
A Proof of Theorem 1423

In this section, we establish a proof of Theorem 1, and all the required lemmas stated in Section 4.424

We fix a finite p ≥ 1, a σ ∈ RG
+, and T ≥ 2G.425

A.1 Properties of Rp,T426

The goal of this section is to establish the necessary analytical properties of Rp,T . Let ∆(G) be the427

set of distributions on [G], and K be the projection of ∆(G) in RG−1
+ :428

K :=

{
λ ∈ [0, 1]G−1|

∑
g

λg ≤ 1

}
. (12)

K is also the G− 1-dimensional unit simplexe. For each vector n ∈ RG
+ with

∑T
t=1 ng = T , we set429

for each g ∈ [G− 1] λg :=
ng

T . We have λ ∈ K. Moreover, we have from (1):430

Rp,T (n, σ) =

∥∥∥∥∥∥
{
σ2
g

ng

}G

g=1

∥∥∥∥∥∥
p

=
1

T

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥
p

. (13)

which motivates us to introduce the re-scaled function r:431

rp : λ ∈ K → r(λ) :=

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥
p

. (14)

so that (13) can be written as432

Rp,T (n, σ) =
1

T
rp(λ). (15)

From the definition of K in (12), the interior of K, denoted K◦, is433

K◦ =

λ ∈ K|∀g ∈ [G− 1], λg > 0,
∑

g∈[G−1]

λg < 1

 .

Moreover, the function r is C3 in K◦. From Taylor’s theorem, we have for λ, λ′ ∈ K◦:434 ∣∣∣∣rp(λ)− rp(λ
′)− (λ− λ′)∇rp(λ

′)− 1

2
⟨H(λ′)(λ− λ′), λ− λ′⟩

∣∣∣∣ ≤ ∥λ−λ′∥3∞ sup
u∈[λ,λ′]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣
(16)

where ∇,H are respectively the gradient and hessian operators. In what follows, we will derive435

expressions for the relevant derivatives of r in (16).436

Lemma 7. For g, h, i ∈ [G− 1], we introduce the following functions in K◦:437

Hg : λ ∈ K◦ →
σ2p
G

(1− λ1 − . . .− λG−1)p+1
−

σ2p
g

λp+1
g

Gh,g :=
1

p+ 1

∂

∂λg
Hh

Ig,h,i :=
1

p+ 2

∂

∂λi
Gg,h

The following holds:438

1. ∇rp = r1−p
p (H1, . . . ,HG−1)439

2. Hg,h = (1− p)r1−2p
p HgHh + (p+ 1)r1−p

p Gg,h440
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3.

∂3

∂λg∂λh∂i
rp = (1− p)(1− 2p)HgHhHir

1−3p
p

+ (1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i)

+ r1−2p
p + (p+ 1)(p+ 2)Ig,h,ir

1−p
p

Proof. Fix a λ ∈ K◦ and g, h, i ∈ [G− 1].441

Expression of the gradient: On the one hand, we have from the definition of rp in (14)442

rpp(λ) =

∥∥∥∥{σ2
1

λ1
, . . . ,

σ2
G−1

λG−1
,

σ2
G

1− λ1 − . . .− λG−1

}∥∥∥∥p
p

=
∑

h≤G−1

σ2p
h

λp
h

+
σ2p
G

(1− λ1 − . . .− λG−1)p
,

so that443

∂

∂λg
(rpp)(λ) = p

σ2p
G

(1− λ1 − . . .− λG−1)p+1
= pHg(λ) (17)

On the other hand, from the formula (fp)′ = of ′fp−1, we have444

∂

∂λg
(rpp)(λ) = prp−1

p (λ)
∂

∂λg
rp(λ) (18)

By combining Equations (17) and (18), we obtain445

∂

∂λg
rpp = pHg = prp−1

p

∂

∂λg
rp

so that446
∂

∂λg
rp = r1−p

p Hg (19)

Therefore ∇rp =
(

∂
∂λ1

rp, . . . ,
∂

∂λG−1
rp

)
= r1−p

p (H1, . . . ,HG−1), which proves the first equation447

of Lemma 7.448

Expression of the Hessian: We have449

Hg,h =
∂2

∂λg∂λh
rp

=
∂

∂λg

(
r1−p
p Hh

)
= (1− p)r−p

p

(
∂

∂λg
rp

)
Hh + r1−p

p

∂

∂λg
Hh

= (1− p)r1−2p
p HgHh + (p+ 1)r1−p

p Gg,h.

where the first equality is due to the definition of the Hessian, the second equality is due to the450

expression of the gradient from Equation (19), the third equality applies the product rule to the451

derivative, and the fourth equality applies the definition of Gg,h in Lemma 7. This proves the second452

Equality of Lemma 7.453

Third derivatives. Finally, we have,454

∂3

∂λg∂λh∂i
rp =

∂

∂λi
Hg,h

=
∂

∂λi

{
(1− p)r1−2p

p HgHh + (p+ 1)r1−p
p Gg,h

}
= (1− p)

∂

∂λi

{
r1−2p
p HgHh

}
+ (p+ 1)

∂

∂λi

{
r1−p
p Gg,h

}
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where the first equality is due to the definition of the Hessian, the second inequality is due to the455

Hessian expression established previously, and the third equality is due to the linearity of derivation.456

In a similar fashion to the previous case, we derivate each of the products r1−2p
p HgHh and r1−p

p Gg,h457

separately. On the one hand,458

∂

∂λi
{r1−2p

p HgHh} = HgHh
∂

∂λi
{r1−2p

p }+ r1−2p
p

(
Hg

∂

∂λi
Hh +Hh

∂

∂λi
Hg

)
= HgHh(1− 2p)r−2p

p r1−p
p Hi + r1−2p

p (Hg(p+ 1)Gh,i +Hh(p+ 1)Gg,i)

= (1− 2p)r1−3p
p HgHhHi + (p+ 1)r1−2p

p (HgGh,i +HhGg,i) ,

where the first equality is due to the derivation product rule, the second equality is due to the definition459

of Gg,h introduced in Lemma 7, and the third equality is due to a reordering of the terms. On the460

other hand, we have by folowing the exact same steps461

∂

∂λi

{
r1−p
p Gg,h

}
= (1− p)r−p

p

∂

∂λi
rp + r1−p

p

∂

∂λi
Gg,h

= (1− p)r−p
p r1−p

p HiGg,h + (p+ 2)r1−p
p Ig,h,i

= (1− p)r1−2p
p HiGg,h + (p+ 2)r1−p

p Ig,h,i.

Then, we replace the previous two expressions in the formula for ∂3

∂λg∂λh∂i
rp to obtain:462

∂3

∂λg∂λh∂i
rp = (1− p)(1− 2p)HgHhHir

1−3p
p

+ (1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i)

+ r1−2p
p + (p+ 1)(p+ 2)Ig,h,ir

1−p
p

where we use the symmetry of Gg,h = Gh,g. This derives the third equation of Lemma 7 and463

concludes the proof.464

A.2 Proof of Lemma 1465

The proof of Lemma 1 consists of using optimality conditions on rp:466

Lemma 1. [Benchmark analysis] For each t ∈ N and p ∈ [1,+∞], let n∗
g,t :=

σ
2p

p+1
g t∑

h∈[G] σ
2p

p+1
h

. Then,467

R∗
p,t(σ) = Rp,t(n

∗
t , σ) =

1

t
Rp,t(n

∗
1, σ). (9)

Proof. From the definition of rp in (14), we have468

R∗
p,T (σ) = inf

n∈RG
+∑T

t=1 ng=T

Rp,T (n, σ) =
1

T
inf
λ∈K

rp(λ).

For any λ ∈ K −K◦, at least one element of the set {λ1, . . . , λG−1, 1− λ1 − . . .− λG−1} should469

be 0, therefore for such a λ, we must have rp(λ) = +∞. Therefore argminKrp = argminK◦rp.470

Moreover, since rp is differentiable in K◦, we must also have argminK◦rp ⊂ ∇r−1
p ({0}). Therefore,471

λ ∈ ∇r−1
p ({0}) ⇐⇒ r1−p

p (λ)(H1(λ), . . . ,HG−1(λ)) = 0G−1

⇐⇒ H1(λ) = . . . = HG−1(λ)) = 0

⇐⇒ σ2p
1

λp+1
1

= . . . =
σ2p
G−1

λp+1
G−1

=
σ2p
G

(1− λ1 − . . . λG−1)p+1

⇐⇒ ∀g ∈ [G− 1], λg =
σ

2p
p+1
g∑

h σ
2p

p+1

h

.
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where the first equivalence is due to the expression of the gradient from Lemma 7, the second472

equivalence is due to rp > 0, the third equivalence is due to the definition of H introduced in Lemma473

7, and where we solve the system of equations in the last equivalence. Therefore there is a unique474

solution to ∇rp(λ) = 0. By continuity of rp in the compact set K, argminKrp ̸= ∅. Therefore the475

minimum of rp is attained exactly once at the point

{
σ

2p
p+1
g∑

h σ
2p

p+1
h

}
g∈[G−1]

. Therefore by setting476

λ∗
g :=

σ
2p

p+1
g∑

h σ
2p

p+1

h

, ∀g ∈ [G− 1]

λ∗
G = 1− λ∗

1 − . . .− λ∗
G−1 =

σ
2p

p+1

G∑
h σ

2p
p+1

h

we have λ∗ ∈ (λ− λ∗)G and rp({λ∗
g}g∈[G−1]) = infλ∈K rp(λ) = TR∗

p,T (σ). Lemma 1 follows by477

setting n∗ := Tλ∗.478

A.3 Proof of Lemma 2479

In this section, we establish the properties of UCBt (σg), which essentially from Assumption 1.480

Following the notations of Section 3, we introduce the following event:481

AT :=
⋂

g∈[G],2≤t≤T

{
|σ̂g,t − σg| ≤

CT√
t

}
Based on Corollary 1 of [13], we have Pπ(AT ) ≥ 1− 2GT−2.5, and conditionally on AT ,482

∀g ∈ [G], t ≥ 2G, |σ̂g,t − σg| ≤
CT√
ng,t

.

We are now ready to prove Lemma 2.483

Lemma 2. With probability at least 1− Õ(T−2),484

0 ≤ UCBt(σg)
2p

p+1 − σ
2p

p+1
g ≤ 4CT√

ng,t

p

p+ 1

(
σg +

2CT√
ng,t

) p−1
p+1

.

Proof. Conditionally on AT , we have:485

UCBt (σg) = σ̂g,t +
CT√
ng,t

= σg +
CT√
ng,t

+ (σ̂g,t − σg)

∈ σg +
CT√
ng,t

+

[
− CT√

ng,t
,

CT√
ng,t

]
= σg +

[
0,

2CT√
ng,t

]
,

where the first equation is due to the definition of UCBt introduced in (7), and the bounding is due to486

the definition of AT . Next, notice that the function x → (σg + x)
2p

p+1 is increasing, which implies487

that488

σ
2p

p+1
g ≤ UCBt (σg)

2p
p+1 ≤

(
σg +

2CT√
ng,t

) 2p
p+1

, (20)

which proves the leftmost inequality in Lemma 2. To prove the rightmost inequality, notice that489

x → (σg + x)
2p

p+1 is also convex, therefore by Jensen’s inequality490 (
σg +

2CT√
ng,t

) 2p
p+1

−σ
2p

p+1
g ≤ 2CT√

ng,t

2p

p+ 1

(
σg +

2CT√
ng,t

) 2p
p+1−1

=
4CT√
ng,t

p

p+ 1

(
σg +

2CT√
ng,t

) p−1
p+1

,

which concludes the proof.491
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A.4 Proof of Lemma 3492

The goal of this section is to prove Lemma 3, which consists of bounding with high probability493

n− n∗. To do so, we will design an alternative sequence ñ, that is simultaneously easy to analyze,494

and upper bounds n with high probability. The motivation for the choice of ñ comes from the choice495

of Variance-UCB.496

We assume through the whole section what the event AT is achieved. For convenience, we view the497

right hand side of Lemma 2 as a quantity of its own, and introduce the width function498

wg : x > 0 → wg(x) :=
4CT√

x

p

p+ 1

(
σg +

2CT

Σp
√
x

) p−1
p+1

,

so that the inequality in Lemma 2 can be rewritten as499

0 ≤ UCBt (σg)
2p

p+1 − σ
2p

p+1
g ≤ Σpwg(ng,t). (21)

We start by proving the following lemma, which follows from the decisions Variance-UCB makes:500

Lemma 8. For t ≥ 2G, we have:501

nXt+1,t − twXt+1
(nXt+1,t) ≤ n∗

Xt+1,t

Proof. The proof exploits the greedy property of the algorithm. At t = 2G, each group is sampled502

exactly twice, and we have UCB2G(σg)
2p

p+1 < +∞ for every group g ∈ [G]. By choice of Xt+1, we503

must have:504

∀g ∈ [G],
UCBt(σg)

2p
p+1

ng,t
≤

UCBt(σXt+1
)

2p
p+1

nXt+1,t
(22)

On the one hand, from the leftmost inequality in (21), we have505

∀g ∈ [G],
σ

2p
p+1
g

ng,t
≤ UCBt(σg)

2p
p+1

ng,t
. (23)

On the other hand, from the rightmost inequality in (21), we have506

UCBt(σXt+1
)

2p
p+1

nXt+1,t
≤

σ
2p

p+1

Xt+1
+ΣpwXt+1(nXt+1,t)

nXt+1,t
. (24)

Therefore by combining both Inequalities (23) and (24) in Inequality (22), we obtain507

∀g ∈ [G],
σ

2p
p+1
g

ng,t
≤

σ
2p

p+1

Xt+1
+ΣpwXt+1

(nXt+1,t)

nXt+1,t
(25)

After multiplying both sides by ng,tnXt+1,t and summing over g ∈ [G], we get:508

nXt+1,t

∑
g∈[G]

σ
2p

p+1
g︸ ︷︷ ︸

=Σp

≤
(
σ

2p
p+1

Xt+1
+ΣpwXt+1(nXt+1,t)

) ∑
g∈[G]

ng,t︸ ︷︷ ︸
=t

we then divide both sides by Σp > 0, and use the formula n∗
g,t =

σ
2p

p+1
g

Σp
t (see Lemma 1) to obtain509

nXt+1,t ≤ n∗
Xt+1,t + twXt+1

(nXt+1,t)

Lemma 8 follows by substracting wXt+1
(nXt+1,t) from both sides.510

Lemma 8 states that the possible excess between the number of samples output by the algorithm and511

the optimal number of samples is not too big, and can be controlled by the width w. Since the width512

decreases in the number of samples, the function513

x → x− twg(x)
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must be increasing and has therefore an inverse function that is also increasing, which we denote514

W t
g(x). We introduce the following sequence, which mimics the behavior stated in Lemma 8:515

ñg,t = ng,t For t = 1, . . . , 2G

ñg,t+1 = ñg,t + 1
(
ñg,t ≤ W t

g

(
n∗
g,t

))
For t ≥ 2G

The sequence is easier to analyze and upper bounds the true number of samples n:516

Lemma 9. We have ñ ≥ n.517

Proof. By construction, the result holds for t = 1, . . . , 2G. Assume for the sake of contradiction that518

the result does not hold for a g ∈ [G] and t + 1 > 2G, and take such a t minimal. For such a pair519

(g, t) We have:520

1(Xt+1 = g) = ng,t+1 − ng,t

> ñg,t+1 − ñg,t

= 1(ñg,t ≤ W t
g(n

∗
g,t))

= 1(ng,t ≤ W t
g(n

∗
g,t)),

where the first step follows from the definition of n, the second step follows from the minimality of t,521

the third step follows from the definition of ñ, and the last step follows from the minimality of t.522

Therefore 1 ≥ 1(Xt+1 = g) > 1(ng,t ≤ W t
g(n

∗
g,t)) ≥ 0, which implies 1(Xt+1 = g) = 1 and523

1(ng,t ≤ W t
g(n

∗
g,t)) = 0, so that524

nXt+1,t > W t
g(n

∗
Xt+1,t).

By taking the inverse of the increasing function W t
g on both sides in the previous equality, we get525

nXt+1,t − twXt+1(nXt+1,t) > n∗
Xt+1,t,

contradicting Lemma 8. Therefore the assumption is wrong and ñ ≥ n, which completes the526

proof.527

Lemma 10. For a fixed g,the sequence {W t
g(n

∗
g,t)}t≥1 is increasing. Consequently,528

ñg,t ≤ W t
g(n

∗
g,t)

+ + 2

Proof. For a fixed x > 0 and t ≥ 1, we have529

(x− (t+ 1)wg(x))− (x− twg(x)) = −wg(x) < 0,

therefore the sequence of functions {x → x− twg(x)}t≥1 is simply decreasing in t, therefore the530

sequence of its inverse functions {x → W t
g(x)}t≥1 is simply increasing in t. Consequently,531

W t+1
g (n∗

g,t+1) ≥ W t
g(n

∗
g,t+1). (26)

Moreover, the function W t
g is increasing in R+, thus532

W t
g(n

∗
g,t+1) ≥ W t

g(n
∗
g,t). (27)

By combining Equations (26) and (27), we obtain533

W t+1
g (n∗

g,t+1) ≥ W t
g(n

∗
g,t),

which proves that the sequence {W t
g(n

∗
g,t)}t≥1 is increasing, thus completing the proof for the first534

part of Lemma 10.535

We derive the second part by induction on t ≥ 1. For t ≤ 2G, the result holds immediately as536

ñg,t = ng,t and ng,t ≤ 2. We assume the result holds for a t ≥ 2G. We distinguish two cases:537
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• ñg,t ≤ W t
g

(
n∗
g,t

)
: This implies that:538

ñg,t+1 = ñg,t + 1

≤ W t
g

(
n∗
g,t

)
+ 1

≤ W t+1,g
p

(
n∗
g,t+1

)
+ 1

≤ W t+1,g
p

(
n∗
g,t+1

)+
+ 2,

where the first step stems from the definition of ñ, the second step stems from the induction539

hypothesis, and the third step stems from the first part of the proof.540

• ñg,t > W t
g

(
n∗
g,t

)
: This implies that:541

ñg,t+1 = ñg,t

≤ W t
g

(
n∗
g,t

)+
+ 2

≤ W t+1,g
p

(
n∗
g,t+1

)+
+ 2,

where the first step stems from the definition of ñ, the second step stems from the induction542

hypothesis, and the third step stems from the first part of the proof.543

Studying both cases concludes our induction and proves the inequality for all t ≥ 1. This concludes544

the proof of Lemma 10.545

Next, we derive an upper bound on W t
g :546

Lemma 11. For x > 0, we have W t
g(x) ≤ x

1−t
wg(x)

x

.547

Proof. Let x, y > 0 with 0 ≤ y − twg(y) = x, so that y = W t
g(x) by definition of W t

g . we have:548

x

1− t
wg(x)

x

=
y − twg(y)

1− t
wg(y−twg(y))

x−twg(x)

= y
1− t

wg(y)
y

1− t
wg(y−twg(y))

y−twg(y)

≥ y = W t
g(x),

which concludes the proof.549

We are now ready to prove Lemma 3.550

Lemma 3. Variance-UCB collects a vector of samples n that, with probability at least 1− Õ(T−2),551

satisfies,552

ng,T − n∗
g,T ≤ 3 +

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
g,T

) p−1
p+1 √

n∗
g,T = Θ(

√
T ).

Proof. Conditionally on AT , all the previous lemmas stated in this section hold. Consequently,553

ng,T ≤ ñg,T

≤ 2 +W t
g(n

∗
g,T )

+

≤ 2 +
n∗
g,T

1− T
wg(n∗

g,T )

n∗
g,T

≤ 2 + n∗
g,T + 1 + Twg(n

∗
g,T )

= 3 + n∗
g,T +

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
g,T

) p−1
p+1 √

n∗
g,T ,

where the first step stems from Lemma 9, the second step stems from Lemma 10, the third step stems554

from first order approximations and the last step stems from Lemma 11.555
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A.5 Proof of Lemma 4556

We follow the notations from Appendix A.1. The goal of this section if to prove Lemma 4. We will557

do so by combining the optimality of λ∗ and by using the properties of Rp,T established in A.1.558

Lemma 4. Let σ ∈ RG
+ and n′ ∈ RG

+ such that
∑

g∈[G] n
′
g = T . Then,559

Rp,T (n
′, σ)−Rp,T (n

∗, σ)

Rp,T (n∗, σ)
≤ p+ 1

2

∑
g∈[G]

(n′
g − n∗

g,T )
2

Tn∗
g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

n′
g

)3p+3 ∥n′ − n∗∥3∞
T 3

= O

(
∥n− n∗∥2∞

T 2
Rp(σ)

)
.

Proof. For λ ∈ K be fixed, from Taylor’s inequality, we have560

∣∣∣∣rp(λ)− rp(λ
∗)− ⟨λ− λ∗,∇rp(λ

∗)⟩ − 1

2
⟨H(λ∗)(λ− λ∗), λ− λ∗⟩

∣∣∣∣ ≤ ∥λ−λ∗∥3∞ sup
u∈[λ,λ∗]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣

We use the derivative formulas obtained in 7 to obtain simple forms for ∇rp(λ
∗), H(λ∗), and561

∂3rp(u)
∂λg∂λh∂λi

. We start by upperbounding ∂3rp(u)
∂λg∂λh∂λi

. From Lemma 1, we have for each g ∈ [G]:562

σ2p
g =

∑
h∈[G]

σ
2p

p+1

h

p+1

(λ∗
g)

p+1 = Σp+1
p (λ∗

g)
p+1.

For a fixed u ∈ [λ, λ∗],
∑

g ug =
∑

g λg =
∑

g λ
∗
g = 1, thus the coordinate g0 achieving the563

maximal
λ∗
g

ug
must have ug0 ≤ λ∗

g0 . Since u ∈ [λ, λ∗] this implies that λg0 ≤ ug0 ≤ λ∗
g0 and564

consequently maxg
λ∗
g

ug
≤ maxg

λ∗
g

λg
. Hence we get:565

|Hg(u)| = Σp+1
p

∣∣∣∣∣
(
λ∗
G

uG

)p+1

−
(
λ∗
g

ug

)p+1
∣∣∣∣∣ ≤ Σp+1

p

(
max

g

λ∗
g

λg

)p+1

,

|Gg,h(u)| = Σp+1
p

∣∣∣∣∣ (λ∗
G)

p+1

(uG)p+2
+

(λ∗
g)

p+1

(ug)p+2
1(g = h)

∣∣∣∣∣ ≤
2Σp+1

p

ming λ∗
g

(
max

g

λ∗
g

λg

)p+2,

|Ig,h,i(u)| = Σp+1
p

∣∣∣∣∣ (λ∗
G)

p+1

(uG)p+3
−

(λ∗
g)

p+1

(ug)p+3
1(g = h = i)

∣∣∣∣∣ ≤
Σp+1

p

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

.

Moreover, since p ≥ 1, all 1− p, 1− 2p, 1− 3p are non-positive, and for j ∈ 1− p, 1− 2p, 1− 3p566

we have from the minimality of λ∗:567

rp(u)
j ≤ rp(λ

∗)j = (Σp)
1
p+1

,
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therefore:568

|HgHhHir
1−3p
p (u)| ≤

(
max

g

λ∗
g

λg

)3p+3

Σ3p+3
p rp(λ

∗)1−3p

=

(
max

g

λ∗
g

λg

)3p+3

Σ3p+3+(1−3p)(1+1/p)
p

=

(
max

g

λ∗
g

λg

)3p+3

Σ1+1/p
p

=

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗)

| (HgGh,i +HhGi,g +HgGh,i) r
1−2p
p (u)| ≤ 3

2Σp+1
p

ming λ∗
g

(
max

g

λ∗
g

λg

)p+2
(
Σp+1

p

(
max

g

λ∗
g

λg

)p+1
)

=
6

ming λ∗
g

(
max

g

λ∗
g

λg

)2p+3

Σ2p+2
p r1−2p

p (λ∗)

=
6

ming λ∗
g

(
max

g

λ∗
g

λg

)2p+3

rp(λ
∗, σ)

|Ig,h,ir1−p
p (u)| ≤

Σp+1
p

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

r1−p
p (λ∗)

=
1

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

rp(λ
∗, σ)

Hence by using the expression of the third derivatives, we get:569 ∣∣∣∣ ∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ ∣∣(1− p)(1− 2p)HgHhHir
1−3p
p (u)

∣∣
+
∣∣∣(1− 2p)(1 + p) (HgGh,i +HhGi,g +HgGh,i) r

1−2p(u)
p

∣∣∣
+
∣∣(p+ 1)(p+ 2)Ig,h,ir

1−p
p (u)

∣∣
≤ 2p2

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗) +

12(p+ 1)2

ming λ∗
g

(
max

g

λ∗
g

λg

)2p+3

rp(λ
∗, σ)

+
(p+ 2)2

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)p+3

rp(λ
∗, σ)

≤ 7(p+ 2)2

(ming λ∗
g)

2

(
max

g

λ∗
g

λg

)3p+3

rp(λ
∗).

As a consequence, by taking the sup over u, g, h, i, x, y, z, we get570

sup
u∈[λ,λ∗]
x,y,z∈N

x+y+z=3
{g,h,i}⊂[G−1]

∣∣∣∣ 1

x!y!z!

∂3rp(u)

∂λg∂λh∂λi

∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

rp(λ
∗) (28)

We now simplify both ∇rp(λ
∗) and H(λ∗). First, since λ∗ is optimal and an interior point of K, we571

have572

∇rp(λ
∗) = 0G (29)

Setting the value λ∗ in Equation (30) implies that for g, h ∈ [G]:573

Hg,h(λ
∗) = (p+ 1)r1−p

p (λ∗)Gg,h(λ
∗)

From the definition of Gg,h we have:574

Gg,h(λ
∗) = Σp+1

p

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
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Hence:575

H(λ∗) = (p+ 1)r1−p
p (λ∗)Σp+1

p

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
= (p+ 1)rp(λ

∗)

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
As a consequence,576

⟨H(λ∗)(λ− λ∗), λ− λ∗⟩ =
∑

g,h∈[G−1]

Hg,h(λ− λ∗)g(λ− λ∗)h

= (p+ 1)rp(λ
∗)

∑
g,h∈[G−1]

(
1

λ∗
G

+
1

λ∗
g

1(g = h)

)
(λ− λ∗)g(λ− λ∗)h

= (p+ 1)rp(λ
∗)


∑

g,h∈[G−1](λ− λ∗)g(λ− λ∗)h

λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)


(∑

g∈[G−1](λ− λ∗)g

)2
λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)

 (λ− λ∗)2G
λ∗
G

+
∑

g∈[G−1]

(λ− λ∗)2g
λ∗
g


= (p+ 1)rp(λ

∗)
∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

,

where the first step steps from the definition of the scalar product, and the second step stems from the577

expression of the Hessian we derived in Lemma 7. In the third step, we distribute the sum over the578

terms 1
λ∗
G

and 1
λ∗
g
1(g = h). In the fourth step, we factorize the first sum, and in the fifth step, we use579

that
∑

g∈[G−1](λ− λ∗)g = (1− λG)− (1− λ∗
G) = λ∗

G − λG. Therefore:580

1

2
⟨H(λ∗)(λ− λ∗), λ− λ∗⟩ = p+ 1

2
rp(λ

∗)
∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

. (30)

Therefore, by combining Equations (29), (30) and Inequality (28), in Taylor Inequality 16, we get:581 ∣∣∣∣∣∣rp(λ, σ)r∗p
− 1− p+ 1

2

∑
g∈[G]

(λg − λ∗
g)

2

λ∗
g

∣∣∣∣∣∣ ≤ 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

λg

)3p+3

∥λ− λ∗∥3∞.

The proof of Lemma 4 follows by setting n′ = Tλ, n∗ = Tλ∗. In this case Rp,T (n
′, σ) = 1

T rp(λ)582

and R∗
p,T = 1

T rp(λ
∗).583

A.6 Putting everything together584

We are now ready to complete the proof of Theorem 1.585

Theorem 1. For any D that satisfies Assumptions 1 and 2 and for any finite p, the regret of Variance-586

UCB is at most Õ(T−2), i.e.,587

Regretp,T (Variance-UCB,D) = Õ(T−2).

Proof. First, notice that588

Regretp,T (Variance-UCB) = Eπ[Rp,T (n, σ)−R∗
p,T (σ)]

= E[Rp,T (n, σ)−R∗
p,T (σ)|AT ]Pπ(AT ) + E[Rp,T (n, σ)−R∗

p,T (σ)|Ac
T ]Pπ(Ac

T )

≤ E[Rp,T (n, σ)−R∗
p,T (σ)|AT ] + ∥σ2∥pPπ(Ac

T ),

23



where the first step stems from the definition of regret introduced in 5, the second step stems from the589

law of total expectation, and the third step stems from both P(AT ) ≤ 1 and Rp,T (n, σ)−R∗
p,T (σ) ≤590

∥σ2∥p. It remains to show that each term in the rightmost side is in Õ(T−2). First, we know that591

Pπ(AT ) ≤ 2GT−2.5 = Õ(T−2). Moreover, we have conditionally on AT :592

Rp,T (n, σ)−Rp,T (n
∗, σ)

Rp,T (n∗, σ)
≤ p+ 1

2

∑
g∈[G]

(ng − n∗
g,T )

2

Tn∗
g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

≤ p+ 1

2

G∥n− n∗∥2∞
T ming n∗

g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

,

where the first inequality stems from Lemma 4, and the second inequality stems from (ng,T −593

n∗
g,T )

2 ≤ ∥n− n∗∥2∞. Since
∑

g ng,T = T , from Lemma 3 we have:594

ng,T − n∗
g,T = −

∑
h̸=g

nh,T − n∗
h,T

≥ −3(G− 1)−
∑
h̸=g

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
h,T

) p−1
p+1 √

n∗
h,T

≥ −3(G− 1)−Gmax
h

4CT p

Σp(p+ 1)

(
σg +

2CT√
n∗
h,T

) p−1
p+1 √

n∗
h,T

≥ −3G− 4GCT p

Σp(p+ 1)

(
minσg +

2CT√
minh n∗

h,T

) p−1
p+1 √

min
h

n∗
h,T ,

where the first step stems from
∑

h nh,T − n∗
h,T =

∑
h nh,T −

∑
h n

∗
h,T = T − T = 0, the second595

step stems from Lemma 3, and the last steps stem from taking the max over the sum. The last596

inequality implies597

∥n− n∗∥∞ ≤ 3G+
4GCT p

Σp(p+ 1)

(
minσg +

2CT√
minh n∗

h,T

) p−1
p+1 √

min
h

n∗
h,T . (31)

In particular, ∥n− n∗∥∞ = Õ(
√
minh n∗

h,t) = Õ(
√
T ) and598

max
g

n∗
g,T

ng,T
≤ 1

1− ∥n−n∗∥∞
minh n∗

=
1

1− Õ(T−0.5)
= Õ(1).

Therefore,599

p+ 1

2

G∥n− n∗∥2∞
T ming n∗

g,T

+
7(p+ 2)2Σ2

p

σ2
min

max
g

(
n∗
g,T

ng

)3p+3 ∥n− n∗∥3∞
T 3

=
p+ 1

2

GÕ(T )

TΘ(T )
+

7(p+ 2)2Σ2
p

σ2
min

Õ(1)
Õ(T 1.5)

T 3

= Õ(T−1).

Recall from Lemma 1 that Rp,T (n
∗, σ) = Θ(T−1). Thus by taking the conditional expectation on600

AT , we have601

E[Rp,T (n, σ)−R∗
p,T (σ)|AT ] ≤ Õ(T−1R∗

p,T (σ)) = Õ(T−2),

which concludes the proof of Theorem 1.602

B Proof of Theorem 2603

Through this section, we fix a policy π.604

In this section, we give a proof to 2. First, we establish an initial lower bound that captures the605

trade-off between how hard it is to distinguish two instances and how hard it is to optimize both under606

the same action (B.1). Next, we provide a specific counter example which regret is at least Θ(T−2)607

(B.2).608
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B.1 Proof of Lemma 6609

Lemma 6. Let π be a fixed policy and Da, Db be two instances with standard deviation vectors610

σa, σb, respectively. Then,611

max{Regretp,T (π,Da),Regretp,T (π,Db)} ≥ d(σa, σb) exp
(
−
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g)
)
.

(11)

Proof. Let Da and Db be two instances with standard deviations σa and σb, and let δ ≥ d(σa, σb).612

Let X be a random variable over {a, b}, we have613

max(Regretp,T (π,Da),Regretp,T (π,Db)) ≥ EX [Regretp,T (π,DX)]

≥ E[Rp,T (n, σ
X)−R∗

p,T (σ
X)|Rp,T (n, σ

X)−R∗
p,T (σ

X) > δ]

× Pπ,X

(
Rp,T (n, σ

X)−R∗
p,T (σ

X) > δ
)

≥ δPX,π

(
Rp,T (n, σ

X)−R∗
p,T (σ

X) > δ
)

Let x̂ be the following (random) classifier:614

x̂ :=


a If Rp,T (n, σ

a)−R∗
p,T (σ

a) ≤ δ

b If Rp,T (n, σ
b)−R∗

p,T (σ
b) ≤ δ

Indifferent Otherwise

Since δ ≥ d(σa, σb), x̂ is well defined. Moreover, Pπ.X

(
Rp,T (n, σ

X)−R∗
p,T (σ

X) > δ
)

≥615

PX(x̂ ̸= X) ≥ inf x̂ PX(x̂ ̸= X), where the infinimum is taken over all the classifiers of {a, b}.616

Moreover, by Pinsker’s inequality, inf x̂ PX(x̂ ̸= X) ≥ exp
(
−KL(Da||Db)

)
. Since we have617

a bandits feedback, we have (see [29]) KL(Da||Db) =
∑

g∈[G] Eπ,Da [ng,t]KL(Da
g ||Db

g), which618

concludes the proof of Lemma 6.619

B.2 The counter-examples620

We recall the two instances we consider621

Da :

{
Da

1 ∼ N
(
0, 1 + 1√

T

)
Da

g ∼ N (0, 1) , ∀g ̸= 1
Db :

{
Db

2 ∼ N
(
0, 1 + 1√

T

)
Da

g ∼ N (0, 1) , ∀g ̸= 2

We start by upper bounding the KL-divergence between the two instances:622

Lemma 12. We have: Eπ,Da [n1,T ]KL(Da
1 ||Db

1) + Eπ,Da [n2,T ]KL(Da
2 ||Db

2) ≤ 1
2623

Proof. For convenience, we set ν := 1√
T

. We use the formula for the KL−divergence of two624

univariate normal distributions of zero mean:625

KL(Da
1 ||Db

1) =
1

2

(
log

(
1 + ν

1

)
+

1− (1 + ν)

1 + ν

)
.

The taylor expansion of the expression above can be derived by combining the expansions of both the626

functions x → log(1 + x) and x → 1
1+x :627

1

2

(
log

(
1 + ν

1

)
+

1− (1 + ν)

1 + ν

)
=

1

2

−
∑
k≥1

(−1)k

k
νk − ν

∑
k≥0

(−1)kνk


=

1

2

∑
k≥1

(−1)kνk
(
1− 1

k

)

=
ν2

2

∑
k≥0

(−1)kνk
(
1− 1

k + 2

)
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Similarly,628

KL(Da
2 ||Db

2) =
1

2

(
log

(
1

1 + ν

)
+

1 + ν − 1

1

)
=

1

2
(ν − log(1 + ν))

= ν −
∑
k≥1

(−1)k

k
νk

=
ν2

2

∑
k≥0

(−1)k

k + 2
νk

Therefore,629

Eπ,Da [n1,T ]KL(Da
1 ||Db

1) + Eπ,Da [n2,T ]KL(Da
2 ||Db

2) ≤ T
(
KL(Da

1 ||Db
1) +KL(Da

2 ||Db
2)
)

=
Tν2

2

∑
k≥0

(
(−1)k

k + 2
+ 1− (−1)k

k + 2

)
νk

=
Tν2

2

∑
k≥0

(−ν)k

=
Tν2

2(1 + ν)

≤ Tν2

2
≤ 1

2

where we use in the first inequality that n1,T , n2,T ≤ T . This concludes the proof.630

Next, we derive a simpler form for dp(σa, σb). We do so by exploiting the symmetries in σa, σb,631

Lemma 13. Let u2 denote the unit vector (1, 1)T . We have:632

dp(σ
a, σb) = rp

(
1

2
u, σa

)
− r∗p(σ

a)

Proof. For x ∈ {a, b}, let Sa
ϵ := {ϵ > 0|rp(λ, σx)− r∗p(σ

x) ≤ ϵ}. Recall that633

dp(σ
a, σb) = inf{δ ≥ 0|Sa

ϵ ∩ Sb
ϵ ̸= ∅}

By symmetry of the problem, we have:634

r∗p(σ
a) = r∗p(σ

b)

and for each (λ1, λ2, λ
′) ∈ K:635

rp((λ1, λ2, λ
′), σa) = rp((λ2, λ1, λ

′), σb)

On the one hand, if rp
(
1
2u, σa

)
− r∗(σa) ≤ ϵ, we must also have rp

(
1
2u, σb

)
− r∗(σb) ≤ ϵ, thus for636

ϵ ≥ rp
(
1
2u, σa

)
− r∗(σa), we have Sa

ϵ ∩ Sb
ϵ ̸= ∅ and therefore dp(σa, σb) ≤ rp

(
1
2u, σa

)
− r∗(σa).637

On the other hand, let ϵ ≥ 0 such that Sa
ϵ ∩ Sb

ϵ ̸= ∅. Each of Sa
ϵ and Sb

ϵ is convex therefore Sa
ϵ ∩ Sb

ϵ638

is also convex. Let λ ∈ Sa
ϵ ∩ Sb

ϵ . By symmetry properties we must also have 1 − λ ∈ Sa
ϵ ∩ Sb

ϵ ,639

and by convexity of the intersection, we must also have 1
2u = 1

2 (λ+ (1− λ)) ∈ Sa
ϵ ∩ Sb

ϵ , therefore640

ϵ ≥ rp
(
1
2u, σa

)
− r∗(σa). By taking the inf we get dp(σa, σb) ≥ rp

(
1
2u, σa

)
− r∗(σa), which641

concludes the proof.642

We are now ready to complete the proof of 2. It remains to show that dp(σa, σb) = rp
(
1
2u, σa

)
−643

r∗p(σ
a) = Θ(T−2).644

Finally, we are ready to prove Theorem 2.645
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Theorem 2. Let p be finite. For any online policy π, there exists an instance Dπ such that for any646

T ≥ 1,647

Regretp,T (π,Dπ) ≥ (p+ 1)

(
κ0 −

κp√
T

)
T−2,

where κ0 is a universal constant and κp is a constant that only depends on p.648

Proof. For simplicity, we show the proof for G = 2. By using the proof of Lemma 4, we derive the649

following lower bound by setting n′ = 1
2T u.650

rp
(
1
2u, σa

)
r∗(σa)

− 1 ≥ p+ 1

2

∑
g∈{1,2}

(
1
2 − λ∗

g(σ
a)
)2

λ∗
g(σ

a)
− 7(p+ 2)2

(ming λ∗
g)

2
max

g

(
λ∗
g

1/2

)3p+3

∥u/2− λ∗∥3∞.

(32)
it is convenient to write ν = 1

2
√
T

and λ∗
1(σ

a) = 1
2 + f(ν). In this case λ∗

2(σ
a) = 1 − λ∗

1(σ
a) =651

1
2 − f(ν). Thus:652

∑
g∈{1,2}

(
1
2 − λ∗

g(σ
a)
)2

λ∗
g(σ

a)
= f(ν)2

∑
g∈{1,2}

1
2 + f(ν) + 1

2 − f(ν)(
1
2 + f(ν)

) (
1
2 − f(ν)

) =
f(ν)2

1
4 − f(ν)2

Since ν > 0, we must have λ∗
1(σ

a) > λ∗
2(σ

a), therefore f(ν) > 0 and ming λ
∗
g = 1

2 − f(ν),653

maxg

(
λ∗
g

1/2

)3p+3

=
(
1 + 1

2f(ν)
)3p+3

. Finally ∥u/2 − λ∗∥∞ = max(f(ν),−f(ν)) = |f(ν)| =654

f(ν). Therefore Equation 32 can be simplified into:655

rp
(
1
2u, σa

)
r∗(σa)

− 1 ≥ p+ 1

2

f(ν)2

1
4 − f(ν)2

− 7(p+ 2)2(
1
2 − f(ν)

)2 (1 + 1

2
f(ν)

)3p+3

f(ν)3 (33)

It remains to derive simpler bounds for f(ν). On the one hand, we have from Lemma 1:656

f(ν) =
(1 + ν)

p
p+1

1 + (1 + ν)
p

p+1

− 1

2
≥

√
1 + ν

1 +
√
1 + ν

− 1

2

=
1

1 + (1 + ν)−1/2
− 1

2

=
1

1 + 1− 1
2ν + o(ν)

− 1

2

=
1

2− ν+o(ν)
2

− 1

2

=
1

2

(
1 +

ν + o(ν)

2
+ o

(
ν + o(ν)

2

)
− 1

)
=

ν

4
+ o(ν).

where the first step is due to p → (1 + ν)
p

p+1 is increasing in p ≥ 1, and the next steps consist of657

deriving the first order approximation of
√
1+ν

1+
√
1+ν

− 1
2 . Therefore, there exists a universal constant658

κ < +∞ such that ∀ν ≤ 1
2 :659

f(ν) ≥ κν.

On the other hand, we have for ν ∈ [0, 1/2]:660

(1 + ν)
p

p+1

1 + (1 + ν)
p

p+1

− 1

2
≤

1 + p
p+1ν

2 + p
p+1ν

− 1

2

≤
1 + p

p+1ν

2
− 1

2

≤ 1

2
ν ≤ 1

4
,
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where the first inequality stems from (1 + x)
p

p+1 ≤ 1 + p
p+1x for x ≥ 0, the second inequality stems661

from p
p+1ν ≥ 0, and the last inequality stems from p

p+1ν ≤ ν ≤ 1/2. We replace the previous662

inequality into (33) to get:663

rp
(
1
2u, σa

)
r∗(σa)

− 1 ≥ (p+ 1)ν2

 κ2/2

1/4− 0
−

7 (p+2)2

p+1

(1/2− 1/2× 1/4)2

(
1 +

1/2

4

)3p+3
ν

2


≥ (p+ 1)ν2

(
2κ2 − 7(p+ 1)

18/64

(
9

8

)3p+3

ν

)

= 2κ2(p+ 1)ν2 − 7(p+ 1)2

18/64

(
9

8

)3p+3

ν3,

where the second step stems from (p+ 2)2 ≥ p+ 1. Thus, for ν ≤ 1
2 , we have:664

rp
(
1
2u, σa

)
r∗p(σ

a)
− 1 ≥ 2κ2(p+ 1)ν2 − 7(p+ 1)2

18/64

(
9

8

)3p+3

ν3 (34)

We then use Inequality (34), Lemma 12 in the inequality stated in Lemma 6 to derive ∀ν ≤ 1
2 :665

max
(
Regretp,T (π,Da),RegretT (π,Db)

)
≥ 1

T

(
2κ2(p+ 1)ν2 − 7(p+ 1)2

18/64

(
9

8

)3p+3

ν3

)+

exp

(
−Tν2

2

)
By recalling that ν = 1

2
√
T
≤ 1

2 , we have:666

max
(
Regretp,T (π,Da),RegretT (π,Db)

)
≥ (p+ 1)

T 2

(
2κ2 − 24(p+ 1)√

T

(
9

8

)3p+3
)+

exp

(
−1

8

)
which concludes the proof by setting κp := 24 exp

(
− 1

8

)
(p+ 1)

(
9
8

)3p+3
and κ0 := 2 exp

(
− 1

8

)
κ2.667

668

C Upper and lower bounds when p = ∞669

The proof for Theorem 3 (upper bound when p = ∞) follows the same high-level steps as the proof670

of Theorem 1 (upper bound when p ∈ R). However, some adjustments of the proofs are necessary.671

Table 2 summarizes the changes that are required.

Result Does it hold for p = +∞ ? Comments
Lemma 1 Yes Proof needs modification

Lemmas 2, 3 Yes Same proof
Lemma 4 No Replaced by Lemma 14

Lemmas 6, 12, 13 Yes Same proof
d(σa, σb) = Θ(T−2) No Replaced by d(σa, σb) = Θ(T−1.5)

Table 2: Summary of the possible extensions to p = +∞

672

In Appendix C.1, we prove Lemma 1 for the case where p = +∞. In Appendix C.2, we introduce673

and prove Lemma 14, the replacement for Lemma 4. In Appendix C.4, we prove Theorem 4.674

C.1 Extending Lemma 1675

Lemma 1. [Benchmark analysis] For each t ∈ N and p ∈ [1,+∞], let n∗
g,t :=

σ
2p

p+1
g t∑

h∈[G] σ
2p

p+1
h

. Then,676

R∗
p,t(σ) = Rp,t(n

∗
t , σ) =

1

t
Rp,t(n

∗
1, σ). (9)

28



Proof. For the case where p = +∞, r∞ is still continuous on SG and infinite whenever a coordinate677

is zero. Therefore:678

∅ ≠ argminSG
r∞ = argminSG∩(R∗

+)Gr∞

Let λ ∈ argminSG
r∞ with λ > 0. Set A := {g ∈ [G]|σ

2
g

λg
is maximal} and B := G − A. For the679

sake of contradiction, we assume that B ̸= ∅ and let us consider an element g ∈ B. We will construct680

a λ′ ∈ SG satisfying r∞(λ′) < r∞(λ) and contradicting the minimality of λ First, set:681

κ :=

λg

σ2
g
−

∑
a∈A λa∑
a∈A σ2

g

1∑
a∈A σ2

a
+ 1

σ2
g

and for each h ∈ [G], set:682

λ′
h =


λh for h ∈ B − {g}
λh +

σ2
h∑

a∈A σ2
a
κ for h ∈ A

λh − κ for h = g

Note that:683 ∑
h∈[G]

λ′
h =

∑
h∈[G]

λh +
∑
h∈A

σ2
h∑

a∈A σ2
a

κ− κ =
∑
h∈[G]

λh = 1

Let us now prove that λ′ > 0. For h ∈ B − {g}, the result is true since λ′
h = λh ≥ 0. Moreover, by684

construction of A and g, we have for each h ∈ A:685

λg

σ2
g

>
λh

σ2
h

=

∑
a∈A λa∑
a∈A σ2

a

In particular, κ > 0 and λ′
h > 0 for each h ∈ A. Lastly, we have686

λ′
g = λg − κ =

1
1∑

a∈A σ2
a
+ 1

σ2
g

(
λg

σ2
g

+
λg∑

a∈A σ2
a

−
(
λg

σ2
g

−
∑

a∈A λa∑
a∈A σ2

g

))

=
1

1∑
a∈A σ2

a
+ 1

σ2
g

(
λg +

∑
a∈A λa∑

a∈A σ2
a

)
> 0

We next prove that r∞(λ′, σ) < r∞(λ, σ). For h ∈ B − {g}, we have:687

σ2
h

λ′
h

=
σ2
h

λh
< r∞(λ, σ)

Next, we have for any a ∈ A, σ2
h

λa
= r∞(λ, σ), thus:688

σ2
h

λ′
h

=
σ2
h

λh +
σ2
h∑

a∈A σ2
a
κ
=

1

λh

σ2
h︸︷︷︸

= 1
r∞(λ,σ)

+
1∑

a∈A σ2
a

κ︸ ︷︷ ︸
>0

< r∞(λ, σ)

Finally, by choice of κ, we have:689

σ2
g

λ′
g

=

∑
a∈ σ2

a∑
a∈A λ′

a

< r∞(λ, σ)

Therefore r∞(λ′, σ) = maxh∈[G]
σ2
g

λg
< r∞(λ, σ), contradicting the minimality of λ. Hence our690

assumption is wrong and B = ∅, or equivalently, A = [G], which implies that for any possible691

minimizer λ, we must have:692

∀g, h ∈ [G],
σ2
g

λg
=

σ2
h

λh

which implies that argminr∞ = {λ∗(∞)}693

694
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C.2 Extending Lemma 4 to R∞695

The upper bound Lemma 4 goes to +∞ as p = +∞ and is no longer insightful. In this section, we696

provide a suitable bound:697

Lemma 14. Let σ ∈ RG
+ and n′ ∈ RG

+ such that
∑

g∈[G] n
′
g = T . Then, We have:698

R∞(n′, σ)

R∗
∞,T (σ)

≤ 1 + max
g

∣∣∣∣∣1− n′
g,T

n∗
g,T

∣∣∣∣∣+max
g

(
n∗
g,T

n′
g,T

)3

max
g

∣∣∣∣∣1− n∗
g,T

n′
g,T

∣∣∣∣∣
2

Proof.699

From Lemma 1, we have:700

σ2
1

λ∗
1

= . . . =
σ2
G

λ∗
G

= r∗∞

Thus for g ∈ [G], we have:701

σ2
g

λg
≤ r∗∞ +

∣∣∣∣∣σ2
g

λg
−

σ2
g

λ∗
g

∣∣∣∣∣
≤ r∗∞ +

σ2
g

(λ∗
g)

2
|λg − λ∗

g|+ σ2
g max

(
1

λg
,
1

λ∗
g

)3

|λg − λ∗
g|2

≤ r∗∞

(
1 + max

g

∣∣∣∣1− λg

λ∗
g

∣∣∣∣+max
g

(
λ∗
g

λg

)3

max
g

∣∣∣∣1− λ∗
g

λg

∣∣∣∣
)

The proof follows from taking the maximum over g ∈ [G] and setting n∗ = Tλ∗, and n′ = Tλ.702

C.3 Proof of Theorem 3703

Theorem 3. For any D that satisfies Assumptions 1 and 2,704

Regret∞,T (Variance-UCB,D) = Õ(T−3/2).

Proof. Similarly to Appendix A.6, we decompose the regret into two terms, and Inequality (??) still705

holds:706

Regret∞,T (Variance-UCB) ≤ E[R∞,T (n, σ)−R∗
∞,T (σ)|AT ] + ∥σ2∥∞Pπ(Ac

T ). (35)

We now show that each term in the right hand side of 35 is in Õ(T−1.5). We have Pπ(Ac
T ) =707

Õ(T−1.5). It remains to show that E[R∞,T (n, σ)−R∗
∞,T (σ)|AT ] = Õ(T−1.5). For this, we apply708

Lemma 14 for nT . Conditionally on AT , we have:709

R∞(nT , σ)

R∗
∞(σ)

≤ 1 + max
g

∣∣∣∣∣1− ng,T

n∗
g,T

∣∣∣∣∣+max
g

(
n∗
g,T

ng,T

)3

max
g

∣∣∣∣1− n∗
g,T

ng,T

∣∣∣∣2 (36)

≤ 1 +
∥nT − n∗

T ∥∞
ming n∗

g,T

+max
g

(
n∗
g,T

ng,T

)3 ∥nT − n∗
T ∥2∞

(ming n∗
g,T )

2
(37)

From Lemma 1, ming n
∗
g,T = Θ(T ) and that R∗

∞,T (σ) = Θ(T−1). From A.6, we know that710

∥nT − n∗
T ∥∞ = Õ(

√
T ) and that

n∗
g,T

ng,T
= Õ(1). Therefore, conditionally on A)T ,711

R∞(nT , σ)−R∗
∞,T (σ) ≤

(
∥nT − n∗

T ∥∞
ming n∗

g,T

+max
g

(
n∗
g,T

ng,T

)3 ∥nT − n∗
T ∥2∞

(ming n∗
g,T )

2

)
R∗

∞,T (σ) = Õ

(
R∗

∞,T (σ)√
T

)
= Õ

(
T−1

√
T

)
= Õ(T−1.5).

Where the terms in Õ do not depend on the randomness of Variance-UCB, but only on the instance712

of the problem. Therefore by taking the conditional expectation on AT we get E[R∞,T (n, σ) −713

R∗
∞,T (σ)|AT ] = Õ(T−1.5), which completes the proof.714
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C.4 Proof of Theorem 4715

Theorem 4. For any online policy π, there exists an instance Dπ such that for any T ≥ 1,716

Regret∞,T (π,Dπ) ≥
2

5
T−3/2.

Proof. Notice that Lemmas 6, 12 and 13 still hold for p = +∞. Similarly to the proof for Theorem717

2, it remains to derive a lower bound on r∞
(
1
2u, σa

)
− r∗∞(σa). We have for 1

2
√
T
≤ 1

2 ,718

r∞

(
1

2
u, σa

)
= max

(
(σa

1 )
2

1/2
,
(σa

2 )
2

1/2

)
= max

(
1 + 1

2
√
T

1/2
,

1

1/2

)

= 2

(
1 +

1

2
√
T

)
r∞(σa) = (σa

1 )
2 + (σa

2 )
2

= 2 +
1

2
√
T

therefore:719

r∞

(
1

2
u, σa

)
− r∗∞(σa) = 2

(
1 +

1

2
√
T

)
−
(
2 +

1

2
√
T

)
=

1

2
√
T

(38)

We replace 38 and the inequality from Lemma 12 in the inequality from Lemma 6 to derive:720

max
(
Regret∞,T (π,Da),Regret∞,T (π,Db)

)
≥

1
2
√
T

T
exp

−T 1
2
√
T

2

2


thus we obtain:721

max
(
Regret∞,T (π,Da),Regret∞,T (π,Db)

)
≥ exp(−1/8)

2T
√
T

≥ 2/5

T
√
T

722
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