62]]. This uses many measurements
of the plasma, but we focus on a subset of these and treat the rest as constants. In particular,

TR = CEIO'95B0'15P70'69

where Cp is a constant value we set to be 200, I is the plasma current, and B is the toroidal magnetic
field. To relate the stored energy to S we use the rough approximation

w-o()s

where Cj is a constant we set to be 5, and a is the minor radius of the plasma. For a, I, and B, we
sample these from the distribution described in Table[I2]for each episode. Lastly, we add momentum
to the stored energy. That is, the stored energy derivative at time ¢, E, is

) E )
E, =05 (Pt - t) 1+ 055, ,
TE

The actions for all control methods is the amount of change for the power and torque. Because the
total amount of power and torque injected rely on the beams, they are not totally disentangled. In
Figure[7] we show the bounds for the action space. Furthermore, we bound the amount that power and
torque can be changed by roughly 40M W /s and 35N m /s, respectively. Each step is 0.025 seconds.

Each episode lasts for 100 increments of 0.025 seconds. The observations are the current S and
rotation values, their reference values, and the current power and torque settings. We make the initial
B and rotation relatively small in order to simulate the plasma ramping up. We let the Sy and
rotation targets be distributed as 2/(1.75,2.75) and (25.0, 50.0) rad/s, respectively.
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“Real” For the real versions of the tokamak control experiments, most of the previous (such as
action bounds and target distributions) stays the same. The transition function is modeled as a
recurrent neural network trained on 7,536 different runs of the DIII-D device. The network uses a
GRU, has four hidden layers with 512 units each, and outputs the mean and log variance of a normal
distribution describing how 3y and rotation will change. In addition to power and torque, it takes in
measurements for the plasma current, the toroidal magnetic field, nlrms (a measurement related to
the plasma’ stability), and 13 other actuator requests for gas control and plasma shaping. In addition
to sampling from the normal distribution outputted by the network, we train an ensemble of ten
networks, and an ensemble member is selected every episode. We use five of these models during
training and the other five during testing.

Along with an ensemble member being sampled each episode, we also sample a historical run from
the dataset, which determines the starting conditions of the plasma and how the other inputs to the
neural network which are not modelled evolve over time. Recall that 100 fixed settings are used to
evaluate the policy every epoch of training. In this case, a setting consists of targets, an ensemble
member, and a historical run.

D Further Results

In this Appendix, we give further evaluation of the evaluation procedure. In addition, we give full
tables of results for normalized and unnormalized scores for all methods. We also show performance
traces. Note that the percentage changes in Table 4] do not necessarily reflect tables in this section
since they report all combinations of environment variants.

D.1 Evaluation Procedure

As stated in the main paper, for tracking tasks, we fix 100 settings (each comprised of targets, start
state, and system parameters) that are used to evaluate the policy for every epoch of training (i.e. for
every epoch the evaluation returns is the average over all 100 settings returns). We use a separate 100
settings when tuning. For the final returns, we average over the last 10% of recorded evaluations.

For the PyBullet tasks, we use ten different rollouts for evaluation following Ni et al. [44]]. We also
average over the last 20% of recorded evaluations like they do.

Normalized Table Scores. We now give an in-depth explanation of how the scores in the table are
computed. Let 7(;, ;) be the policy trained with baseline method b (e.g. with GPIDE, transformer, or
GRU encoder) on environment variant i (e.g. fixed, small, or large). Let J;((; ;)) be the evaluation
of policy 7y, ;), i.e. the average returns over all seeds and episodes. The normalized score for policy
T(b,;) ON variant j is then

Ji(mw,0)) — Ig}inJj(vr(b,vi,))

maxJ; () = mind; (i)

Note that we only min and max over baseline methods presented in the table.

For PyBullet tasks, we do the same procedure but normalize by the oracle policy’s performance (sees
both position and velocity) and the Markovian policy’s performance (sees only position or velocity
but has no history encoder). For both of these policies, we use what was reported from Ni et al. [44].
Note the our normalized scores differ slightly from those used in Ni et al. [44]] since they normalize
based on the best and worst returns of any policy; however, we believe our scheme gives a more
intuitive picture of how any given policy is performing.
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709

D.2 MSD and DMSD Results

| PID Controller  GRU Transformer | PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn
Fixed / Fixed | —6.14+£0.02 —5.76+0.02  —5.75+0.01 —5.69 £ 0.00 -576+001 —5754+0.01 —573+£0.01 —5.8340.02
Fixed/Small | —=7.514+0.04 —7.56+0.03 —7.204+0.01 | —7.37+0.01  —7.33+0.04 —7.37+0.01 —7.324+0.03 —7.39+0.03
Fixed/Large | —11.3940.09 —12.52+0.11 —10.87 +0.05 | —11.44+0.03 —11.61+0.07 —11.48+0.05 —12.50+0.19 —11.52+0.10
Small / Fixed | —6.26 +0.06 —5.80 4 0.00 —5.92 + 0.01 -5.95+0.01  —593+£0.05 —589+0.01 —592+0.02 —5.91+0.02
Small/ Small | —7.49+0.03 —7.0240.01 —7.15+0.02 —71440.01 7124004 -7.0940.02 -7.15+0.02 —7.12+0.02
Small / Large | —11.18£0.09 —9.8240.07 -10.01+0.03 | —10.88+0.04 —10.43+0.14 -1042+0.13 —10.43+0.12 —10.07+0.14
Large / Fixed | —6.78£0.16  —6.08 £ 0.01 —6.28 +0.03 —6.27+£0.01  —627+003 —6.23+0.04 —625+0.04 —6.28+0.05
Large/Small | —7.78 £0.12  —7.25 £0.02 —7.44+0.05 —74340.02  -74540.03 7444005 7444004 —7.48+0.06
Large /Large | —11.1240.05 —9.4440.02 —9.67+0.05 ~10.37+£0.02  —9.66+£0.04 —9.684+0.05 —9.70+£0.05 —9.69+0.06
Average | -8.41 -7.92 -7.82 | -8.06 -7.95 -7.93 -8.05 -7.92

Table 13: Unnormalized MSD Results.

\ PID Controller GRU Transformer \ PIDE GPIDE GPIDE-ES GPIDE-ESS  GPIDE-Attn
Fixed / Fixed | 58.09 +1.66  93.18 +1.46 94.04 +£0.83 | 100.00 £0.27 93.18+1.20 93.77+1.26 96.204+1.22 87.16+1.78
Fixed / Small | 36.414+5.36  29.74 + 3.82 64.96 £ 1.38 | 54.90 £ 0.73 59.54 £5.78 54.35+1.35 60.89 +£3.48 51.84+3.38
Fixed / Large | 36.58 +£2.86  0.00 + 3.42 53.70 & 1.71 | 34.92 4 0.93 20.55+2.32 33.62+1.71 0.60+6.25  32.51 +3.29
Small / Fixed | 46.87 =588  89.05 +£0.32  78.21+1.31 | 75.8140.79 T7.27+4.66 81.41+120 78.82+1.44 79.64+1.80
Small / Small | 38.25+3.44  100.00 £ 0.98 83.49+3.07 | 84.88+0.81 87.78 £5.31 90.66+2.02 83.97+2.40 87.57 +2.65
Small / Large | 43.524+2.82  87.63 £2.28  81.4440.82 | 53.21+1.31 68.03 +4.43 68.09+4.10 67.784+3.84 79.57+4.71
Large / Fixed | 0.00+15.12  63.36 = 1.17  45.01 +3.18 | 46.37 +1.29 46.68 +3.06 49.86+3.84 48.52+3.69 45.03 & 4.72
Large /Small | 0.00 £15.75  70.44 4 3.30 45454 6.93 | 45.73 +2.47 43.66 +4.47 44.71+6.45 4521 +5.42 39.64 + 7.82
Large /Large | 45.60 +1.71  100.00 £ 0.61 92.60 + 1.49 | 69.88 + 0.69 93.03+£1.27 92.36+1.62 91.67+1.68 91.95+ 1.80
Average | 33.92 70.38 70.99 | 62.86 66.53 67.65 63.74 66.10

Table 14: Normalized MSD Results.
---- PID —— GPIDE — GRU —— Transformer PIDE
Fixed Small Large

0.25 0.50 0.75
Environment Steps1e6

0.25 0.50 0.75
Environment Steps1e6

1.00 1.00

0.25 0.50 0.75
Environment Steps1e6

1.00

Figure 8: MSD Performance Curves. Each row corresponds to a training environment, and each column
corresponds to a testing environment.
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Figure 9: MSD Performance Curve for Ablations. Each row corresponds to a training environment, and each
column corresponds to a testing environment.

‘ PID Controller GRU Transformer ‘ PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed / Fixed | —15.33 +£0.14 —16.204+0.31 —15.41+0.13 | —12.64 +0.04 —13.49+0.22 -13.92+0.09 —13.35=+0.05 —16.77 £ 0.13
Fixed /Small | —21.294+0.29 —25.21+0.32 —21.37+0.16 | —18.58 £0.05 —19.77+0.24 —21.31+0.07 —20.09+0.08 —23.294+0.15
Fixed / Large | —27.59+£0.44 —37.21+0.35 —28.16+0.17 | —25.29+0.18 —27.54+0.33 —31.14+0.13 —28.14+0.11 —31.84+0.71
Small / Fixed | —18.15+0.91 —17.754+0.42 —15.86+0.11 | —13.43 +0.09 —14.37+0.17 —-14.35+0.11 —13.57+0.10 —16.85+0.11
Small / Small | —21.78 £0.14 —22.49+0.34 —20.56£0.16 | —18.09 £ 0.04 —18.67+0.17 -18.93+0.10 —17.97+0.07 —21.77+0.10
Small / Large | —26.57£0.22 —31.27+0.36 —26.04+0.24 | —23.82+0.13 —23.65+0.20 —23.66+0.10 —22.724+0.08 —28.26=+0.12
Large /Fixed | —21.96 £0.62 —22.414+0.32 —18.37+0.30 | —14.83 +£0.12 —15.75+0.14 —16.79+0.04 —15.23+0.12 —18.89 £ 0.28
Large / Small | —22.30 £0.44 —26.63+0.39 —22.00+0.24 | —19.46 +0.08 —19.99+0.15 —21.14+0.07 —19.71+0.12 —23.19 £0.32
Large /Large | —25.29 £0.30 —29.34+£0.30 —24.43+0.21 | —24.06 £0.03 —22.08+0.14 —23.06+£0.07 —21.81+0.09 —25.32+0.19
Average | 2225 -25.39 -21.36 -18.91 -19.48 -20.48 -19.18 -22.91

Table 15: Unnormalized DMSD Results.

‘ PID Controller ~GRU Transformer ‘ PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Fixed/ Fixed | 72.4541.44 63.59+3.16 71.62+1.30 | 100.00 +0.39 91.35+2.28 86.93+0.89 92.74+0.55 57.75+1.31
Fixed / Small | 61.66 + 3.35 16.43 +£3.75 60.71 £1.80 | 93.01 & 0.60 79.26 £2.81 61.50+0.81 75.5140.97 38.55+ 1.77
Fixed / Large | 62.47 +2.86 0.00+224 5878+1.11 | 77.38 £ 1.14  62.76 +£2.13 39.414+0.83 58.92+0.73 34.84 & 4.61
Small / Fixed | 43.59 4= 9.27 4776 £4.25 67.02+1.10 | 91.92 + 0.90 82.324+1.72 82524+ 1.14 90.46 £0.99 56.98 & 1.16
Small / Small | 56.04 & 1.57 47.824+3.96 70.07+1.88 | 98.69 4 0.48 91.94+2.00 88.95+1.18 100.00+ 0.78 56.17+1.11
Small / Large | 69.11 & 1.42 38.57+2.33 72.514+1.58 | 86.96 +0.82 88.08+1.31 87.99+0.64 94.09 +0.51 58.08 & 0.80
Large / Fixed | 4.64 4 6.34 0.00£3.30 41.37+3.09 | 77.62+£1.24 68.16+1.45 57.60+0.36 73.51+1.24 36.06 & 2.85
Large / Small | 50.02 4 5.07 0.00£4.56  53.45+2.80 | 82.77 £ 0.98 76.66 +1.75 63.36:0.85 79.93 £1.43 39.74 % 3.65
Large / Large | 77.38 +1.93 51.09£1.98 82.9641.38 | 85.37+0.18 98.23+0.90 91.86+0.44 100.00+0.56 77.22+1.21

Average | 55.26 2947 64.28 | 88.19 82.08 73.35 85.02 50.60
Table 16: Normalized DMSD Results.
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Figure 10: DMSD Performance Curves. Each row corresponds to a training environment, and each column
corresponds to a testing environment.
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Figure 11: DMSD Performance Curve for Ablations. Each row corresponds to a training environment, and
each column corresponds to a testing environment.
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D.3 Navigation Results

\ PID Controller GRU Transformer \ PIDE GPIDE GPIDE-ES GPIDE-ESS  GPIDE-Attn
Sim/Sim | 28.94 + 3.63 96.76 £0.15  99.57 +0.12 | 98.33 £+ 0.06 100.00 £ 0.07 99.64 £0.06 99.66 +0.06 99.81 4 0.09
Sim /Real | 43.12 +2.08 0.00+3.94  50.55+0.78 | 68.34 £ 0.57 62.16 + 0.89 63.17+0.57 59.21+1.15 52.52£0.50
Real / Sim | 0.00 £ 4.09 57.49+1.17 68.03+0.40 | 59.54 +0.85 74.88 1+ 0.61 72.84+0.64 T74.75+£0.68 71.13£0.72
Real /Real | 67.28 £2.05 97.29+0.20 99.20+0.14 | 95.94 +0.04 100.00 £ 0.21  99.19+0.09 99.11+0.21 99.67 +0.17
Average | 34.83 62.89 79.34 | 80.54 84.26 83.71 83.18 80.78

Table 17: Normalized Navigation Results. Note that these results are after 1 million collected samples.

PID Controller GRU Transformer PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn
Sim / Sim —17.23£0.18 —-13.82+0.01 -13.68+0.01 | —13.74+0.00 —13.65 £ 0.00 —13.67+£0.00 —13.67£0.00 —13.66 % 0.00
Sim/Real | —23.87+£0.29 —29.85+0.55 —22.84+0.11 | —20.37 £0.08 —21.23+0.12 —21.09£0.08 —-21.64+£0.16 —22.57+0.07
Real /Sim | —18.69 £0.21 —15.794+0.06 —15.26+0.02 | —15.69 £ 0.04 —14.92+0.03 -15.02+0.03 —14.93+£0.03 —15.114+0.04
Real /Real | —20.52£0.28 —16.36 £0.03 —16.09£0.02 | —16.55 = 0.01 —15.98 £0.03 —16.09+0.01 —16.114+0.03 —16.03 £0.02
Average | -20.08 -18.96 -16.97 | -16.59 -16.45 -16.47 -16.59 -16.84

Table 18: Unnormalized Navigation Results. Note that these results are after 1 million collected samples.
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— GRU
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Environment Steps

-20.0

-25.0

-27.5

-30.0

0.6 0.8 1.0
Environment Steps

0.6 0.8
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—— Transformer PIDE
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0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.2 0.4 0.6
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0.8 1.0
1e6

Figure 12: Navigation Performance Curves. Each row corresponds to a training environment, and each
column corresponds to a testing environment. Note that these runs are only done for one million transitions.
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Figure 13: Navigation Performance Curve for Ablations. Each row corresponds to a training environment,
and each column corresponds to a testing environment. Note that these runs are only done for one million

transitions.
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711 D.4 Tokamak Control Results

| PID Controller GRU Transformer | PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim /Sim | 90.95 £ 0.05 100.00 4+ 0.03  99.63 +0.03 | 84.74 £0.16 99.75+£0.06  99.91 £0.02 99.90 £ 0.02 99.47 £ 0.04
Sim/Real | 89.15 4+ 0.99 40.96 & 5.45 40.05 4+ 11.91 | 0.00 £ 21.04 55.21 £4.44 61.56+=7.40 65.65 £ 5.66 35.66 & 4.41

Real / Sim | 50.62 & 3.96 36.33 = 3.61 35.26+£2.22 | 0.00 £ 3.48 48.40+4.04 52.62+1.38 56.30+2.25 16.33+5.98
Real / Real | 98.45 4 0.77 98.24 £ 0.38 98.74+£0.29 | 100.00 +0.23 99.30 +0.64 98.394+0.33 98.55 £ 0.33 98.27 £ 0.37
Average | 82.29 68.88 68.42 | 46.18 75.67 78.12 80.10 62.43

Table 19: Normalized 3 Tracking Results.

| PID Controller GRU Transformer | PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn
Sim/Sim | —8.09 & 0.00 —7.19+£0.00 -7.22+0.00 | —8.71+0.02 —721+£0.01 —-719+£0.00 —7.2040.00 —7.2440.00
Sim/Real | —16.41 +£0.30 —31.21+1.67 —31.49+3.66 | —43.78 +6.46 —26.83+1.36 —24.88+227 -23.63+1.74 —32.83+1.35
Real / Sim | —12.12 4 0.40 —13.55+0.36 —13.66 £0.22 | —17.18 £ 0.35 —12.34+0.40 —-11.924+0.14 —11.55+0.22 —15.55=+0.60
Real /Real | —13.56 +0.23 —13.62£0.12 —13.47£0.09 | —13.08 £0.07 -13.30£0.20 —-13.58+£0.10 —13.53%0.10 —13.61 £0.11
Average | -12.55 -16.39 -16.46 | -20.69 -14.92 -14.39 -13.98 -17.31

Table 20: Unnormalized Sy Tracking Results.

---- PID —— GPIDE — GRU —— Transformer PIDE
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Figure 14: Sn Tracking Performance Curves. Each row corresponds to a training environment, and each
column corresponds to a testing environment.
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Figure 15: Sy Tracking Performance Curve for Ablations. Each row corresponds to a training environment,
and each column corresponds to a testing environment.

| PID Controller  GRU Transformer | PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn

Sim/Sim | 46.78 4 0.44 99.50 £0.12  97.99 £ 0.50 | 82.96 +0.27 100.00 £ 0.15 99.64 + 0.19 99.97 £ 0.12 96.18 £ 1.35
Sim/Real | 83.48 £2.63 39.65+5.83 33.22+0.69 | 0.00£8.87  50.86 +1.92 54.36 £ 2.07 52.56 & 2.44 42.51+£2.97
Real / Sim | 0.00 £8.79 21314245 7.23+3.86 | 2249+1.84 19.024+3.88 22.70 + 4.42  5.20 £+ 20.06 15.35 £8.29
Real / Real | 91.76 +0.84 98.074+0.52 96.054+0.31 | 97.94+£0.23 99.73 +0.46 97.62 + 0.46 100.00 £ 0.28  96.33 4+ 0.47

Average | 55.51 64.63 58.62 50.85 67.40 68.58 64.43 62.59
Table 21: Normalized 3y -Rotation Tracking Results.

‘ PID Controller GRU Transformer ‘ PIDE GPIDE GPIDE-ES GPIDE-ESS GPIDE-Attn
Sim/Sim | —27.56 £ 0.08 —18.53+£0.02 —18.79+0.09 | —21.36 £0.05 —18.45+0.03 —18.51+0.03 —18.45+0.02 —19.10£0.23
Sim/Real | —30.08 +0.95 —45.914+2.10 —4823+0.25 | —60.23+3.20 —41.86+ 0.69 —40.60 £0.75 —41.25+0.88 —44.88 £1.07
Real / Sim | —35.57 £ 1.50 —31.92+0.42 —34.33+0.66 | —31.724+0.32 —32.31+0.66 —31.68 +£0.76 —34.68 +3.43 —32.94 +1.42
Real /Real | —27.09 4 0.30 —2481+£0.19 —2554£0.11 | —24.86+0.08 —24.21+0.16 —24.98 £0.17 —24.124+0.10 —25.44+0.17
Average | -30.08 -30.29 -31.72 | -34.54 -29.21 -28.94 -29.62 -30.59

Table 22: Unnormalized /3y -Rotation Tracking Results.
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Figure 16: Sn-Rotation Tracking Performance Curves. Each row corresponds to a training environment,
and each column corresponds to a testing environment.
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Figure 17: Bn-Rotation Tracking Performance Curve for Ablations. Each row corresponds to a training
environment, and each column corresponds to a testing environment.
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For these results, SAC encodes observations, actions and rewards. TD3 encodes observations and

D.5 PyBullet Results
714 actions since it is the best performing on average.

712
713

Table 23: Normalized PyBullet Scores.
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Table 24: Unnormalized PyBullet Score:
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Figure 18: PyBullet Performance Curves.
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Figure 19: PyBullet Performance Curve for Ablations.

715 Interestingly, we found that GPIDE policies often outperform the oracle policy on Hopper-P. While
716 the oracle performance here was taken from Ni et al. [44]], we confirmed this also happens with our
717 own implementation of an oracle policy. We hypothesize that this may be due to the fact the GPIDE
718 policy gets to see actions and rewards and the oracle does not.
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719 D.6  Attention Scheme Visualizations

720 We generate the attention visualizations (as seen in Figure d) by doing a handful of rollouts with a
721 GPIDE policy using only attention heads. During this rollout we collect all of the weighting schemes,

T

722 i.e. softmax (%ﬁ), generated throughout the rollouts and average them together. Below, we show
723 additional attention visualizations. In all figures, each plot shows one of the different six heads. For
724 each of these, the policies were evaluated on the same version of the environment they were trained
725 On.
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Figure 20: MSD-Fixed Attention.
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Figure 22: MSD-Large Attention.
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Figure 26: Navigation No Friction Attention.
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Figure 29: S Tracking Rotation Attention.
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Figure 30: Sxn-Rotation Tracking Sim Attention.
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Figure 31: 8y-Rotation Tracking Rotation Attention.
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Figure 33: HalfCheetah-V Attention.
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Figure 34: Hopper-P Attention.
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Figure 35: Hopper-V Attention.
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Figure 36: Walker-P Attention.
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Figure 37: Walker-V Attention.
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Figure 38: Ant-P Attention.
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Figure 39: Ant-V Attention. Note that total path length is less than 64 here since the agent falls down pretty
fast.
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D.7 Experiments Using VIB + GRU

As shown in this work, there are often where using a GRU especially results in a policy that is not
robust to changes in the dynamics. One may wonder whether using other robust RL techniques
is able to mask this inadequacy of GRU. To test this, we look at adding Variational Information
Bottlenecking (VIB) to our GRU baseline [4]. Previous works applying this concept to RL usually do
not consider the same class of POMDPs as us [36] 29]; however, Eysenbach et al. [19] does have a
baseline that uses VIB with a recurrent policy.

To use VIB with RL, we alter the policy network so that it encodes input to a latent random variable,
and the decodes into an action. Following the notation of Lu et al. [|36]], let this latent random variable
be Z and the random variable representing the input of the network be S. The goal is to learn a policy
that maximizes J(7) subject to I(Z,S) < I¢, where I(Z,S) is the mutual information between
Z and S, and I is some given threshold. In practice, we optimize the Lagrangian. Where (3 is a
Lagrangian multiplier, p(Z|S) is the conditional density of Z outputted by the encoder, and ¢(Z) is
the prior, the penalizer is —SEs [DxL (p(Z]5)]|¢(Z))]. Like other works, we assume that ¢(Z) is a
standard multivarite normal.

We alter our GRU baseline for tracking tasks so that the policy uses VIB. This is not entirely
straightforward since our policy network is already quite small. We choose to keep as close to original
policy architecture as possible and set the dimension of the latent variable, Z, to be 24. Note that this
change has no affect on the history encoder; this only affects the policy network. For our experiments,
we set 5 = 0.1, but we note that we may be able to achieve better performance through more careful
tuning or annealing of f3.

In any case, we do see that VIB helps with robustness in many instances (see Table 23]). However, the
cases where there are improvements are instances where the GRU policy already did a good job at
generalizing to the test environment. These are primarily the MSD and DMSD environments where
the system parameters drawn during training time are simply a subset of those drawn during testing
time. Interestingly, this notion of dynamics generalization matches the set up of the experiments
presented in Lu et al. [36]]. Surprisingly, in the navigation and tokamak control experiments, where
there are more complex differences between the train and test environments, VIB can sometimes hurt
the final performance.

‘ PID Controller GRU GRU+VIB Transformer ‘ PIDE GPIDE
MSD Fixed / Fixed —6.14 £ 0.02 —5.76 + 0.02 —5.73+0.01 —5.754+0.01 —5.69 £ 0.00 —5.76 + 0.01
MSD Fixed / Large —11.39 +0.09 —12.524+0.11 —-1250+0.14 —10.87+0.05 | —11.444+0.03 —11.61 +0.07
MSD Small / Small —7.49+0.03 —7.024£0.01 —7.01 £0.01 -7.15+0.02 —7.14+0.01 —7.124+0.04
MSD Small / Large —11.18 £ 0.09 —9.824+0.07 —9.57 £0.03 —10.01+0.03 —10.88 £0.04 —10.43+0.14
DMSD Fixed / Fixed —15.33+£0.14 —-16.20+0.31  —15.83+0.28 —1541+0.13 —12.64 £ 0.04 —13.49+0.22
DMSD Fixed / Large —27.59+0.44 —37.21+0.35 35.34£0.28 —28.16+0.17 —25.29 +0.18 —27.544+0.33
DMSD Small / Small —21.78 £0.14 —2249+0.34 —2251+0.24 —20.56=£0.16 —18.09 +0.04 —18.67+£0.17
DMSD Small / Large —26.57 +0.22 —31.274+0.36 —30.93+0.34 —26.04 £0.24 —23.82+0.13 —23.65 + 0.20
Nav Sim / Sim —17.23+0.18 —13.82+0.01 —-14.69+0.02 —13.68£0.01 —13.74 +£0.00 —13.65 £ 0.00
Nav Sim / Real —23.87+£0.29 —29.85+0.55 —39.57+0.24 —22.84+£0.11 —20.37 £ 0.08 —21.23+0.12
BN Sim / Sim —8.09 + 0.00 —7.194+0.00 -7.24+0.01 —7.224+0.00 —8.71+£0.02 —7.214+0.01
BN Sim / Real —16.41 +£0.30 —-31.214+1.67 —32.19+1.19 —31.49 £ 3.66 —43.78 £ 6.46 —26.83 +1.36
Bn-Rotation Sim / Sim | —27.56 £ 0.08 —18.53+£0.02 —18.61+0.12 —18.79+0.09 —21.36 £ 0.05 —18.45 + 0.03
Bn-Rotation Sim / Real | —30.08 £ 0.95 —45.914+2.10 —44.24+1.33 —48.23 £0.25 —60.23 £+ 3.20 —41.86 + 0.69
Average \ -18.33 -20.12 -21.14 -18.71 \ -19.58 -17.51

Table 25: Tracking Experiments with GRU+VIB. We use green and red text to highlight significant
improvements and deteriorations in performance over vanilla GRU. We only highlight a subset of configurations
since we are focused on the robustness properties. This table shows average (unnormalized) returns.

E Computation Details

We used an internal cluster of machines to run these experiments. We mostly leveraged Nvidia Titan
X GPUs for this, but also used a few Nvidia GTX 1080s. It is difficult to get an accurate estimate
of run time since job loads vary drastically on our cluster from other users. However, to train a
single policy on DMSD to completion (1 million transitions collected, or 1,000 epochs) using PIDE
takes roughly 4.5 hours, using GPIDE takes roughly 17.25 hours, using a GRU takes roughly 14.5
hours, and using a transformer takes roughly 21 hours. This is similar for other tracking tasks. For
PyBullet tasks, using GPIDE took roughly 43.2 hours and using a transformer took roughly 64.2
hours. We note that our implementation of GPIDE is somewhat naive and could be vastly improved.
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764 In particular, for exponential smoothing and summation heads, w; can be cached to save on compute,
765 which is not being done currently. This is a big advantage in efficiency that GPIDE (especially one
766 without attention heads) has over transformers.
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