
These appendices provide additional background and elaborate on some of the finer points in the432

main text. In Appendix A we illustrate that cumulants have typically lower variance estimators com-433

pared to moments. Technical background on tensor products and tensor sums of Hilbert spaces, and434

on tensor algebras is provided in Appendix B. We present our proofs in Appendix C. In Appendix D435

additional details on our numerical experiments are provided. Our V-statistic based estimators are436

detailed in Appendix E.437

A Moments and Cumulants438

Already for real-valued random variable X , moments have well-known drawbacks that make cumu-439

lants often preferable as statistics. For a detailed introduction to the use of cumulants in statistics we440

refer to McCullagh (2018). Here we just mention that441

1. the moment generating function f(t) = E[etX ] =
∑

m µmtm/m! describes the law of X442

with sequence (µm) of moments µm = E[Xm] ∈ R. However, since the function t 7→ f(t)443

is the expectation of an exponential, one would often expect that f is also ”exponential in444

t”, hence g(t) = log f(t) =
∑

m κm
tm

m! should be simpler to describe as a power series.445

For example, for a Gaussian f(t) = etE(X)+ t2

2 V ar(X) and while µm can be in this case446

explicitly calculated and uneven moments vanish, the m-moments are fairly complicated447

compared to the power series expansion of g(t) = κ1t + κ2
t2

2 which just consists of κ1448

(mean) and κ2 (variance).449

2. In the moment sequence µm, lower moments can dominate higher moments. Hence, a450

natural idea to compensate for these ”different scales” is to systematically subtract lower451

moments from higher moments. As mentioned in the introduction, this is in particular452

troublesome if finite samples are available. Even in dimension d = 1 the second moment453

is dominated by the squared mean, that is for a real-valued random variable X ∼ γ454

µ2(γ) = (µ1(γ))2 +Var(X),

where Var(X) := E[(X − µ1(γ))2]. It is well known that the minimum variance unbiased455

estimators for the variance are more efficient than that for the second moment: denoting456

them by µ̂2 and κ̂ respectively, one can show (Bonnier & Oberhauser, 2020) that given N457

samples from X , the following holds458

Var
(
µ̂2
)
= Var (κ̂) +

2

N

[
(EX)4 − (EX)2 Var(X)− 2

Var(X)2

N − 1

]
.

This means that when X has a large mean, it is more efficient to estimate its variance459

than its second moment since the last term in the above expression dominates. Hence,460

the variance Var(X) is typically a much more sensible second-order statistic than µ2(γ).461

However, we emphasize that there are many other reasons why cumulants can have better462

properties as estimators463

3. Cumulants characterize laws and the independence of two random variables manifests it-464

self simply as vanishing of cross-cumulants. In view of the above item 2, this means for465

example that testing independence can be preferable in terms of vanishing cumulants rather466

than testing if moments factor E[XmY n] = E[Xm]E[Xn], and similarly for testing if dis-467

tributions are the same.468

The caveat to the above points is that it is not true that cumulants are always preferable. For example,469

there are distributions for which (a) the moment generating function is not naturally exponential470

in t, (b) lower moments do not dominate higher moments, (c) consequently independence or two-471

sample testing become worse with cumulants. While one can write down conditions under which for472

example, the variance of the kernelized cumulants is lower, the use of cumulants among statisticians473

is to simply regard cumulants as arising from natural motivations which leads to another estimator474

in their toolbox.475

The main idea of our paper is simply that for the same reasons that cumulants can turn out to be pow-476

erful for real or vector-valued random variables, cumulants of RKHS-valued random variables are a477

natural choice of statistics. The situation is more complicated since it requires formalizing moment-478
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and cumulant-generating functions in RKHS but ultimately a kernel trick allows for circumventing479

the computational bottleneck of working in infinite dimensions and leads to computable estimators480

for independence and two-sample testing.481

Further, we note that although cumulants are classic for vector-valued data, there seems to be not482

much work done about extending their properties to general structured data. Our kernelized cumu-483

lants apply to any set X where a kernel is given. This includes many practically relevant examples484

such as strings (Lodhi et al., 2002), graphs (Kriege et al., 2020), or general sequentially ordered data485

(Király & Oberhauser, 2019; Chevyrev & Oberhauser, 2022); a survey of kernels for structured data486

is provided by Gärtner (2003).487

B Technical Background488

In Section B.1 the tensor products (
⊗d

j=1 Hj) and direct sums of Hilbert spaces (
⊕

i∈I Hi) are489

recalled. Section B.2 is about tensor algebras over Hilbert spaces (
∏

m≥0 H⊗m).490

B.1 Tensor Products and Direct Sums of Banach and Hilbert Spaces491

Tensor products of Hilbert spaces. For Hilbert spaces H, . . . ,Hd and (h1, . . . , hd) ∈ H1 × · · · ×492

Hd, the multi-linear operator h1 ⊗ · · · ⊗ hd ∈ H1 ⊗ · · · ⊗ Hd is defined as493

(h1 ⊗ · · · ⊗ hd)(f1, . . . , fd) =

d∏
j=1

⟨hj , fj⟩Hj

for all (f1, . . . , fd) ∈ H1 × · · · × Hd. By extending the inner product494

⟨a1 ⊗ · · · ⊗ ad, b1 ⊗ · · · ⊗ bd⟩H1⊗···⊗Hd
:=

d∏
j=1

⟨aj , bj⟩Hj

to finite linear combinations of a1 ⊗ · · · ⊗ ad-s495 {
n∑

i=1

ci ⊗d
j=1 ai,j : ci ∈ R, ai,j ∈ Hj , n ≥ 1

}
by linearity, and taking the topological completion one arrives at H1 ⊗ · · · ⊗ Hd. Specifically, if496

(H1, k1), . . . , (Hd, kd) are RKHSs, then so is H1 ⊗ · · · ⊗ Hd = H⊗d
j=1kj

(Berlinet & Thomas-497

Agnan, 2004, Theorem 13) with the tensor product kernel498

(
⊗d

j=1 kj
)
((x1, . . . , xd) , (x

′
1, . . . , x

′
d)) :=

d∏
j=1

kj
(
xj , x

′
j

)
where (x1, . . . , xd), (x

′
1, . . . , x

′
d) ∈ X1 × · · · × Xd.499

Tensor products of Banach spaces. For Banach spaces B1, . . .Bd, the construction of B1⊗· · ·⊗500

Bd is a little more involved (Lang, 2002) as one cannot rely on an inner product.501

Direct sums of Hilbert and Banach spaces. Let (Hi)i∈I be Hilbert or Banach spaces where502

I is some index set. The direct sum of Hi-s— written as
⊕

i∈I Hi—consists of ordered tuples503

h = (hi)i∈I such that hi ∈ Hi for all i ∈ I and hi = 0 for all but a finite number of i ∈ I .504

Operations (addition, scalar multiplication) are performed coordinate-wise, and the inner product of505

a, b ∈
⊕

i∈I Hi is defined as ⟨a, b⟩⊕
i∈I Hi

=
∑

i∈I aibi.506

B.2 Tensor Algebras507

The tensor algebra Tj over a Hilbert space Hj is defined as the topological completion of the space508 ⊕
m≥0

H⊗m
j .
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Note that it can equivalently be defined as the subset of (h0, h1, h2, . . .) ∈
∏

m≥0 H
⊗m
j such that509 ∑

m≥0∥hm∥2H⊗m
j

< ∞, and as such it is a Hilbert space with norm510

∥(h0, h1, h2, . . .)∥2∏
m≥0 H⊗m

j

=
∑
m≥0

∥hm∥2H⊗m
j

.

Tj is also an algebra, endowed with the tensor product over Hj as its product. For a =511

(a0, a1, a2, a2 . . .), b = (b0, b1, b2, b2 . . .) ∈ Tj , their product can be written down in coordinates as512

a · b =

(
m∑
i=0

ai ⊗ bm−i

)
m≥0

.

For a sequence H1, . . . ,Hd of Hilbert spaces, we define513

T := T1 ⊗ · · · ⊗ Td,

where Tj =
∏

m≥0 H
⊗m
j (j = 1, . . . , d). Let H = H1 × · · · × Hd, and recall that given a tuple of514

integers i = (i1, . . . , id) ∈ Nd we define H⊗i := H⊗i1
1 ⊗ · · · ⊗H⊗id

d . This allows us to write down515

a multi-grading for T as516

T =
∏
i∈Nd

H⊗i. (8)

Note that this gives credence to us using multi-indices i ∈ Nd to describe elements of the tensor517

algebra, as the multi-indices form its multi-grading.518

Furthermore, T is a multi-graded algebra when endowed with the (linear extension of the) following519

multiplication defined on the components of T520

⋆ : H⊗i1 ×H⊗i2 → H⊗(i1+i2), (9)
(x1 ⊗ · · · ⊗ xd) ⋆ (y1 ⊗ · · · ⊗ yd) = (x1 · y1)⊗ · · · ⊗ (xd · yd),

so that for a =
(
ai
)
i∈Nd , b =

(
bi
)
i∈Nd ∈ T, their product can be written down as521

(a ⋆ b)i =
∑

i1+i2=i

ai
1

⋆ bi
2

(10)

where addition of tuples i1, i2 ∈ Nd is defined as i1 + i2 =
(
i11 + i21, . . . , i

1
d + i2d

)
. With the degree522

of a tuple defined as deg(i) = i1 + · · · + id, T is also a graded algebra, with the grading written523

down as524

T =
∏
m≥0

⊕
{i∈Nd:deg(i)=m}

H⊗i,

so that if one multiplies two elements together, the degree of their product is the sum of their degree.525

Finally we note that T is a unital algebra and the unit has the explicit form526

(1, 0, 0, . . .),

i.e. the element consisting of only a 1 at degree 0.527

C Proofs528

This section is dedicated to proofs. The equivalence between the combinatorial expressions of cu-529

mulants and the definition via a moment generating function is proved in Section C.2. The derivation530

of our main results (Theorem 2 and Theorem 3) are detailed in Section C.3.531
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C.1 Equivalent Definitions of Cumulants in Rd532

Here we introduce a classical definition of cumulants via a moment generating function and its533

equivalence to the combinatorial expressions. If X = (X1, . . . , Xd) is an Rd-valued random vari-534

able distributed according to X ∼ γ, then535

µi = E[Xi1
1 · · ·Xid

d ] ∈ R
for i = (i1, . . . , id) ∈ Nd. The following definition of the cumulants κi(γ) of γ are equivalent536

1.
∑

i∈Nd κi(γ)θ
i

i! = log
∑

i∈Nd µi(γ)θ
i

i! ,537

2. κi(γ) =
∑

π∈P (d) cπ
∏

σ∈π µ
i(σ),538

where θ = (θ1, . . . , θd) ∈ Rd, cπ = (−1)|π|(|π| − 1)! and the product
∏

σ∈π is over all the blocks539

σ ∈ (π1, . . . , πb) in the partition π = (π1, . . . , πb) of {1, . . . , d}. The equivalence between these540

two definitions of cumulants, via a generating function and via their combinatorial definition, is541

classic (McCullagh, 2018). This equivalence is also at the heart of many proofs about properties of542

cumulants since some properties are easier to prove via one or the other definition.543

C.2 Equivalent Definitions of Cumulants in RKHS544

In the main text, we defined cumulants in RKHS by mimicking the combinatorial definition of cumu-545

lants in Rd. It is natural and useful to also have the analogous definition via a ”generating function”546

for RKHS-valued random variables. However, to generalize the definition via the logarithm of the547

moment generating function to random variables in RKHS, requires to define a logarithm for tensor548

series of moments. In this part, we show that this can be done and that indeed the two definitions549

are equivalent.550

We use the shorthand κ(γ) := κk1,...,kd
(γ), µ(γ) := µk1,...,kd

(γ), and we overload the notation551

(X1, . . . , Xd) with (k1(·, X1), . . . , kd(·, Xd)). With this notation, we show that given coordinates552

i ∈ Nd, one may express the generalized cumulant κi(γ) as either a combinatorial sum over mo-553

ments indexed by partitions, or by using the cumulant generating function.554

More specifically, we show that the generalized cumulant of a probability measure γ on H1 × · · · ×555

Hd defined as556

κi(γ) =
∑

π∈P (m)

cπEγi
π
(X⊗i)

where cπ = (−1)|π|−1(|π| − 1)! can also be expressed as coordinates in the tensorized logarithm of557

the moment series. Motivated by the Taylor series expansion of the classic logarithm, we define558

log : T → T, x 7→
∑
n≥1

(−1)n−1

n
(x− 1)⋆n,

where ⋆ denotes the product as defined in (9) and for t ∈ T, t⋆n is defined as559

t⋆n = t ⋆ · · · ⋆ t︸ ︷︷ ︸
n - times

,

or coordinate-wise (t⋆n)i =
∑

i1+···+in=i t
i1 ⋆ · · · ⋆ ti

n

for i ∈ Nd. Note that unlike the classical560

logarithm log : R+ → R, the tensorized logarithm is defined on the whole space as a formal561

expression.562

Generalized Cumulants as Logarithms We want to show that the following holds563

κi(γ) =
(
logµ(γi)

)1m
, (11)

where 1m = (1, . . . , 1) ∈ Nm. By iterating (10) we can express (11) as564

m∑
j=1

(−1)j−1

j

∑
i1+···+ij=1m

µi1(γi) ⋆ · · · ⋆ µij (γi),

and our goal is to express this as a sum over partitions. We will use the notation [n] = {1, . . . , n}.565

We can achieve our goal in two parts:566
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1. Show that for a fixed i ∈ Nd with deg(i) = m we can express (11) as a sum over all567

surjective functions from [m] to [j].568

2. Show that this sum over functions reduces to a sum over partitions.569

Part 1. Note that given i1+ · · ·+ij = 1m we may define h : [m] → [j] by the relation (ih(n))n = 1,570

that is, we take h(n) to be the index c for which the multi-index ic is 1 at n. Note that this function571

is necessarily surjective since the sum is taken over non-zero multi-indices. Equivalently, for any572

surjective function h : [m] → [j] we may define multi-indices by setting573

(ic)n =

{
1 if n ∈ h−1(c)

0 otherwise
.

Note that any such multi-index will be non-zero since the function is assumed to be surjective. With574

this identification we can write575 (
logµ(γi)

)1m
=

m∑
j=1

(−1)j−1

j

∑
h:[m]→[j]

µih
−1(1)

(γi) ⋆ · · · ⋆ µih
−1(j)

(γi).

Part 2. Recall that given a function h : [m] → [j] we can associate it to its corresponding par-576

tition πh ∈ P(m) by considering the set {h−1(1), . . . , h−1(j)}, and there are exactly j! different577

functions corresponding to a given partition, which are given by re-ordering the values 1, . . . , j.578

This reordering of the blocks does not change the summands since the marginals of the partition579

measure are always copies of each other and hence self-commute, hence a product of moments like580

µih
−1(1)

(γi) ⋆ · · · ⋆ µih
−1(j)

(γi) can always be written as µi(γi
πh
), the i-th coordinate of the moment581

sequence of the partition measure γi
πh

. With this in mind we can write582 (
logµ(γi)

)1m
=

m∑
j=1

(−1)j−1

j

∑
h:[m]→[j]

µi(γi
πh
) =

∑
π∈P (m)

(−1)|π|−1

|π|
|π|!µi(γi

π)

=
∑

π∈P (m)

cπµ
i(γi

π) =
∑

π∈P (m)

cπEγi
π
(X⊗i).

From this it immediately follows that for two probability measures γ, η we can write583

⟨κi(γ), κi(η)⟩H⊗i = ⟨
∑

π∈P (m)

cπEγi
π
(X⊗i),

∑
τ∈P (m)

cτEηi
τ
(Y ⊗i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτE(X,Y )∼γi
π⊗ηi

τ
⟨X⊗i, Y ⊗i⟩H⊗i .

Lemma 1 then follows from the definition of the tensor products.584

C.3 Proof of Theorem 2 and Theorem 3585

In this section we present the proofs of Theorem 2 and Theorem 3. We do this in a slightly more586

abstract setting where the feature maps take values in Banach spaces for clarity, until the end when587

we again restrict our attention to RKHSs. We start out by showing that polynomial functions of588

the feature maps characterize measures (Lemma 4). From there it is straightforward to show that589

cumulants have the same property (Theorem 4), and lastly that this also holds when working directly590

with the kernels (Proposition 1).591

A monomial on separable Banach spaces B1, . . . ,Bd is any expression of the form592

M(x1, . . . , xd) =

i1∏
j=1

⟨f1
j , x1⟩ · · ·

id∏
j=1

⟨fd
j , xd⟩

for some (i1, . . . , id) ∈ Nd, where f i
j ∈ B⋆

i are elements of the dual space B⋆
i and xi ∈ Bi.5 Finite593

linear combinations of monomials are called the polynomials. Recall that a set of functions F on594

a set S is said to separate the points of S if for every x ̸= y ∈ S there exists f ∈ F such that595

f(x) ̸= f(y).596

5These monomials naturally extend the classical ones.
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Lemma 4 (Polynomial functions of feature maps characterize probability measures). Let597

X1, . . . ,Xd be Polish spaces, B1 . . . ,Bd separable Banach spaces and φi : Xi → Bi be contin-598

uous, bounded, and injective functions. Then the set of functions on the Borel probability measures599

P
(∏d

i=1 Xi

)
of
∏d

i=1 Xi600

P

(
d∏

i=1

Xi

)
→ R, γ 7→

∫
∏d

i=1 Xi

p
(
φ1(x1), . . . , φd(xd)

)
dγ(x1, . . . , xd),

where p ranges over all polynomials, separates the points of P
(∏d

i=1 Xi

)
.601

Proof. We first show that the pushforward map602

d∏
i=1

φi : P

(
d∏

i=1

Xi

)
→ P

(
d∏

i=1

Bi

)
is injective. This is done in two parts, first we show that every Borel measure on

∏d
i=1 Xi is a603

Radon measure, then we show that the pushforward map is injective on Radon measures. To see the604

first part, note that since X1, . . . ,Xd are Polish spaces, so is their product space
∏d

i=1 Xi (Dudley605

2004, Theorem 2.5.7; Willard 1970, Theorem 16.4c), and since Borel measures on Polish spaces are606

Radon measures (Bogachev, 2007, Theorem 7.1.7), any γ ∈ P(
∏d

i=1 Xi) must be a Radon measure.607

For the second part, note that608

d∏
i=1

φi :

d∏
i=1

Xi →
d∏

i=1

Bi,

(
d∏

i=1

φi

)
(x1, . . . , xd) 7→

d∏
i=1

φi(xi)

is a norm bounded, continuous injection. Since
∏d

i=1 Bi is a Hausdorff space,
∏d

i=1 φi is a homeo-609

morphism on compacts since continuous injections into Hausdorff spaces are homeomorphisms on610

compacts (Rudin, 1953, Theorem 4.17). Let µ, ν ∈ P
(∏d

i=1 Xi

)
be two Radon measures such that611

their pushforwards are the same
∏d

i=1 φi(µ) =
∏d

i=1 φi(ν), then for any compact C ⊆
∏d

i=1 Xi we612

have µ(C) = ν(C) as
∏d

i=1 φi : C →
∏d

i=1 φi(C) is a homeomorphism. Since Radon measures613

are characterized by their values on compacts, this implies that µ = ν. Hence the pushforward map614

is injective.615

Denote by K the image of
∏d

i=1 Xi under the mapping
∏d

i=1 φi in
∏d

i=1 Bi. Note that K is a616

bounded Polish space. It is enough to show that the polynomials separate the points of P(K). To617

see this, note that the polynomials form an algebra of continuous functions that separate the points of618 ∏d
i=1 Bi, and when restricted to K they are bounded, since K is norm bounded. Since K is Polish,619

any Borel measure is Radon, and we can apply the Stone-Weierstrass theorem for Radon measures620

(Bogachev, 2007, Exercise 7.14.79) to get the assertion.621

In what follows we will use the following index notation for linear functionals. Fix some tuple622

i = (i1, . . . , id) ∈ Nd with deg(i) = m. Given separable Banach spaces B1 . . . ,Bd we use the623

notation624

B⊗i := B⊗i1
1 ⊗ · · · ⊗ B⊗id

d

and given an element x = (x1, . . . , xd) ∈
∏d

i=1 Bi we write xi : = x⊗i1
1 ⊗ · · · ⊗ x⊗id

d so that625

xi ∈ B⊗i. If we have functions (φi)
d
i=1 such that φi : Xi → Bi on some Polish spaces X1, . . . ,Xd,626

then we write627

φ⊗i := φ⊗i1
1 ⊗ · · · ⊗ φ⊗id

d , φ⊗i :

d∏
i=1

Xi → B⊗i.

Given a collection of linear functionals F ∈
∏d

j=1

(
B⋆
j

)ij such that F = (f1, . . . , fd) we write628

F⊗i := f1 ⊗ · · · ⊗ fd, F⊗i ∈
(
B⊗i

)⋆
.
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Note the following trick: the monomials on
∏d

i=1 Bi are exactly functions of the form629

x 7→ ⟨F⊗i, xi⟩

for F = (f1, . . . , fd), this will be used in the proofs. We can now restate and prove the our theorem.630

Note that the cumulants here are defined like in Definition 4 which is a sensible definition even if631

the feature maps are not associated to kernels.632

Theorem 4 (Generalization of Theorem 2 and Theorem 3). Let X1, . . . ,Xd be Polish spaces and633

φi : Xi → Bi be continuous, bounded and injective feature maps into separable Banach spaces Bi634

for i = 1, . . . d. Let γ and η be probability measures on X1 × · · · × Xd. Then635

1. γ = η if and only if κ(γ) = κ(η).636

2. γ =
⊗d

i=1 γ|Xi if and only if the cross cumulants vanish, that is κi(γ) = 0 for all i ∈ Nd
+.637

Proof.638

• Item 2: We want to show that the cross cumulants vanish if and only if γ =
⊗d

i=1 γ|Xi . By639

Lemma 4 it is enough to show that640

Eγ

[
p
(
φ1(X1), . . . , φd(Xd)

)]
= E⊗d

i=1 γ|Xi

[
p
(
φ1(X1), . . . , φd(Xd)

)]
for any monomial function p. Let us take linear functionals F = (f1, . . . , fd) and note that641

⟨F i, κi(γ)⟩ =
∑

π∈P (d)

cπEγi
π

[
f1(φ1(X1)) · · · fd(φd(Xd))

]
which is the classical cumulant of the vector-valued random variable642 (

(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)
)
,

where (X1, . . . , Xd) ∼ γ. Hence by classical results (Speed, 1983), all cross cumulants of
(
(f1 ◦643

φ1)(X1), . . . , (fd ◦ φd)(Xd)
)

vanish if and only if the cross moments split, that is to say644

Eγ

[
p
(
(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)

)]
= E⊗d

i=1 γ|Xi

[
p
(
(f1 ◦ φ1)(X1), . . . , (fd ◦ φd)(Xd)

)]
for any monomial p on Rd. Since f1, . . . , fd were arbitrary this holds for all monomials, which645

shows the assertion.646

• Item 1: By assumption κi(γ) = κi(η) for every i ∈ Nd; this implies that Eγp(φ1, . . . , φd) =647

Eηp(φ1, . . . , φd) for any polynomial p, so we can apply Lemma 4.648

Proposition 1 (Theorem 2 and Theorem 3). Let X1, . . . ,Xd be Polish spaces and ki : X 2
i → R be a649

collection of bounded, continuous, point-separating kernels. Let γ and η be be probability measures650

on X1 × · · · × Xd. Then651

1. γ = η if and only if κk1,...,kd
(γ) = κk1,...,kd

(η).652

2. γ =
⊗d

i=1 γ|Xi
if and only if κi

k1,...,kd
(γ) = 0 for all i ∈ Nd

+.653

Proof. We reduce the proof to the checking of the conditions of Theorem 4. Let φi denote654

the canonical feature map of the kernel ki, and let Bi : = Hki be the RKHS associated to ki655

(i ∈ {1, . . . , d}). For all i ∈ {1, . . . , d}, φi is (i) bounded by the boundeness of ki since656

∥φi(x)∥2Hki
= ki(x, x) ≤ supx∈Xi

|ki(x, x)| < ∞, (ii) continuous by the continuity of ki (Stein-657

wart & Christmann, 2008, Lemma 4.29), (iii) injective by the point-separating property of ki. The658

separability of Hki
follows (Steinwart & Christmann, 2008, Lemma 4.33) from the separability of659

Xi and the continuity of ki (i ∈ {1, . . . , d}). Note: Details on the expected kernel trick part of660

Theorem 2 and Theorem 3 are provided in Section E.661
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D Additional Experiments and Details662

Here we give additional details on the experiments that were performed, and discuss some further663

experiments that did not fit into the main text.664

Background on permutation testing. Permutation testing works by bootstrapping the distribution
of a test statistic under the null hypothesis. This allows the user to estimate confidence intervals
under the null, which is a powerful all-purpose way of doing so when analytic expressions are
unavailable. As an example, assume we have two probability measures γ, η on X with i.i.d. samples
x1, . . . , xN ∼ γ, y1, . . . , yN ∼ η. If the null hypothesis is that γ = η then we may set

(z1, . . . , z2N ) := (x1, . . . , xN , y1, . . . , yN )

so that for any permutation σ on 2N elements, we get two different set of of i.i.d. samples from
γ = η by using the empirical measures

γ̃σ := (zσ(1), . . . , zσ(N)), η̃σ := (zσ(N+1), . . . , zσ(2N))

and for any statistic S : P(X )2 → R, we may estimate S(γ, η) under the null by sampling from665

S(γ̃σ, η̃σ). If the null hypothesis were true, we might expect S(γ, η) to lie in a region with high666

probability of the permutation estimator, and we can use this as a criteria for rejecting the null.667

Under fairly weak assumptions, this yields a test at the appropriate level (Chung & Romano, 2013).668

Comparing a uniform and a mixture. Any uniform random variable over a symmetric interval669

will have 0 mean and skewness, so a symmetric mixture only needs to match the variance. If X is a670

50/50 mixture of U [a, b] and U [−a,−b] then671

Var(X) =
2

3

(
b2 + ba+ a2

)
so if Y is distributed according to U [−c, c] then we only need to solve672

b2 + ba+ a2 = c2

which is straightforward for a given a and c.673

Computational complexity of estimators. The V-statistic for d(2) as written in Lemma 2 is bot-674

tlenecked by the matrix multiplications. We may note however that for two matrices A,B it holds675

that676

Tr(A⊤B) = ⟨A ◦B⟩,
where ⟨·⟩ denotes the sum over elements and ◦ denotes the Hadamard product. We also note that for677

for Hn = 1
n1n1

⊤
n we have

(
AHn

)
i,j

= 1
n

∑n
c=1 Ai,c. Using both of these tricks we may compute678

both d(2) and CSIC without any matrix multiplications, which brings the computational complexity679

down to O(N2) for both. For a comparison of actual computation time, see Fig. 6 and Fig. 7, where680

the average computational times for out methods are compared to the KME and and HSIC for N681

between 50 and 2000.682

0 250 500 750 1000 1250 1500 1750 2000
N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e 

tim
es

 (s
)

Figure 6: Average computational time in seconds for KME (red) and d(2) (blue) for sample size N
between 50 and 2000.

Type I error on the Seoul Bicycle data. The results when comparing the winter data to itself is683

presented in Fig. 8. As we see the performance is similar for both estimators and lies between 5 and684

10%.685
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Figure 7: Average computational time in seconds for HSIC (red) and CSIC (blue) for sample size
N between 50 and 2000.
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Figure 8: Type I errors using MMD (red) and d(2) (blue) on the Seoul bicycle data set.

Classical vs. kernelized cumulants. Using the same distributions as in the synthetic independence686

testing experiment, we now compare X with Y 2
0.5 to contrast independence testing with classical687

cumulants with their kernelized counterpart. The results are summarized in Table 1 where they688

are displayed as the median value ± half the difference between the 75th and 25th percentile. We689

consider every combination of classical vs. kernelized, variance vs. skewness, and two different690

sample sizes. One can observe that the classical variance based test performs poorly compared to a691

classical skewness test, the kernelized variance test is almost as powerful as the kernelized skewness692

test, and in all cases the kernelized tests deliver higher power.693

E Kernel Trick Computations694

Here we show how to arrive at the expressions used for the V-statistics used in the experiments.695

Given a real analytic function f(x, . . . , xd) =
∑

i∈Nd fix
i in m variables with nonzero radius of696

convergence and Hilbert spaces H1, . . . ,Hd we may (formally) extend f to a function697

f⊗ :

d∏
i=1

Hi → T, f⊗(x1, . . . , xd) =
∏
i∈Nd

fix
⊗i.

Moreover, if the Hilbert spaces are RKHSs then we have the following result.698

Lemma 5 (Nonlinear kernel trick). For any collection of RKHSs H1, . . . ,Hd with feature maps699

φi : Xi → Hi, assume that f and g are real analytic functions with radii of convergence r(f) and700

Table 1: Comparison of classical and kernelized cumulants for independence testing with both vari-
ance and skewness.

N=20 Variance Skewness

Classical 19%± 3.0% 56%± 3.5%
Rbf kernel 39%± 4.5% 59%± 3.0%

N=30 Variance Skewness

Classical 17%± 0.5% 68%± 1.0%
Rbf kernel 65%± 3.5% 79%± 1.5%
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r(g) such that max1≤i≤d supx∈Xi
|φi(x)| < min(r(f), r(g)). Then701

⟨f⊗
(
φ1(x1), . . . , φd(xd)

)
, g⊗

(
φ1(y1), . . . , φd(yd)

)
⟩T =

∑
i∈Nd

figik1(x1, y1)
i1 . . . kd(xd, yd)

id .

Proof. Since the image of the φis lie inside the radius of convergence of f⊗ and g⊗ the power series702

converge absolutely and we can write703

⟨f⊗
(
φ⊗i(xi)

)
, g⊗

(
φ⊗i(yi)

)
⟩T = ⟨

∑
i∈Nd

fiφ
⊗i(xi),

∑
i∈Nd

giφ
⊗i(yi)⟩T

=
∑
i∈Nd

figi⟨φ⊗i(xi), φ⊗i(yi)⟩H⊗i =
∑
i∈Nd

figik1(x1, y1)
i1 . . . kd(xd, yd)

id ,

where H = H1 × · · · × Hd.704

Using Lemma 5, we can choose kernels ki : X 2
i → R with associated RKHSs Hi and feature maps705

φi and some i ∈ Nd with deg(i) = m. We make the observation that with X = (X1, . . . , Xd) ∼ γ,706

Y = (Y1, . . . , Yd) ∼ η and k⊗i and H⊗i as in (4), one has707

⟨κi(γ), κi(η)⟩H⊗i = ⟨
∑

π∈P (m)

cπEγi
π
φ⊗i(X i),

∑
τ∈P (m)

cτEηi
τ
φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτ ⟨Eγi
π
φ⊗i(X i),Eηi

τ
φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτEγi
π⊗ηi

τ
⟨φ⊗i(X i), φ⊗i(Y i)⟩H⊗i

=
∑

π,τ∈P (m)

cπcτEγi
π⊗ηi

τ
k⊗i((X1, . . . , Xm), (Y1, . . . , Ym)),

Since708

∥κi(γ)∥2H⊗i = ⟨κi(γ), κi(γ)⟩H⊗i

∥κi(γ)− κi(η)∥2H⊗i = ⟨κi(γ), κi(γ)⟩H⊗i + ⟨κi(η), κi(η)⟩H⊗i − 2⟨κi(γ), κi(η)⟩H⊗i

one gets the expected kernel trick statements of Theorem 2 and Theorem 3.709

We are now interested in explicitly computing the expression ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

, ∥κ(2)
k (γ) −710

κ
(2)
k (η)∥2H(1,1) and ∥κ(3)

k (γ) − κ
(3)
k (η)∥2H⊗3

k

, and their corresponding V-statistics. Recall that for711

a (w.l.o.g.) symmetric, measurable function h(z1, . . . , zm), the V-statistic of h with N samples712

Z1, . . . , ZN is defined as713

V(h;Z1, . . . , ZN ) := N−m
N∑

i1,...,im=1

h(Zi1 , . . . , Zim).

Under fairly general conditions, the V-statistic converges in distribution to E[h(Z1, . . . , Zm)] and a714

well-developed theory describes this convergence Van der Waart (2000); Serfling (1980); Arcones715

& Giné (1992).716

Example E.1 (Estimating ∥κ(2)
k (γ) − κ

(2)
k (η)∥2H(1,1) ). Let X,X ′, X ′′, X ′′′ denote independent717

copies of γ and Y, Y ′, Y ′′, Y ′′′ denote independent copies of η. The full expression for ∥κ(2)
k (γ) −718

κ
(2)
k (η)∥2H(1,1) is719

∥κ(2)
k (γ)− κ

(2)
k (η)∥2H(1,1) = Ek(X,X ′)k(X ′′, X ′′′) + Ek(Y, Y ′)k(Y ′′, Y ′′′) (12)

+ Ek(X,X ′)2 + Ek(Y, Y ′)2

+ 2Ek(X,Y )k(X ′, Y ) + 2Ek(X,Y )k(X,Y ′)

− 2Ek(X,Y )k(X ′, Y ′)− 2Ek(X,Y )2

− 2Ek(X,X ′)k(X,X ′′)− 2Ek(Y, Y ′)k(Y, Y ′′).
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Given samples (xi)
N
i=1, (yi)Mi=1 from γ and η respectively the corresponding V statistic is720

1

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl) +
1

M4

M∑
i,j,κ,l=1

k(yi, yj)k(yκ, yl) (13)

+
1

N2

N∑
i,j=1

k(xi, xj)
2 +

1

M2

M∑
i,j=1

k(yi, yj)
2

+
2

N2M

N∑
i,κ=1

M∑
j=1

k(xi, yj)k(xκ, yj) +
2

NM2

N∑
i=1

M∑
j,κ=1

k(xi, yj)k(xi, yκ)

− 2

N2M2

N∑
i,l=1

M∑
j,κ=1

k(xi, yj)k(xκ, yl)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj)
2

− 2

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xκ)−
2

M3

M∑
i,j,κ=1

k(yi, yj)k(yi, yκ).

Let us define the Gram matrices Kx = [k(xi, xj)]
N
i,j=1 ∈ RN×N , Ky = [k(yi, yj)]

M
i,j=1 ∈ RM×M ,721

Kx,y = [k(xi, yj)]
N,M
i,j=1 and let HN = 1

N 1N1⊤
N ∈ RN×N , HM = 1

M 1M1⊤
M ∈ RM×M be the722

centering, then (13) can be rewritten as723

1

N2
Tr(HNKxHNKx) +

1

M2
Tr(HMKyHMKy) +

1

N2
Tr(K2

x) +
1

M2
Tr(K2

y)

+
2

NM
Tr(KxyHNKxy) +

2

NM
Tr(KxyHMK⊤

xy)−
2

NM
Tr(HMK⊤

xyHNKxy)−
2

NM
Tr(K2

xy)

− 2

N2
Tr(KxHNKx)−

2

M2
Tr(KyHMKy)

which simplifies to724

1

N2
Tr
[
(Kx(I−HN ))2

]
+

1

M2
Tr
[
(Ky(I−HM ))2

]
− 2

NM
Tr
[
Kxy(I−HM )K⊤

xy(I−HN )
]
.

This estimator can be computed in quadratic time.725

Example E.2 (Estimating ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

). Let k denote the kernel on X1 and ℓ denote the726

kernel on X2. Let (X,Y ), (X ′, Y ′), (X ′′, Y ′′), (X(3), Y (3)), (X(4), Y (4)), (X(5), Y (5)) denote in-727

dependent copies of γ ∈ P(X1 ×X2). The full expression for ∥κ(1,2)
k,ℓ (γ)∥2H⊗1

k ⊗H⊗2
ℓ

is728

Ek(X,X ′)k(X,X ′)ℓ(Y, Y ′)− 4Ek(X,X ′)k(X,X ′′)ℓ(Y, Y ′)

− 2Ek(X,X ′)k(X,X ′)ℓ(Y, Y ′′) + 4Ek(X,X ′)k(X,X ′′)ℓ(Y, Y (3))

+ 2Ek(X,X ′)k(X ′′, X(3))ℓ(Y, Y ′) + 2Ek(X,X ′)k(X ′′, X(3))ℓ(Y, Y (3))

+ 4Ek(X,X ′)k(X ′′, X ′)ℓ(Y, Y (3)) + Ek(X,X ′)k(X,X ′)ℓ(Y ′′, Y (3))

− 8Ek(X,X ′)k(X ′′, X(3))ℓ(Y (4), Y ′)− 4Ek(X,X ′)k(X ′′, X ′)ℓ(Y (4), Y (3))

+ 4Ek(X,X ′)k(X ′′, X(3))ℓ(Y (4), Y (5)).
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Given samples (xi, yi)
N
i=1 from γ the corresponding V-statistic for this expression is729

1

N2

N∑
i,j=1

k(xi, xj)k(xi, xj)ℓ(yi, yj)−
4

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xκ)ℓ(yi, yj)

− 2

N3

N∑
i,j,κ=1

k(xi, xj)k(xi, xj)ℓ(yi, yκ) +
4

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xi, xκ)ℓ(yi, yl)

+
2

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl)ℓ(yi, yj) +
2

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xl)ℓ(yi, yl)

+
4

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xκ, xj)ℓ(yi, yl) +
1

N4

N∑
i,j,κ,l=1

k(xi, xj)k(xi, xj)ℓ(yκ, yl)

− 8

N5

N∑
i,j,κ,l,m=1

k(xi, xj)k(xκ, xl)ℓ(ym, yj)−
4

N5

N∑
i,j,κ,l,m=1

k(xi, xj)k(xκ, xj)ℓ(ym, yl)

+
4

N6

N∑
i,j,κ,l,m,n=1

k(xi, xj)k(xκ, xl)ℓ(ym, yn).

Using the shorthand notation K = Kx,L = Ly and H = HN and denoting by ◦ the Hadamard730

product [A ◦B]i,j = Ai,jBi,j and ⟨·⟩ the sum over all elements of a matrix ⟨A⟩ =
∑N

i,j=1 Ai,j , the731

V-statistic above can be written in the simpler form732

1

N2

〈
K ◦K ◦ L− 4K ◦KH ◦ L− 2K ◦K ◦ LH

+ 4KH ◦K ◦ LH+ 2K ◦ L
〈

K

N2

〉
+ 2KH ◦HK ◦ L

+ 4K ◦HK ◦ LH+K ◦K
〈

L

N2

〉
− 8K ◦ LH

〈
K

N2

〉
− 4K ◦HK

〈
L

N2

〉
+ 4

〈
K

N2

〉2

L

〉
.

Again this estimator can be computed in quadratic time.733

Example E.3 (Estimating ∥κ(3)
k (γ) − κ

(3)
k (η)∥2H⊗3

k

). In order to estimate d(3)(γ, η) we note that734

one can write735

∥κ(3)
k (γ)− κ

(3)
k (η)∥2H⊗3

k

= ∥κ(3)
k (γ)∥2H⊗3

k

+ ∥κ(3)
k (η)∥2H⊗3

k

− 2⟨κ(3)
k (γ), κ

(3)
k (η)⟩H⊗3

k
.

We can estimate the first two terms like in Example E.2, and the third term can be expressed as736

⟨κ(3)
k (γ), κ

(3)
k (η)⟩H⊗3

k
= Ek(X,Y )3 − 3Ek(X,Y )2k(X,Y ′)2

− 3Ek(X,Y )2k(X ′, Y )2 + 6Ek(X,Y )k(X,Y ′)k(X ′, Y )

+ 3Ek(X,Y )2k(X ′, Y ′) + 2Ek(X,Y )k(X ′, Y )k(X ′′, Y )

+ 2Ek(X,Y )k(X,Y ′)k(X,Y ′′)− 6Ek(X,Y )k(X,Y ′)k(X ′, Y ′′)

− 6Ek(X,Y )k(X ′, Y )k(X ′′, Y ′) + 4Ek(X,Y )k(X ′, Y ′)k(X ′′, Y ′′).
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For simplicity we will assume that we have an equal number of samples (N) from both measures737

(xi)
N
i=1 ∈ γ and (yi)

N
i=1 ∈ η. The V-statistic for ⟨κ(3)

k (γ), κ
(3)
k (η)⟩H⊗3

k
can be expressed as738

1

N2

N∑
i,j=1

k(xi, yj)
3 − 3

N3

N∑
i,j,κ=1

k(xi, yj)
2k(xi, yκ)

− 3

N3

N∑
i,j,κ=1

k(xi, yj)
2k(xκ, yi) +

6

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xi, yκ)k(xl, yj)

+
3

N4

N∑
i,j,κ,l=1

k(xi, yj)
2k(xκ, yl) +

2

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xκ, yj)k(xl, yj)

+
2

N4

N∑
i,j,κ,l=1

k(xi, yj)k(xi, yκ)k(xi, yl)−
6

N5

N∑
i,j,κ,l,m=1

k(xi, yj)k(xi, yκ)k(xl, ym)

− 6

N5

N∑
i,j,κ,l,m=1

k(xi, yj)k(xκ, yj)k(xl, ym) +
4

N6

N∑
i,j,κ,l,m,n=1

k(xi, yj)k(xκ, yl)k(xm, yn).

Using the notation Kxy = [k(xi, yj)]
N
i,j=1, this estimator simplifies to739

1

N2

〈
Kxy ◦Kxy ◦Kxy − 3Kxy ◦Kxy ◦HKxy

− 3Kxy ◦Kxy ◦KxyH+ 6Kxy ◦KxyH ◦HKxy

+ 3Kxy ◦Kxy

〈
Kxy

N2

〉
+ 2Kxy ◦HKxy ◦HKxy

+ 2Kxy ◦KxyH ◦KxyH− 6Kxy ◦KxyH

〈
Kxy

N2

〉
− 6Kxy ◦HKxy

〈
Kxy

N2

〉
+ 4

〈
K

N2

〉2

Kxy

〉
.

We mention also that the first two terms ∥κ(3)
k (γ)∥2H⊗3

k

, ∥κ(3)
k (η)∥2H⊗3

k

can be computed a little more740

simply than in Example E.2 since the expressions have more symmetry, using the notation Kx =741

[k(xi, xj)]
N
i,j=1 we can write down the V-statistic for ∥κ(3)

k (γ)∥2H⊗3
k

as742

1

N2

〈
Kx ◦Kx ◦Kx − 6Kx ◦KxH ◦Kx

+ 4KxH ◦Kx ◦KxH+ 3Kx ◦Kx

〈
Kx

N2

〉
+ 6KxH ◦HKx ◦Kx − 12Kx ◦HKx

〈
Kx

N2

〉
+ 4

〈
Kx

N2

〉2

Kx

〉

with a similar expression for ∥κ(3)
k (η)∥2H⊗3

k

. The estimator can be computed in quadratic time.743
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