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A Proof of Theorem (1]

In this section, we establish a proof of Theorem |1} and all the required lemmas stated in Section
We fix afinitep > 1l,a0 € Rﬁ,andT > 2G.

A.1 Properties of 7, 7

The goal of this section is to establish the necessary analytical properties of R, r. Let A(G) be the
set of distributions on [G], and K be the projection of A(G) in RS

K= {/\E[O,I]G_1|Z)\g§1}. (12)

g

K is also the G — 1-dimensional unit simplexe. For each vector n € ]RE with Zthl ng =T, we set
n

foreach g € [G — 1] Ay := . We have A € K. Moreover, we have from (T):

G
o2 1 o2 o2 o2
Ryr(n,o) = 2 = {1 G-l ¢ } 13
»1(n:0) {ng} TH M Ne—1 =M — = S, (13
9=1]l,
which motivates us to introduce the re-scaled function r:
o2 o2 o2
A€ K = r(\) =2, ..., G_l, G } (14)
P () H{A1 A1 T=A1—...=Ae—1 ||,
so that (T3]) can be written as
1
Ryr(n,0) = Zrp(). (15)
From the definition of K in (T2)), the interior of X, denoted K°, is
Ke=QXeKVge[G—1A >0, > N <1
g€[G—1]
Moreover, the function 7 is C% in K°. From Taylor’s theorem, we have for A\, \' € K°:
1 . 1 03, (u)
A) =1 (N) = (A= XN)Vr, (V) = =(HW)YA = X)), A =X < [A=X)3 P
z,y,z€N
r+y+z2=3
{97h’7‘.}C[G71]
(16)

where V,H are respectively the gradient and hessian operators. In what follows, we will derive
expressions for the relevant derivatives of r in (I6).

Lemma 7. For g, h,i € [G — 1), we introduce the following functions in K°:

Uép O—gp
H,: \eK° = —
ginE T VS VI T B VA
1 9
Ghpyi= ———H
AT W

1 0
Iyni=——+Ggn
g;h, D+ 20N g,k

The following holds:
1. VTp = T’;Il)ip(Hl, Ce aHG—l)

2. Hyn = (1 — p)Tflj*QpHth + (p + 1)7’1177pGg7h

14
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83
1y = (1 —p)(1 — 2p)H,Hy Hyr} ™%
(9)\93)\h81‘rp ( p)( P) g Aty

+ (1 — 2]))(1 +p) (HgGh,i + HhGi7g + HgGh7i)

+ry 7 4 (p+ D) (p+ 2) g niry

Proof. Fixa A € K° and g, h,i € [G —1].

Expression of the gradient: On the one hand, we have from the definition of 7, in (T4)

2 2 2 p 2p 2p

_ {01 9G-1 del } _ Th_ 4 del
- Yyttt ) - )
)\1 )\G—l 1— )\1 i >\G—1 P Gl )\Z (1 — )\1 — - )\G—l)p

so that )
0 ol

— (rPY(\) = =pH,(\ 17
a)\g('rp)( ) p(l_)\l ~--_)\G71)p+1 b g( ) (17)
On the other hand, from the formula (f?)" = of’ f?~!, we have
P Y
S D) = () 1s)
By combining Equations and (T8)), we obtain
0 0
——1rP =pH, P 17
o, P = PHe =y g
so that 9
o ——rp =1, PH, (19)
Therefore V7, = (é%\lrp’ e c%\ic,lrp) =rLP(Hy,...,Hg_1), which proves the first equation
of Lemmalf7l
Expression of the Hessian: We have
52
Hon = 53,007
9 -
6/\ ( th)

9 9
==y (o ) Bk
= (1—p)ry *HyHp + (p+ 1)r) PGy p.

where the first equality is due to the definition of the Hessian, the second equality is due to the
expression of the gradient from Equation (T9), the third equality applies the product rule to the
derivative, and the fourth equality applies the definition of G, ;, in Lemma([7] This proves the second
Equality of Lemmal[7]

Third derivatives. Finally, we have,

873 — i’H
INGOND; P DN e
B

- o\, {(1 _p)"';l)72pHth +(p+ 1)T;1)7pGg,h}

9 0
=(1- p)af/\i {r, P HyHy} + (p+ 1)37\1_ {r, Gy}

15
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where the first equality is due to the definition of the Hessian, the second inequality is due to the
Hessian expression established previously, and the third equality is due to the linearity of derivation.
In a similar fashion to the previous case, we derivate each of the products r,~*? Hy H}, and 1} PGy 1,
separately. On the one hand,

B )

o, It gy H)

- Hh(1—2p) S 2Pry TP H 417 (Hy(p + 1)Ghyi + Hi(p + 1)Gy,0)
= (1—2p)ry~ SPH gHnH; + (p+ 1)1, ™ (HyGh,i + HnG,)

6(2\ {ry~ 2pHHh}—HHh {7’1 zp}Jr 2 2p<

where the first equality is due to the derivation product rule, the second equality is due to the definition
of G 5, introduced in Lemma and the third equality is due to a reordering of the terms. On the
other hand, we have by folowing the exact same steps

) B » 0
87)\1_{7“; pGg,h}:( p)Tp o\ Tp—|—7“ a/\ th
= (L=p)ryPry PH;Ggn+ (p+2)r) PIgns

(1= p)ry P HiGo + (0 + 2)rp " Iy ni-
Then, we replace the previous two expressions in the formula for mrp to obtain:
g h Ui

83

1, = (1 —p)(1 — 2p)H, Hy H;r} ="
8/\98)\}181_7"1) ( p)( P) gH1nd1iTy,

+ (1 — 2p)(1 er) (HgGhﬂ; + HhGi7g + HgGh’i)
+ry P+ (p+ D+ 2) g niry P

where we use the symmetry of G, = Gy, 4. This derives the third equation of Lemma [7] and
concludes the proof.

A.2 Proof of Lemmal[ll

The proof of Lemma [T] consists of using optimality conditions on r:

Lemma 1. [Benchmark analysis] For eacht € N and p € [1,+0c0], let nj, , = —5—. Then
Zhe Gl %h !
* * 1 *

Rp,t(a) = Rp,t(nt ’ J) = ;Rp’t(nla U)' )

Proof. From the definition of , in (I4), we have
1
R; = inf R ,0) = — inf
pr(0) = inf . p1(n,0) = 7 inf rp(A).
Z?:l ng=T

For any A € IC — K°, at least one element of the set {A1,...,A\g—1,1 — A1 — ... — Ag—1} should

be 0, therefore for such a A, we must have rp()\) = +oo. Therefore argmin,r, = argming.7p.
Moreover, since 7, is differentiable in X°, we must also have argmin.r, C Vr, 1({0}). Therefore,

A eV ({0}) = i POW(HIN), - Ho 1 (V) = 0g_1

< Hi(\)=...=Hg_1(N)=0
afp _ aép - ép
)\11)+1 o )\gtll (1 — A — ... >\G—1)p+1
J”“
= Vge[G-1], N\=—"L—
nont

16
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where the first equivalence is due to the expression of the gradient from Lemma [/ the second
equivalence is due to 7, > 0, the third equivalence is due to the definition of A introduced in Lemma
and where we solve the system of equations in the last equivalence. Therefore there is a unique
solution to Vr,(\) = 0. By continuity of r,, in the compact set K, argminr, # (). Therefore the

p+1
minimum of r,, is attained exactly once at the point {”"zp } . Therefore by setting
St (G—1]
2p
ot
L= =, Vge[G—1]

we have \* € (A — \)g and 7, ({\} }geja—1) = infaex 7p(N) = TR}, 7(0). Lemmafollows by
setting n* := T\*. O

A.3 Proof of Lemmal[2l

In this section, we establish the properties of UCB; (o), which essentially from Assumption l
Following the notations of Section 3] we introduce the following event:

. C
Ap = ﬂ {|ag7t o] < \};}

g€[G],2<t<T
Based on Corollary 1 of [13], we have P, (Ap) > 1 — 2GT 2%, and conditionally on A7,
C
Vg € [G),t>2G, 640 — 0y < ——.
TLg_’t

We are now ready to prove Lemmal[2]
Lemma 2. With probability at least 1 — O(T~?2),
o

, 2 4C 20 \ 71
0 < UCBy(04)7tT — o " < —L P (0 L =1 ) :
Vigtp+1

-

Ng,t

Proof. Conditionally on Ar, we have:

Cr
UCB =6
t(‘79> Ug7t+m
C N
=04+ z + (Gg,t — 0g)

A /ng,t
G [ G ]
Vgt Vgt /Mgt
2
=04+ |0, Cr ,
Vgt

where the first equation is due to the definition of UCB; introduced i 1n , and the bounding is due to

€og+

the definition of Ar. Next, notice that the function x — (o4 + ) #+1 T s increasing, which implies
that

2p_ 2C z
7T < UCB, (0q)7*1 < <ag + ni) : (20)
9,
which proves the leftmost inequality in Lemma [2| To prove the rightmost inequality, notice that

x — (o4 + ) 71 is also convex, therefore by Jensen’s inequality

2p 2p p—1
(Ug—i—T) _05+1§ Tp<ag_|_ T) — Tp<gg_|_ T)
n

Vgt Vg p+1 Mgt Vg P+ 1 g;t
which concludes the proof. O

17
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A.4 Proof of Lemma[3

The goal of this section is to prove Lemma [3] which consists of bounding with high probability
n —n*. To do so, we will design an alternative sequence 7, that is simultaneously easy to analyze,
and upper bounds n with high probability. The motivation for the choice of  comes from the choice
of Variance-UCB.

We assume through the whole section what the event A7 is achieved. For convenience, we view the
right hand side of Lemma 2] as a quantity of its own, and introduce the width function

ACr p < 20T>‘5+i
Ve p+1 EpvT ,

so that the inequality in Lemma[2]can be rewritten as

wg x>0 wy(x) =

0 < UCB (0,) 7 — 07 < Sywy(ng.s). @1)
We start by proving the following lemma, which follows from the decisions Variance-UCB makes:
Lemma 8. Fort > 2G, we have:

*
NXy 1.t — tht+1 (nXt+17t) < nXt+1,t

Proof. The proof exploits the greedy property of the algorithm. At ¢ = 2@, each group is sampled

exactly twice, and we have UCByg (o) T < +oo for every group g € [G]. By choice of X;11, we
must have:
2p_ _2p_
UCBt(O'g)P+1 < UCBt(UXt+1)p+1
Ng,t - NXyy1,t

On the one hand, from the leftmost inequality in (2I), we have

Vg €G], (22)

it _ UCBy(g,)71

Ngt Ng,t

Vg € [G],

(23)

On the other hand, from the rightmost inequality in (ZI]), we have

2p

2p_ pF1
UCBt(UXHrl)erl < O-Xt+1 + EPth+1 (nXt+17t)

(24)

X1t NXy 41t
Therefore by combining both Inequalities and in Inequality (22), we obtain

2p 2p_
p+1 p¥l

e, T < Tt S ()

Ng,t NXeiq,t

(25)

After multiplying both sides by ny ;nx,,, + and summing over g € [G], we get:

2p
p+1 p+1
NXyiq,t E Og = <0Xt+1 + EPwXH—l NXiiq,t ) E : Ng,t

g€(G]
——— R,_/
::Zp =t

2p
pHT
we then divide both sides by ¥, > 0, and use the formula ny , = g;p to obtain

NXypa,t < n;(url,t + tht+l (nxt+17t)
Lemmafollows by substracting wx, ,, (nx,,,.¢) from both sides. O
Lemmal 8] states that the possible excess between the number of samples output by the algorithm and

the optimal number of samples is not too big, and can be controlled by the width w. Since the width
decreases in the number of samples, the function

T =z —twy(x)

18
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must be increasing and has therefore an inverse function that is also increasing, which we denote
Wglt (). We introduce the following sequence, which mimics the behavior stated in Lemma

Ngt = Mgt Fort=1,...,2G
g a1 =g+ 1 (Agr < W} (n},)) Fort > 2G

The sequence is easier to analyze and upper bounds the true number of samples n:

Lemma 9. We have n > n.

Proof. By construction, the result holds for ¢ = 1,...,2G. Assume for the sake of contradiction that
the result does not hold for a g € [G] and ¢ + 1 > 2G, and take such a ¢ minimal. For such a pair
(g,t) We have:

L( X1 =9) = ng a1 — Ngy
> Ngt+1 — Ng,t

= 1(fig: < W;(n;,t))
=1(ng: < Wgt(nz,t))v

where the first step follows from the definition of n, the second step follows from the minimality of ¢,
the third step follows from the definition of n, and the last step follows from the minimality of ¢.

Therefore 1 > 1(X; 1 = g) > L(ng,, < Wi(n;,)) > 0, which implies 1(X;;1 = g) = 1 and
I(ng < Wi(n},)) =0, so that

t
NXyyq,t > Wg (n}t+17t).
By taking the inverse of the increasing function Wgt on both sides in the previous equality, we get

*
NXyy1,t — tht+1 (nXt+17t) > NX i1,

contradicting Lemma [§] Therefore the assumption is wrong and 7 > n, which completes the
proof. O

Lemma 10. For a fixed g,the sequence {W!(n} ,)}1>1 is increasing. Consequently,

gt < W;(”Z,t)+ +2

Proof. Forafixed x > 0andt > 1, we have
(@ = (t+ Dwy(x)) — (x — twy(2)) = —wy(z) <O,

therefore the sequence of functions {x — x — twgy(z)}+>1 is simply decreasing in ¢, therefore the
sequence of its inverse functions {z — W/ (z)};>1 is simply increasing in t. Consequently,

W;H(”;tﬂ) > W;(”Z,tﬂ)- (26)
Moreover, the function W; is increasing in R, thus
Winh 1) = Wh(ng ). (27)
By combining Equations (26)) and (27)), we obtain
W;+1(n;,t+1) > Wgt(n;,t)7

which proves that the sequence {W(n} ,)}:>1 is increasing, thus completing the proof for the first
part of Lemma [I0]

We derive the second part by induction on ¢ > 1. For ¢t < 2@, the result holds immediately as
Mg+ = Ng ¢ and ng ¢ < 2. We assume the result holds for a ¢ > 2G. We distinguish two cases:

19
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* gy < WE(n ,): This implies that:
Ng 41 = Tgt + 1
< Wgt (n;t) +1
S W (ng 1) +1
<SWE (ng )" +2,

where the first step stems from the definition of 7, the second step stems from the induction
hypothesis, and the third step stems from the first part of the proof.

* g > W, (n? ,): This implies that:
Mg t+1 = Tg,¢
t * +
< Wy (nge) " +2
t+1, +
SW T (ng o) +2,

where the first step stems from the definition of 7, the second step stems from the induction
hypothesis, and the third step stems from the first part of the proof.

Studying both cases concludes our induction and proves the inequality for all ¢ > 1. This concludes
the proof of Lemma [I0} O

Next, we derive an upper bound on Wgt:
Lemma 11. For z > 0, we have W} (x) <

T
> wy (@) *
1-¢2e®)

Proof. Letz,y > 0 with 0 < y — twy(y) = x, so thaty = W;(x) by definition of W;. we have:

z _ y —twy (v)
1— twg(x) o 1— twg(y;tw(g('j‘/))
1 — ¢l
Y fwal—tw, )
y_twg(y)
>y =W,(x),
which concludes the proof. O

We are now ready to prove Lemma 3]
Lemma 3. Variance-UCB collects a vector of samples n that, with probability at least 1 — O(T‘2),
satisfies,

p—1

X 4CTp 200 "7 =
NgT — NgT <3+ m <Ug T g1 = G(ﬁ)

Ny 1
Proof. Conditionally on A7, all the previous lemmas stated in this section hold. Consequently,
Ng,T S ﬁg,T
<2+ I/Vgt(nz;T)Jr
ng.T
1— Twy(n;,T)

=
g, T

<2+ n;T +1+ ng(n;T)

<24

p—1

ACrp 20y \""
=340+ =0y + —= NP
SACERY ( TV ot
where the first step stems from Lemma(9] the second step stems from Lemma|[I0} the third step stems

from first order approximations and the last step stems from Lemma|[T1]

20



ss6 A5  Proof of Lemmald

s57 We follow the notations from Appendix [A:T] The goal of this section if to prove Lemma[d] We will
558 do so by combining the optimality of A* and by using the properties of R, r established in@

ss9 Lemmad. Leto € R(j andn' € Rf such that de[G] n; =T. Then,

. % 2 2y2 *
R, r(n',0) — R, r(n*,0) < p+1 Z (ng —ng,7) + T+ 275, max (ng
n

3p+3
2\ I =)
Rp,T(n*,O') * 2 / T

Tn g g 3
g€[G] g, T min g

o (I ).

se0  Proof. For A € K be fixed, from Taylor’s inequality, we have

* * * 1 * * * * 1 83T U

) = A7)~ (X Ty W) = GO =N AN S NN s | e
z,y,2€N
z+y+2z=3
{g,h,i}C[G—-1]

561 We use the derivative formulas obtained in [7| to obtain simple forms for Vr,(A*), H(\*), and

83Tp(u) 837’1)(“)

562 gx,OanON We start by upperbounding TR ONR O, From Lemma|l} we have for each g € [G]:

p+1

2p_
Al DOL A EENCH R aaCHiae
he[G]

ses For afixed u € [\, A*], 30 ug = > Ay = > Ay = 1, thus the coordinate go achieving the
s64 maximal % must have ug, < A7 . Since u € [\, \*] this implies that Ay, < ug, < A7 and

g
*

by A
s65 consequently max, - < max, y2. Hence we get:
g g9

A\E p+1 A* p+1 A* pt+l
] = sy (22) - () <3y (ma )
uG Ug 7 g
ALPEL (APt p)Yiesl A\
_ Zp+1 ( G g 1 —=h P 9
|Gg,h(u)| P (ug)P+2 + (ug)p+2 (9 ) ming )\; rngax Ag
AL)PHL (AP yptt A\ PH?
Iypa(u)] = sz |Q&) AT g -
[ g,n,i(w)] P (ug)Pt3  (u,)Pt3 (g 7) (ming A})? X Ag

s66 Moreover, since p > 1,all 1 — p,1 — 2p, 1 — 3p are non-positive, and for j € 1 — p, 1 — 2p, 1 — 3p
567 we have from the minimality of \*:

rp(u) < (AT = (8,)r !

)
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s68 therefore:

. 2\* 3p+3 ,
|HthH1'T‘11)75P(u)| < (mgax )\g> E;p+37"p(>\*)173p
g
A* 3p+3
= ( max 2 313p+3+(1-3p) (14+1/p)
9 Ag P
2* 3p+3
= ( max < wl+1/p
9 Ag p
2* 3p+3
(o)
g

1-2 2Zp+1 Ag r 1 Ag e
| (HyGh,i + HoGi g + HyGh i) (s Pu)| < 3— max — 2£+ max ™

g Ag 9 Ag

6 Ag s 2p+2,.1-2
— 9 n2p+ —2p(\*
ming \* (mgax )\g> v )
6 )‘Z 2p+3
= = \*
ming Ay (mgax )\g) (A", 0)
Ep—i—l A* p+3
I i -p < p 9 1-p )\*
| g;h,iT (’U,)| (mmg )\;)2 (mgaX )\g) Tp ( )

s69 Hence by using the expression of the third derivatives, we get:

rp(u)
—_— (1-p)(1—2p)H, H,H;
’axgathi < | =)L~ 2p)Hy Hy Hir, ™" ()|
| (U= 2)(1 4 p) (Hy G + HuGigg + HyG i) 72
+ P+ D)+ 2Ly piry P ()]
)\* 3p+3 12(]7 + 1)2 A* 2p+3
b ( )\g) rp(A) + ming A} (m;ax)\g) (A% 0)
2 p+3
D (maxE) o)
(ming A
7 9 A* 3p+3
< w max — rp(A%).
(ming A7)2 \ "o Ay
570 As a consequence, by taking the sup over u, g, h, i, x,y, z, we get
1 8w 7(p +2)? PV s
< —= A* 28
b |2l O ONON | T (ming A2 T\, (A7) 28)
x,y,2€N

Tr+y+2z=3
{g,h,i}C[G—1]

571 We now simplify both Vr,(A*) and H(A*). First, since A\* is optimal and an interior point of /C, we
572 have

Vrp(A*) = 0¢ (29)
573 Setting the value \* in Equation (30) implies that for g, h € [G]:

Hon(A7) = (p+ 1ry "(N) G n(NY)
574 From the definition of G ;, we have:

Goal¥) =2 (- + £ 100 = 1)
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575  Hence:
1

1 1

HO) = (p+ 1ry, ") < Sl = h)> = (p+ Drp,(\") < +—1(g

AL A
576 As a consequence,

(HOADA =X)L =)= > Hon(A=A)g(A = A
g,h€[G—-1]

AL A

h)>

~or () Y (Gt =n) (A0 - X,

)\*
g,h€e[G—1]

= (p+1)rp(A) 2gnelg-yA —AT)g(A -~

)\*

= (A"
0+ 1), (V) -
_\*)\2 by
=+ e { 2208y 5
G g€elG—1]
)\ _ /\* 2
= (p+ Drp(\9) Z (9)\7*5)’
g€(G) 9

)\)\*

9

577 where the first step steps from the definition of the scalar product, and the second step stems from the
578 expressmn of the Hessian we derived in Lemmal(7] In the third step, we distribute the sum over the

579 terms

ss0  that de[G—l (/\ Mg =(1—-Ag) — (1 = Ag) = A, — Ag. Therefore:

SO0 =223 =20 00 3
g€(G]

(Ag —

1= 1(g = h). In the fourth step, we factorize the first sum, and in the fifth step, we use

(30)

sst  Therefore, by combining Equations [29), (30) and Inequality (28), in Taylor Inequality [I6] we get:

rp(A, o) _1_p+1 Z ()‘g_)‘Z)2 < T(p+2)° max(
p g

r 2 oy b = (ming A\})?

ss2  The proof of Lemmafollows by setting n’ = T'A\, n* = T'X\*. In this case R, r(n’,0) =

se3 and R . = 77,(\*).

s8¢ A.6 Putting everything together

585 We are now ready to complete the proof of Theorem|I]

A* 3p+3
) 1A A
Ag

%rp()‘)
O

sss  Theorem 1. For any D that satisfies Assumptions[I|and 2| and for any finite p, the regret of Variance-

s87  UCB is at most O~(T’2), ie.,

Regret, r-(Variance-UCB, D) = O(T~2).

ss8 Proof. First, notice that

Regret,, (Variance-UCB) = E,[R, 7(n,0) — R}, 1(0)]
= E[Ryr(n,0) = Ry 7(0)|Ar]Px (A7) + E[Rp 1 (0, 0) —
< E[Ry7(n,0) — Ry 1(0)|Ar] + [|0[[,Px (AF),

23
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ss9  where the first step stems from the definition of regret introduced in 3] the second step stems from the
so0 law of total expectation, and the third step stems from both P(Ar) < 1and Ry, 7(n,0) — R (o) <

591 ||o2||,. It remains to show that each term in the rightmost side is in O(7"~2). First, we know that
sz Pr(Ar) < 2GT~2° = O(T~2). Moreover, we have conditionally on Ar:
RByr(n,0) = Rpr(n®,0) _p+1 §~ (g —mgg)® T 2P°%) /g g\ o= ne 2
’ rlo) ptl g (o —rin? T (2 3
R, r(n*, o) ] Ng T

g€lG] Tng,T O min
2372 3p+3
<piClnonl  To N, ()" ol

2 T3 ’

min

< - "
2 T'min, ny o g Ng

s93 where the first inequality stems from Lemma E], and the second inequality stems from (n,r —
so¢. ny r)? < [[n—n*|3. Since Y ny 1 = T, from Lemmawe have:

Ngr —Myp ==Y MhT =N\ 1
h#g
p-1
4Crp 2070 \ 7
> -3(G—1)— * n
%Ep(p+1) ( I h,T T
p—1
4Crp 200 "
> —3(G —1) — Gmax g+ —F——= n
(p+1) ( g \/m h,T
p—1

Y

s AGCrp [ o 20r  \"TT
-3G — —————— | mino, + ——— /minn? .,
Y,(p+1) 97 /miny, np poo T

sos  where the first step stems from ), np 7 —nj, = >, a1 — >, 0y, =T — T = 0, the second
s96  step stems from Lemma [3] and the last steps stem from taking the max over the sum. The last
s97 inequality implies

p—1

4GCTp

207 pF1
* < ot r : e ——
[n —n"lee <3G+ S+ 1) (mmag + o n2T> minnj, (31)
n—n*|o = O(,/miny, ny ;) = O(VT) and

s98 In particular,

n; 1 1 -
max —2L < . = = =0(1).
9 ngT 1 _ lln—n H:c 1—O(T-95)
mingp N
s99 Therefore,
pr1GlIn—nlf | T+ 25 e\ ol p+1GOM) | T 275 5 ) OT)
X =
2 Tmingn; o2 g Ng T3 2 TO(T) ol T3

=0(T™Y).

so0 Recall from Lemmathat R, r(n*,0) = ©(T~). Thus by taking the conditional expectation on
601 Ar, we have _ ~

E[Ry1(n,0) = Ry p(0)Ar] < O(T7 R, 1(0)) = O(T ),
602 which concludes the proof of Theorem [T} [

s3s B Proof of Theorem 2

604 Through this section, we fix a policy 7.

s05s In this section, we give a proof to[2] First, we establish an initial lower bound that captures the
606 trade-off between how hard it is to distinguish two instances and how hard it is to optimize both under
s07 the same action (B.1)). Next, we provide a specific counter example which regret is at least (7 ~2)

e0s  (B.2).
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620

621

622

623

624

625

626
627

B.1 Proof of Lemmal6l

Lemma 6. Let 7 be a fixed policy and D% DP be two instances with standard deviation vectors

o, o, respectively. Then,

max{Regret, r-(m, D"), Regret,, r(m, D%} > d(0%, o°) exp (f > ge(c) Er,pa [ng7t]KL(D;||D2)) .
(1D

Proof. Let D and D be two instances with standard deviations 0® and o, and let § > d(0®, o?).
Let X be a random variable over {a, b}, we have

max(Regret,, (7, D"), Regret,, 1(, DY) > Ex [Regret,, 1(, D))
> E[Ry,r(n,0%) = Ry p(0)|Ry,r(n,0™) — R},
X Pr x (Rpj(n, O'X) — ;,T(UX) > 5)
> 6Pxx (Rpr(n,0™) = RS (0™) > 6)

Let 2 be the following (random) classifier:

T:=10b If R, r(n,ob) — R;T(ob) <6
Indifferent Otherwise

a If Ry r(n,0%) — RS 7(0%) <6

Since § > d(0%,0"), & is well defined. Moreover, Pr x (R, 1(n,0%) — R} p(0X) >4) >
Px (& # X) > infz Px (& # X), where the infinimum is taken over all the classifiers of {a,b}.
Moreover, by Pinsker’s inequality, inf; Px (& # X) > exp (—KL(D*||D")). Since we have
a bandits feedback, we have (see [29]) K L(D?||D") = > ge(c) Er,Da [ng,/] KL(D%||D4), which
concludes the proof of Lemmal6} O

B.2 The counter-examples

‘We recall the two instances we consider

[ 1 b 1
p [0 ) g (o)
DL~ N(0,1), Vg#1 DL~ N(0,1), Vg#2

We start by upper bounding the K L-divergence between the two instances:

Lemma 12. We have: Er pe[ny 7| K L(D||D?) + Ex pa [no 7] KL(DS|| D) < 1

Proof. For convenience, we set v := ﬁ We use the formula for the K L—divergence of two
univariate normal distributions of zero mean:

1 1+v 1-(1+v)
a by _ —
KL(D{||D7) = 5 (log( 1 >+ 110 )

The taylor expansion of the expression above can be derived by combining the expansions of both the
functions = — log(1 + =) and 2 — 1

14x°
1 1+v 1—(1+v) 1 (-Dk ek
— (1 =—|- — ~1
2<Og< 1 )+ 1+ ) 3| " Y
k>1 k>0
_1 k. k 1
=3 (—D)"v <1 k)
E>1
V2 1
_ (_1)kyk (1 _ )
2 & k+2

25
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628 Similarly,

KL(D3||D3) =

1 1+v-—-1
1
(oe (5) + =)

(v —log(1+v))

1
2
1
2

629 Therefore,

Er pe[n1,7] K L(D||D1) + En e [n2, 1] KL(D5 D) < T (K L(DY||DY) + K L(D5]|D5))
Tv? —1)* —1)F\
_Tv (( N >>Vk
k>0

2 k+2  k+2

630 where we use in the first inequality that 71 7,2 7 < T'. This concludes the proof. O

631 Next, we derive a simpler form for d,(c®, a?). We do so by exploiting the symmetries in ¢, °,

632 Lemma 13. Let uy denote the unit vector (1,1)T. We have:
a b 1 a *( _a
dp(O' 0 ) =Tp 5”70 —’f‘p(O' )

633 Proof. Forx € {a,b}, let §¢ := {e > 0[ry(A,0%) — 15 (0”) < €}. Recall that
dy(0®, %) = inf{§ > 0[S* N S’ # 0}

634 By symmetry of the problem, we have:

635 and for each (A1, A2, \') € K:
rp(()‘h )\Qa )‘/)7 Ua) = ’rp(()‘27 )\la )‘/)7 Ub)

ss6  On the one hand, if ), (Fu,0") —7*(c*) < €, we must also have r, (3u,0%) — r*(c®) < ¢, thus for
637 € >1p (3u,0%) —r*(0), we have 8¢ N S? # 0 and therefore dy, (0, %) < ), (Fu,0%) — r*(c®).
638 On the other hand, let € > 0 such that S® N S? # (). Each of S and S? is convex therefore S¢ N S°
639 is also convex. Let A € S N S’. By symmetry properties we must also have 1 — A € S N S?,
s40 and by convexity of the intersection, we must also have u = Z(A + (1 — X)) € S2 N S?, therefore
41 € > 1y (3u,0%) — r*(0”). By taking the inf we get d,(c®,0%) > 7, (3u,0%) — 7*(c*), which
e42 concludes the proof.

s43  We are now ready to complete the proof of 2| It remains to show that d,,(c*, o) = r, (3u,0%) —
a1y (0%) = o(T~2).

645 Finally, we are ready to prove Theorem 2]
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647

648

649
650

652

653

654

655

656

657

658

659

660

Theorem 2. Let p be finite. For any online policy w, there exists an instance D, such that for any
T>1,
2
Regret, (7, Dz) > (p+ 1) (Iio — ﬁ) T

where K is a universal constant and k,, is a constant that only depends on p.

Proof. For simplicity, we show the proof for G = 2. By using the proof of Lemma] we derive the

following lower bound by setting n’ = 21T u.

w0 —ay)2 *
p(Gwot) o ptd > (- Xe7) T+ 27 max ( ; )3p+3 Ju/2 — x*|2
- g [o ohd

r*(09) Ar(o9)  (ming A;)2 1/2

g€{1,2}
(32)

it is convenient to write v = and \j(0%) = 1 + f(v). In this case A\}(0%) = 1 — Aj(0?) =

1 — f(v). Thus:

2\F

(5-20")" _ S T3 -1 @)
2 ey Y 2 Ui (s T E- s

Since v > 0, we must have \j(0®) > A3(c®), therefore f(v) > 0 and ming A} = 5 — f(v),
|

g€{1,2}

« \ 3p+3
masy ()" = (14 570)7*. Finally flu/2 — X[l = max(7(). ~ () = [70)] =
f(v). Therefore Equation [32]can be simplified into:
rp(Guot) | optl f0P Tp+2)? (1 1 >* 5
R Ry R ey ARG A

It remains to derive simpler bounds for (). On the one hand, we have from Lemma

(1—|—V)+ 1 Vi+v 1

) = T o 27 T+ viss 2
B 1 1
Tl (14v) 2 2
B 1 1
_1+17%V+0(1/)_§
1 1
:W_i

2
;( 1/—|—0 O(V+2O(V)>_1>
i

where the first step is due to p — (1 + V)W is increasing in p > 1, and the next steps consist of

deriving the first order approximation of ; " IJ{LI — % Therefore, there exists a universal constant
k < +00 such that Vv < 1:
fv) > k.
On the other hand, we have for v € [0,1/2]:
% L Mg 1
+ (1 +v)wit 2_2+1>—I|)-1V 2
1+ pil v
= 2 2
< ly < 1
SHYs

27



e61 where the first inequality stems from (1 + ) T <14 ﬁx for x > 0, the second inequality stems

P ; : P
662 from iV 2 0, and the last inequality stems from FES |

663 inequality into (33)) to get:

v < v < 1/2. We replace the previous

2
Tp(%u,aa) 1> (p+1) 2 K2/2 7(];%21) 1+1/2 pH3
(o) WUV a S0 a2—1/2 x 1/4)? 4 2
T(p+1) (9)*F
> N2 o2 22T/ (2
= (p+ 1y (“ 18/64 \8 Y
T(p+1)2 (913
=2’ (p+ 1 — ————— 3
R e T TR v
ee+ where the second step stems from (p + 2)2 > p+ 1. Thus, for v < %, we have:
a 3p+3
Tp (%“’0 ) 2 s Tlp+1)2 (9 3
—= - —1>2 1 - | = 34
2 (o) =2+ Dy = = (3 v (34)

665 We then use Inequality (34), Lemmain the inequality stated in Lemma@to derive Vv < %:
1 T(p+1)2 (97T
max (Regret,, ,.(, D*), Regret(w, D%)) > 7 (2&2(]9 + 1% — ?&3/—’—64) (8) ¥ exp

: _ 1 1 .
666 By recalling that v = T < 5, we have:

+
1 2(p+1) (9)PF 1
max (Regretp,T(ﬂ,Da),RegretT(w,Db)) > (p+1) <2/<a2 e Chad) <> exp <_8)

T2 VT 8

s67  which concludes the proof by setting r,, := 24exp (—5) (p+ 1) (%)3p+3 and ko := 2exp (—g) K2

668 O

sss C Upper and lower bounds when p = co

670 The proof for Theorem [3] (upper bound when p = 0o) follows the same high-level steps as the proof
671 of Theorem|I] (upper bound when p € R). However, some adjustments of the proofs are necessary.
Table 2] summarizes the changes that are required.

Result Does it hold for p = 00 ? Comments
Lemmall| Yes Proof needs modification
Lemmas[2} 3 Yes Same proof
Lemma}4 No Replaced by Lemma|14]
Lemmas 6] [12 Yes Same proof
d(c®, %) =0(T~?) No Replaced by d(c?,0%) = O(T~17)

Table 2: Summary of the possible extensions to p = +00

672

673 In Appendix [C.I} we prove LemmalI|for the case where p = +o00. In Appendix[C.2] we introduce
674 and prove Lemma[T4] the replacement for Lemmafd} In Appendix[C.4] we prove Theorem [4]

675 C.1 Extending Lemmal]

2p
p+1
99

t
E— Then,

676 Lemma 1. [Benchmark analysis] For eacht € N and p € [1, +o0], let ny =
2helq oftt

* * 1 *
Rp,t(a) = Rp,t(nt ) U) = ;Rp,t(nlv U)' ©
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677
678

679

680
681

682

683

684
685

686

687

688

689

690

691
692

693

694

Proof. For the case where p = +00, 1 is still continuous on S¢ and infinite whenever a coordinate

is zero. Therefore:

() # argming_ 1o = argmmscﬂ(R* )G Too

Let A € argming 7o With A > 0. Set A := {g € [G ]

is maximal} and B := G — A. For the

sake of contradiction, we assume that B # () and let us cons1der an element g € B. We will construct
a N € Sg satisfying ro (A) < 7o () and contradicting the minimality of A First, set:

and for each h € [G], set:

Note that:

IEEDIEEDD

he[G]
Let us now prove that \" >

he[G

An +
/\h—/{

forh € B—{g}
k forhe A
forh=g

0.2

Z

EaeAU2/€_K_ Z =1

heA he[G]

0. For h € B — {g}, the result is true since A, = A;, > 0. Moreover, by

construction of A and g, we have for each h € A:

In particular, x > 0 and A},

1
Xg:)\g—mz

Ag
o2

> 0 for each h € A. Lastly,

EaeA o2 +

An

2
Oh

_ ZaeA )‘a
- 2
g ZaeA i
we have
N (Ag
2
Zae a Ug

A
G
O'g

+ ZaeA )\a

o))

1 <)\g
1 1
Seeal T

We next prove that 7o (N,

A 0]
>0
ZaeAg )

0) < re(A,0). For h € B — {g}, we have:

2 2

9% _ Oh
=2 <ro(No
2
Next, we have for any a € A, i—h = T (A, 0), thus:
2 2
o oy 1
)\7/ = 2 = Y 1 < Too()\v U)
h A+ ==K 2h +
ZaeA Ga 2 2
Oh Z(IEA Jq
~—~
1 >0

Finally, by choice of x, we have:

'o>: ‘lmqw

2
Therefore 7o, (', 0) = maxpe|q) %

minimizer A\, we must have:

_Zae 2

ZaeA )\

< Too(A, 0), contradicting the minimality of A\. Hence our

< Troo(A, 0)

assumption is wrong and B = (), or equivalently, A = [G], which implies that for any possible
o? 2
v.g7 h e [GL - = &
g Ah

which implies that argminr.,, = {\*(co

)}
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es C.2 Extending Lemma[d|to R,

696 The upper bound Lemmald] goes to 400 as p = +oo and is no longer insightful. In this section, we
697 provide a suitable bound:

sss Lemma 14. Let 0 € RS and v’ € RY such that >_geic) g = T. Then, We have:

3 2
! * *
Ro(n',o n,r ng,r ng,r
yglJﬂnaX 1— —2=| 4+ max | 2= | max|l— -2
R, (o) g ny o 9 \nyr 9 n o
699 Proof. O
700 From Lemmall] we have:
2 2
of _  _0b_ .
* * [e7e]
A A&
701 Thus for g € [G], we have:
2 2 2
o o o
_9 * 9 __9
Sreet T
g g 9

9
702 The proof follows from taking the maximum over g € [G] and setting n* = TA*, and n’ = T \.

703 C.3 Proof of Theorem 3|

704 Theorem 3. For any D that satisfies Assumptions [l and2)}
Regret , (Variance-UCB, D) = O(T—3/?).

705 Proof. Similarly to Appendix [A.6] we decompose the regret into two terms, and Inequality (??) still
706 holds:

Regret , (Variance-UCB) < E[Rw r(n,0) — R5, 7(0)|Ar] + 0% 0P (AS).  (35)
707 We now show that each term in the right hand side of 35| is in O(T~1%). We have P, (A$) =

708 O(T~'%). It remains to show that E[Rec, 7(n, 0) — R, 1(0)|Az] = O(T~15). For this, we apply
709 Lemma@ for np. Conditionally on A7, we have:

R n* 3 n* 2
MSIﬁ*Iﬂ&Xl*M +max<g’T) max |1 — —&T (36)
R (o) g g T 9 \TNg,T g Ng,T
ok n* 3 k|12
ming n; - g Ng,T (min, ng7T)

710 From Lemma ming ny » = O(T) and that RY (o) = o(T1). From we know that
711 |Inr — n4llee = O(VT) and that ZE—; = O(1). Therefore, conditionally on A)r,
* * 3 * |12 R*
- n - ~ o
(nnT ]l +max< g,T> [ nan) RS, 7(0) :O< o >>

ming n} 7 g Ng,T (ming n;’T)2 VT

~ (T ~ 1.5

O|— ) =0T""").
(77) -0

712 Where the terms in O do not depend on the randomness of Variance-UCB, but only on the instance

713 of the problem. Therefore by taking the conditional expectation on Ar we get E[Ro 1(n,0) —
74 RE ()| Ar] = O(T~"?), which completes the proof. O

IN

Roo(nr,0) = R ()
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715 C.4 Proof of Theorem [

716 Theorem 4. For any online policy T, there exists an instance D, such that for any T > 1,

2
Regret (7, Dy) > BT_S/Q'

7
7

=

7 Proof. Notice that Lemmas[6] [T2] and [T3]still hold for p = +co. Similarly to the proof for Theorem
s [2} it remains to derive a lower bound on 7 (3u,0%) — 75 (). We have for .=~ < 3

 (gmer) = (57

1+
= max 2\/7 i
12 71/2

iy

1
=2(1+—=
( 2xﬂr)
rec(0?) = (01)? + (03)?
1
2T
719 therefore:
1 1 1 1
Teo | 0, 0% | — 15 (0%) =2 1+)—(2+): 38
(guo) —rten =21+ 57 )~ T G
720 We replace[38|and the inequality from Lemma[T2]in the inequality from Lemmal6|to derive:
1 12
max (Regret,, (m, D*), Regret,_ 1 (m,D")) > Qf exp ;ﬁ

721 thus we obtain:

exp(— 1/8) 2/5
max (Regret 7, D), Regret__ ,-(m, D")) >
( g oo,T( ) g 7T( )) 2Tf T\/ﬁ

722 O
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