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In this supplementary material, we start by summarizing the notation definitions used in this paper in
Sec.[l] Then, Sec.|2|gives the details of the CMF [1] applied in C3L and elaborates on the feature
transformation process and corresponding dimension changes within DMR module. In Sec. [3] we
illustrate various semi-supervised settings in related tasks and our Semi-MVSS. Sec. [] presents
more visualizations of the MVUAV dataset across various scenarios and discusses related aerial-view
datasets and data alignment process. In Sec.[5] we provide more quantitative results, including
benchmarking results on the new MVUAV dataset under the fully-supervised setting, segmentation
results using different backbones, the exploration of SemiMV’s extension capabilities, more detailed
ablation analysis, using MVNet [2] as baseline, hyperparameter analysis, training scheme analysis,
more analysis on L.g; loss, and comparison with cross probability consistency. Finally, we discuss
potential limitations with some feasible solutions for reference in Sec. [6]

1 Notation Table

In Table(l} a summary of the notation definitions is presented for better understanding.

2 Technical Details

2.1 Details of CMF in SemiMV

In the main paper, we have verified the necessity of cross-modal collaboration for the effective
functioning of the SemiMV framework. It is implemented using the Cross-modal Fusion (CMF)
module adapted from [[1]], which explicitly selects complementary information from two modalities
and captures discriminative cross-modal features. Below is the details of the CMF moudle.

Specifically, £f*, fT € RP:*HixWi represent the unimodal features extracted from the RGB and
thermal encoders, where D;, H;, and W; refer to the channel, height, and width number of the ¢-th
layer, respectively. A gate function is employed to measure the usefulness of information propagated
from each modality features, which is made up of a 3 x 3 convolutional layer followed by a Sigmoid
activation function. Two normalized informative gate maps Gt € [0, 1]7:*Wi and GT € [0, 1]Hi*W:
can be obtained by:

GE = gate(fF) = o(Conv(fR)), |

GT = gate(fl') = o(Conv(f])), M

where o is the Sigmoid activation function. Taking RGB as an example, the higher value of position
(,y) in this map indicates that RGB feature vector in f{* has useful information at the same position.
Conversely, the lower value means that RGB feature has useless information or little information.
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Table 1: Summary of the notations and corresponding definitions used in this paper.
Notation Definition

IE 1T A pair of RGB and thermal frames at time step i.

t The time subscript for query (current) frame.

M The number of past frames used in memory.

{t—M,...;t—1,i} The set of time scripts of query (current) and memory (past) frames.
V={(IF TN}, A specific multispectral video clip unit.

DL = {(VI, y,)}"L, | The labeled set; ny, represents the number of labeled video clips; y, denotes the
ground-truth mask for the final frame of each clip, in a space of C' classes.

DU =V, The unlabeled set; ny; represents the number of unlabeled video clips.

DV = {(VY,y,)}"Y, | The evaluation set; ny represents the number of evaluation video clips.

PE, PT The initial segmentation predictions.

YE, YT The generated one-hot pseudo labels.

ff , fZﬂ € REXWXD The initial query features, where H x W represents the spatial size, D is the channel
dimension.

{fZR, f?}ie [t—M,-t—1] | The initial memory features.

R; € REXWxI The pixel-wise reliability map in the DMR module.

p* The prototypical memory feature bank on each modality, in which {p* €
RMCXD}*E{R.’T}.

w* The intermediate attention matrix in the DMR module.

F?, FtT The memory-enhanced query features.

pPE PT The updated predictions inferred from updated query features.

YR VT The updated one-hot pseudo labels.

pjmal The final segmentation prediction.

Naturally, two uninformative gate maps G € [0, 1]%+*W: and GT € [0,1)%i*W: can be generated
by an inverse operation. The formulation is

GR=1-GRF
2 . @)
{aroiman
Two enhanced unimodal features £ and f7 are obtained by:
f7 =Gl = ff,

where ® denotes element-wise multiplication. Through this operation, information redundancy can
be avoided by enhancing the useful information of these features and effectively suppressing the
useless ones. To exploit the cross-modal complementary relationship, the same operation is conducted
between the uninformative gate maps (G and GT') and enhanced unimodal features from another

modality (f7 and /) to get complementary cross-modal features f'iR—T and f'l-T R,

{ £ =Gl afl,
f-F =GT @ R
Note that the useful information from thermal branch is selected by uninformative gate map of
RGB branch and propagated to those positions where there is little information in RGB features.
With this operation, the RGB features are complemented by the thermal features. Besides, to
preserve the original information of each modality, a residual connection is performed. Thereby,
the RGB-dominated cross-modal intermediate feature £™~“°"""" can be captured, which have the
complementary information passing from thermal features. And in the thermal branch, the above
two steps are adapted the same as in RGB branch, so the two cross-modal enhanced features can be
obtained by:

“

¢R_compl _ eoR R eR_T
{fi =R+ £F + £, 5)

fr-compt — g7 L 7 4 11,

The two enhanced features f/™=“°"""" and f/—“""""', are each forwarded to subsequent layers of

their respective encoder networks to further facilitate cross-modal feature extraction. Within our
SemiMV framework, which incorporates the DeepLabv3+ architecture as segmentation network, the
CMF module is inserted at the second and fifth encoding layers to enable an effective cross-modal
collaboration between the RGB and thermal data streams.
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Figure 1: Detailed illustration of the internal transformation process within the DMR module.

2.2 Details of DMR in SemiMV

For better understanding, we illustrate the feature transformation process and corresponding di-
mension changes within the DMR module in Fig. [I] in relation to Egs. 4, 5, and 6 of the main

paper.

3 Task Definition

In Table [2| we illustrate the information used in the new semi-supervised MVSS task and related
semantic segmentation tasks. As observed, the Semi-MVSS task utilizes a richer set of information,
combining the benefits of both multispectral videos and semi-supervised learning. We also provide
an intuitive visualization demo on our [project website.

Table 2: Illustrations of information used in the semi-supervised MVSS (Semi-MVSS) task and
related semantic segmentation tasks. * In our reimplemention of semi-supervised RSS models on
the MVSS datasets, all unlabeled video frames are treated as individual images and engaged in the
training process.

Information
Task R Thermal Labeled Unlabeled Video
RSS
Thermal-SS
MSS

VSS

MVSS
Semi-RSS
Semi-VSS
Semi-MVSS
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4 The MUVAU Dataset

4.1 More Visualizations

Fig.[2[showcases a set of examples taken from the MVUAV dataset, offering an overarching view of the
data it contains. Meanwhile, for better understanding, we also provide dynamic video visualizations
on our project website.


https://jiwei0921.github.io/MVUAV
https://jiwei0921.github.io/MVUAV/

Figure 2: Some examples from our MVUAV dataset.

Fig. 3] displays several representative multispectral video sequences with dense semantic annotations
from the MVUAYV dataset under various conditions.

* (a) presents an urban street scene during twilight or early evening. The scene is alive with
activity, featuring a parking area teeming with cars, trucks, and motorcycles, some parked,
others in motion. Some individuals are observed engaging in various activities, either
standing or walking through the area.

* (b) depicts a typical urban traffic scenario. A mix of vehicles and pedestrians coexist,
navigating through the city’s transport infrastructure. The vantage viewpoint allows for a
clear observation of traffic patterns and road usage.

* (c) showcases a busy urban intersection, where traffic seems chaotic. Cars, trucks, and
motorcycles are scattered across the intersection. Pedestrians are visible along the sidewalks,
with some crossing the street or standing near the roadside. A row of buildings lines the right
side of the image, and individuals are seen walking along the street. This image highlights
the complexity and challenges of transportation in densely populated urban areas.

* (d) shows a city road at night with a modest flow of vehicles. It provides a contrast to the
bustling daytime scenes.

* (e) portrays a challenging busy road at night, characterized by low visibility and the glare
of strong headlight reflections. The difficulty in discerning specific details is notable.
The inclusion of a thermal map offers significant assistance in identifying objects in such
challenging conditions.

* () illustrates a street scene under extremely low illumination. A pedestrian is almost
invisible in the RGB image. The complementary thermal map is crucial for enhancing scene
understanding in such low-light conditions.

4.2 Dataset Analysis and Processing

Discussions with MVSeg and UAV-view Datasets. In this paper, we explore a new UAV-view
perspective for multispectral video semantic segmentation, offering a distinct bird’s-eye viewpoint
that complements existing ground-level datasets like MVSeg [2]], which advances the MVSS field.
Meanwhile, thanks to the unique characteristics of UAVs, which provide a broader and more holistic
view free from the constraints of ground-level capture, MVUAV encompasses extra challenging
scenes such as rivers, boats, bridges, and playgrounds, as shown in Fig.[2] This characteristic is
advantageous for applications that require comprehensive coverage in challenging conditions, such
as aerial nighttime search and rescue, sea patrols, firefighting response support, traffic management,
and UAV delivery services [3, 14} [5]].
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Figure 3: Sample frames and annotations from six representative video sequences in our MVUAV
dataset, showcasing a variety of conditions including daytime, low light, and darkness. From left to
right: RGB/Thermal sequences with their pixel-level dense annotations.



Table 3: A comparison between existing aerial-view datasets and our proposed MVUAV dataset.
‘Seg. Task’ indicates whether the dataset supports segmentation tasks. ‘#GTs’ and ‘#Cls’ are the
shorthand for the number of segmentation ground truths and semantic classes.

Dataset Color Infrared Video Seg. Task | #Vids(Frames) #GTs Resolution #Cls
VisDrone2018 [6] v v 263 (179k) - 3840x2160 (max)
UAVDT [7] v v 100 (80k) - 1080x 540

URUR [8] v v - 3,008 5120%x5120 8
LoveDA [9] v v - 5,987 1024 x 1024 7
MVUAV (Ours) 4 4 4 v 413 (54k) 2,183 1920 x 1080 36

Table 4: Benchmarking MVUAV dataset under the fully-supervised setting. RSS: RGB-based
semantic segmentation methods; VSS: video semantic segmentation methods; MSS: multispectral
semantic segmentation methods; MVSS: multispectral video semantic segmentation methods.

Method | Category | Backbone [ mloU
CCNet [27] RSS ResNet50 33.29
OCRNet [28] RSS ResNet50 33.76
STM [29] VSS ResNet50 3391
LMANet [30] VSS ResNet50 34.05
CFFM [31] VSS MiT-B1 34.13
MFNet [10] MSS Mini-Inception 33.17
RTFNet [32] MSS ResNet152 34.09
EGFNet [14] MSS ResNet152 34.47
EAEFNet [11] MSS ResNet152 34.65
MVNet [2] MVSS ResNet50 35.21
SemiMV* MVSS ResNet50 36.43

In Table[3| we additionally review related aerial-view datasets, highlighting the differences compared
to our own. As shown, VisDrone2018 [6] and UAVDT [7] are two large-scale datasets designed
primarily for object detection and tracking tasks in UAV-view RGB videos and/or images, providing
bounding box annotations for target objects. In contrast, our MVUAV dataset is focused on the
semantic segmentation task in UAV-view RGB-thermal videos, offering dense pixel-wise semantic
annotations. URUR [8]] and LoveDA [9] are two high-resolution segmentation datasets collected by
high-quality satellite or Spaceborne images. The key advantage of our MVUAV dataset compared
to URUR and LoveDA is the inclusion of complementary multispectral (RGB-thermal) videos.
This feature aids in detecting target objects at nighttime or in adverse lighting conditions, thereby
enhancing low-light vision capabilities.

Dataset Alignment. The well-aligned RGB-T pairs are crucial for multimodal segmentation tasks [[10}
L1220 130144 154116, 1170181194120, 211 1224 1231 241 125]]. To ensure the quality of our MVUAY, careful
attention was given to alignment during the collection and preparation stages of both the sourced
VTUAV dataset [26] and our MVUAV dataset. In the VTUAV, [26] manually identified corresponding
feature points on both RGB and thermal images and calculated an affine transformation matrix from
these points. Using this matrix, one image was warped to align with the other, and the common
overlapping regions were extracted and resized to a consistent resolution while maintaining the aspect
ratio. This ensures that most frames are well-aligned. Additionally, we performed a visualization
screening process by overlaying thermal heat maps onto paired RGB images. This made it easier
for our inspectors to verify alignment and allowed us to filter out low-quality samples (e.g., similar
content, blurred, or misaligned images), thus further enhancing the overall quality of the MVUAV.

S More Experimental Results

Fully-supervised Setting. In the main paper, we have presented comprehensive benchmarking
results of diverse semantic segmentation models using different input modalities, specifically in the
semi-supervised setting. Here, we further benchmark the new MVUAV dataset in the fully-supervised
setting. We reproduce existing RSS, VSS, MSS, and MVSS models on the MVUAV dataset using
their official codes. The results are systematically summarized in Table 4, Here, SemiMV™* is
trained with all labeled multispectral videos. We anticipate that the benchmarking results on both
semi-supervised setting and fully-supervised setting will facilitate the utilization of the new MVUAV
dataset.



Different Backbones. Table [5| presents an evaluation of the proposed SemiMV network using
different backbones. These include two CNN-based backbones (FCN [33]] and DeepLabv3+ [34]) and
one transformer-based backbone (SegFormer [35]]). It can be observed that our SemiMV networks
significantly enhance the performance over the SupOnly (RGBT) baselines, e.g., from 36.88% to
43.04% with DeepLabv3+. Notably, our SemiMV employing SegFormer as the segmentation network
achieves an impressive mloU score of 43.51%.

Table 5: Evaluation of SemiMV with different backbones on the MVSeg dataset under the 1/4 training
partition setup. FCN and DeepLabv3+ adopt ResNet50 as feature extractor, and SegFormer uses
MiT-B2 as feature extractor.

FCN [33] DeepLabv3+ [34] SegFormer [35]
SupOnly  Ours | SupOnly Ours | SupOnly Ours

mloU [ 3627 42.66 [ 36.88 43.04 [ 38.02 43.51

*

Table 6: Extensions of SemiMV framework by combining mean-teacher strategy [36] or data
augmentation [37]]. Experiments are carried out on the MVSeg dataset under the 1/4 training partition
setup, with DeepLabv3+ as the backbone.

Extended models | mloU
SemiMV 43.04
SemiMV + Mean-Teacher [36] 43.59
SemiMV + Augmentation (CutMix [37]) 43.41

Table 7: Ablation analysis for the design of semi-supervised MVSS baseline. The architectures can
be referred to Fig. ]

Index Setting mloU
(a) RGB supervised only 35.79
(b) CPS (RGB as input) 39.27
(c) CPS (RGBT as 4-channel input) 39.81
(d) C3L w/o cross collaboration 36.67
(e) C3L with direct collaboration 40.28
® C3L w/o cross supervision 39.12

C3L with both cross supervision and
@ collaboration 40.73
(h) C3L + DMR w/o denoised R; 41.85
@) C3L + DMR 42.39
G SemiMV (i.e., with Dual-C3L) 43.04

Extended Models. We also empirically study the extensions of our method by integrating it with the
mean-teacher strategy [36] and data augmentation [37] in Table @ In the mean-teacher extension,
a SemiM V-teacher network is created, which is updated using an exponential moving average of
the parameters from the SemiM V-student network. The output from the SemiM V-teacher is used to
generate one-hot pseudo labels, which in turn supervise the final predictions of the SemiM V-student.
In the strong data augmentation extension, we apply the powerful CutMix [37] technique to augment
the training RGB-T video pairs. The results of these extensions are presented in Table[6] We can
observe that consistent improvements in segmentation performance are achieved. This highlights the
exceptional extension capabilities of our SemiMV framework.

Detailed Ablation Analysis. To facilitate a clear understanding of the various settings employed in
our ablation study, we have illustrated these configurations in Fig.[d] with the corresponding results
detailed in Table[7] First, the comparison among settings (a), (b), and (c) indicates that integrating
semi-supervised learning and thermal infrared information substantially enhances performance. In
(c), (e) and (g), we explore different strategies for RGB and thermal fusion. These include using
RGB-Thermal as a 4-channel input (input fusion), direct collaboration (illustrated in the upper right
corner of Fig. E]), and the CMF-based cross-modal collaboration within our C3L module. Notably,
compared to the model without cross-modal collaboration (model (d)), the introduction of any
cross-modal collaboration strategy consistently and significantly boosts segmentation performance,
underscoring the crucial role of cross-modal collaboration in the effective functioning of the SemiMV
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Figure 4: Diagrams of different ablation settings in Table [/} (a) RGB-based baseline using only
supervised training. (b) RGB-based cross pseudo supervision (CPS [38]]). (c) RGBT-based CPS
using a 4-channel input. (d) C3L without cross collaboration. (e) C3L with direct collaboration. (f)
C3L without cross supervision, employing individual mean-teacher pseudo supervision. (g-j) Our
method incorporating C3L, DMR, and Dual-C3L. The top right legend illustrates direct and cross
collaboration mechanisms.

framework. Among these, the CMF-based approach achieves the highest performance, benefiting
from its robust cross-modal fusion capabilities. Additionally, the comparison between models (f) and
(g) demonstrates that cross-supervision between two streams outperforms mean-teacher supervision
of individual streams. This effectiveness is attributed to the C3L’s capability to mutually correct
potential errors, thereby enhancing overall accuracy. Lastly, we assess our denoising strategy, DMR
and Dual-C3L in Table[/](h)-(j). The results confirm that our proposed reliability estimation strategy
effectively filters out unreliable features in the DMR fusion process. Furthermore, our Dual-C3L
approach significantly enhances the combined strengths of our C3L and DMR strategies, effectively
leveraging unlabeled multispectral videos for semi-supervised MVSS.

Table 8: Ablation analysis on using MVNet as backbone.

SemiMV using basic backbone
43.04

SemiMV using MVNet as backbone
44.10

Table 9: Ablation study on the impact of memory size (M).

Memory Size
M)

w/o temporal
M=0

M=1

M=2

M=3

M=4

M=5

mloU (%)

40.73

41.95

42.61

43.04

43.10

43.05

MYVNet as Baseline. In the MVSS field, MVNet [2] serves as a strong baseline. Here, we explore
using MVNet as our backbone in the Semi-MV framework. As shown in Table[8] our SemiMV using
MYVNet as backbone further improves the segmentation performance, benefiting from semi-supervised
learning to effectively utilize unlabeled RGB-thermal videos and our denoising strategy to further
improve MVRegulator loss in MVNet [2].

Hyperparameter Analysis. We further investigate the impact of M and X (the number of past frames
stored in memory, and the loss weight). As shown in Table[9]and Table[I0} adding memory frames
consistently improves mloU scores, with a noticeable increase from 40.73% to 43.04% when M = 3.
Raising M further beyond 3 gives marginal returns. Thus, we set M = 3 for a better trade-off



Table 10: Ablation study on the impact of the trade-off loss weight ().

Parameter (\)

A=0.01

A=0.1

A=1

A=10

mloU (%)

41.89

42.66

43.04

42.95

Table 11: Ablation analysis of training strategy.

SemiMV with warm-up training (Ours)

SemiMV w/o warm-up training

43.04

41.53

Table 12: Robustness analysis of our SemiMYV baseline. In this paper, we report the middle perfor-
mance of the three experiment results as final results.

Training Case 1
43.04

Training Case 2
43.03

Training Case 3
43.07

Table 13: Ablation analysis of different loss combinations. The results are obtained on MVSeg dataset
under the 1/4 data partition protocol. Lg,,, represents the supervision losses involved in SemiMV for
the labeled frames. £L,;, L57" and L¥57 represent the SemiMV using our C3L based on cross
pseudo supervision for labeled frames, unlabeled intra-video past frames within sparsely labeled
videos and entirely unlabeled videos, respectively. The subscript ‘pC3L’ means the C3L with the
cross probability consistency loss on the labeled/unlabeled set. The overall performance on C3L with
the cross pseudo supervision on both the labeled and unlabeled data is the best.

Analysis of losses mloU
ESup UC3L Eésiv E&E £LC3L E£c§2 EZC;L

v 40.17
v v 40.49
4 4 v 41.16
v v v 42.84
v v v v 43.04
v v v v 41.78

between accuracy and memory cost. For A, we found that A = 1 balances supervised and pseudo
losses effectively.

Training Analysis. In Table|11] we study the impact of the backbone warm-up training scheme (i.e.,
supervised loss in Eq. 1). The results indicate a performance decrease of 1.51% when the backbone
warm-up stage is omitted. This degradation occurs because the warm-up process enables the model to
generate more meaningful supervision guidance for unlabeled video frames during the early stages of
training, which in turn enhances the feature representation quality for training the SemiMV. Besides,
we conduct three running experiments on the SemiMYV, as presented in Table[T2] These results further
verify the reasonability and robustness of our SemiMV framework.

More Analysis on Lo37, Loss. We also conduct more analysis on the Losz loss in Table We
modify the videos/frames engaged in the training process of C3L, including using only labeled
frames (L%, ), using sparsely labeled videos (labeled frames and their unlabeled past frames, L4,

+ L£%21") and using all videos (sparsely labeled videos and extra unlabeled videos, £, + Li51"

+ L{57). As detailed in Table |13} the gradual incorporation of more unlabeled data consistently
enhances performance, validating the effectiveness of our approach and demonstrating the potential
of semi-supervised learning for the MVSS task. Our design of engaging both sparsely labeled videos
and extra unlabeled videos achieves the best performance.

Comparison with Cross Probability Consistency. We compare our method with cross probability
consistency (using L loss, L£,c3r,) in the last two rows of Table We can see that our original
cross pseudo supervision design outperforms cross probability consistency by 1.26% mloU. This
empirical result is align with findings reported in CPS [38]]. We conjecture this is due to that one-hot
pseudo labels provide more confident supervision signals compared to the probabilistic predictions,
which encourages the model to output confident predictions on unlabeled data.



Table 14: Analysis of the small-object problem in the MVUAYV, under the 1/4 training partition setup.

SemiMV SemiMYV using multi-scale ensemble technique
26.52 27.64

6 Discussion and Outlook

Here we discuss three challenges and potential directions for future work. (1) Due to the high
cost of labeling, the existing MVSS datasets are still relatively small in size. While the introduced
semi-supervised MVSS task can mitigate the issue of label scarcity, its performance still falls short of
the demands of real-world applications. Investigating photorealistic rendering technologies [39]] could
offer another promising avenue for progress. We could explore creating simulated data or augmenting
existing annotations using these techniques, potentially lowering labeling costs substantially. (2)
Meanwhile, our introduction of a SemiMV baseline opens new avenues in semi-supervised MVSS.
However, this line of research is still in its initial stage, and the accuracy has large room for
improvement. We may extend the SemiMV framework to incorporate ideas from the established field
of semi-supervised learning, e.g., mean-teacher strategy [36] and data augmentation/perturbation
[37], to enhance model’s performance. Besides, we can consider extra guidance signals (e.g., contour
[40,!41]) to aid in identifying unreliable areas in pseudo labels, further refining the process. (3) In
addition, this work introduces a new UAV-view MVSS dataset, MVUAYV, which can complement
the eye-level viewpoint of existing MVSeg dataset and serve as an additional resource for a more
thorough evaluation of MVSS models. However, this dataset presents specific challenges, particularly
with smaller targets and scale variation in UAV views. To address these issues, we adapted a widely-
used multi-scale ensemble technique [42] from aerial imagery analytics to our SemiMV framework,
incorporating an additional resolution of 360 x 540 for ensemble operations. As shown in Table [I4}
addressing the unique challenges of the UAV view can significantly enhance overall performance.
Furthermore, when higher resolution and finer analysis are required, off-the-shelf super-resolution
tools can be employed to enhance image quality. We encourage further research to continue exploring
these challenges.
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