
Supplementary Material1

A Additional demonstrations of concept-level interpretation2

Assign(𝒂): Pine Warbler Weight(𝒘): 0.662

Part:    [tail:           39.68%, head:   24.23%, leg:         9.44%]
Color: [yellow:    69.90%, beige: 9.51%, orange:  7.22%]

𝕀

𝕋
𝛿
𝛿

Assign(𝒂): punch Weight(𝒘): 0.382

a fast, overhead motion of the arm: 14.27%
One of the competitors being forced out of the 
ring or onto the ground: 9.58%
arms bent and extended above the head: 5.69%

𝕀

𝕋 𝛿

Assign(𝒂): balance beam Weight(𝒘): 1.17

a person performing a variety of poses 
and movements on the beam:  24.33%
a person standing on the beam: 10.22%
a person in a plank position: 7.60%

𝕀

𝕋 𝛿

Assign(𝒂): swirly Weight(𝒘): 0.788

a pattern of spirals or swirls: 80.63%
a pattern of swirls and interlocking shapes: 9.54%
a bubbly, wavy pattern: 4.77%

𝕀

𝕋 𝛿

Assign(𝒂): swirly Weight(𝒘): 0.752

interlocking loops of yarn: 46.62%
the presence of knots and stitches: 3.05%
pixelated texture: 2.73%

𝕀

𝕋 𝛿

Assign(𝒂): Marsh Wren Weight(𝒘): 0.282

Part:    [tail:           33.20%, head:   19.93%, feather:15.19%]
Color: [marron:   27.26%, brown: 19.44%, silver:    11.73%]
Shape: [spherical:27.57%, streamlined:19.23%, plump:  14.26%]

𝕀

𝕋
𝛿
𝛿
𝛿

Assign(𝒂): An-12 Weight(𝒘): 1.78

a large, four-engine cargo aircraft:      27.12%
a twin-engine propeller-driven transport plane: 6.00%
a twin-engine, turboprop-powered airliner: 5.29%

𝕀

𝕋 𝛿

Assign(𝒂): 757-200 Weight(𝒘): 2.31

a distinctive livery:      18.95%
a short- to medium-range airliner: 6.03%
short to medium range airliner: 4.67%

𝕀

𝕋 𝛿

Assign(𝒂): Pasture Weight(𝒘): 0.691

Large area of green color:      24.45%
large green patches: 20.36%
roads, rivers, and other manmade features
visible in some cases: 7.92%

𝕀

𝕋 𝛿

Assign(𝒂): River Weight(𝒘): 0.387

roads, rivers, and other manmade features 
visible in some cases:      21.69%
regularly-spaced fields, orchards, or vineyards: 16.25%
visible roads, paths, or canals: 8.99%

𝕀

𝕋 𝛿

Assign(𝒂): dermatofibroma Weight(𝒘): 0.374

Shape:    [slim:      38.15%, flat:            15.87%, spindly:   13.05%]
Pattern: [plaid:    29.06%, tie-dyed:   24.61%, tartan:       9.47%]
Location:[edge:    33.23%, middle:     21.52%, top: 8.39%]

𝕀

𝕋
𝛿
𝛿
𝛿

Assign(𝒂): actinic keratoses Weight(𝒘): 0.714

Color:   [brown:     20.01%, pink:             14.11%, gray:               11.94%]
Shape: [spherical:36.81%, spindly:        24.41%, streamlined: 15.38%]
Pattern:[lace:         34.90%, polka-dotted:21.52%, spotted: 7.30%]

𝕀

𝕋
𝛿
𝛿
𝛿

CUB for Bird

UCF101 for Human Action

DTD for Texture

Aircraft

EuroSAT for Land Type

HAM10000 for Skin Disease

Figure 1: Interpretation for 12 randomly chosen CDVs from 6
datasets.

In Figure 1, we present additional3

concept-level interpretations for six4

datasets, each with two CDVs learned5

by different models. The results6

demonstrate that our method can ex-7

plain the concepts learned by the mod-8

els for classification in two differ-9

ent modalities, making them easier10

to understand. Moreover, the im-11

ages and text for each concept are12

matched, indicating consistency in13

cross-modality concept explanations.14

It is worth noting that for the CUB15

and HAM10000 datasets, we used16

category-independent words, while17

category-related words were used for18

the other four datasets. Category-19

independent words are more objec-20

tive but may also be more simplis-21

tic. The choice of text interpretation22

method depends on the specific use23

case; when a model is used to differ-24

entiate fine-grained images or special-25

ized domain images, we recommend26

using category-independent words.27

B Additional28

demonstrations29

of sample-level interpretation30

In Figure 2, we present additional31

sample-level interpretations for five32

datasets, with each dataset visualiz-33

ing the interpretations for one sam-34

ple. The results demonstrate that our35

method can accurately identify the36

concepts that match the sample image37

and convert them into consistent vi-38

sual and textual interpretations. Addi-39

tionally, our method’s sparsity is note-40

worthy, as only a portion of the con-41

cepts are activated for each sample.42

This makes our method more easily43

understandable and acceptable for hu-44

mans. For each sample, we also display the contribution score of the interpretation result to the45

classification and rank them, which helps users understand the model’s behavior and enables interac-46

tive feedback on the concepts.47

C Additional demonstrations of class-level interpretation48

In Figure 3, we use Sankey diagrams to visualize the contributions of CDVs to five other datasets.49

The Sankey diagrams provide a clear visual representation of which CDVs are more valuable and50

pivotal for classification when using CDVs in the classification process.51
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a large tail with a horizontal stabilizer

short to medium range airliner

a distinctive livery

aircraft with winglets

short to medium range airliner

a distinctive livery

others

a pattern of alternating dark and light squares

a pattern of alternating dark and light squares

an alternating pattern of two colors

a pattern of alternating dark and light squares

a surface that is either smooth or slightly rough

each layer is made up of a grid of pixels

others

pattern of herringbone

pattern of tie-dyed, material of glass

color of silver, material of rubber

color of white, shape of spindly, material of rubber

color of white, material of glass

others

color of white, material of rubber

Material of glass

the batsman attempting to hit the ball with a cricket bat

the bats man attempting to hit the ball with a cricket bat

a follow-through of the arms and racket
after contact with the ball

the batsman attempting to hit the ball with a cricket bat 

body movements such as swings, releases and catches

follow-through of the arm after release

others

the player’s body position and stance

size of medium-sized

pattern of lace, size of medium-sized, material of satin

pattern of lace, size of medium-sized, material of felt

pattern of lace, size of medium-sized, location of center

pattern of polka-dotted, size of medium-sized

others

pattern of lace, size of medium-sized

pattern of lace, size of medium sized

C
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1
0
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0

a gray, tribal bird neck

a polka-dotted bird head

a yellow, polka-dotted bird chest

a polka-dotted bird chesk

a yellow, polka-dotted bird head

a red, polka-dotted bird chest

others

Figure 2: Interpretation for 5 randomly chosen samples with our method.
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Figure 3: Visualization of the CDVs’ contribution to the classes in 5 datasets.

D Human Evaluation52

To verify whether the interpretation of the sample by our method is consistent with human perception,53

we conducted human-machine experiments. We selected four samples from each of the DTD and54

UCF101 datasets as test samples (see Figure 4 for examples) because these two datasets are more55

common and humans can easily determine their features and categories. We defined 4 human56

experimental metrics as groundability, factuality, meaningful and fidelity. Please refer to Table ?? for57

the relevant definitions.58

During the human evaluation process, we presented the same sample to three different methods(Label-59

free CBM, LaBo, and ours) for interpretation, and they were then presented to human validators for60

scoring. To ensure experimental fairness, we chose samples that were correctly predicted by all three61

methods and anonymized the method names. To simplify the scoring process for the validators, we62

adopted a ranking-based scoring system in which the evaluators only needed to rank the sample’s63

relative strength/weakness in a particular aspect. The final scores were computed by aggregating64

the weights assigned to the rankings (see Table ?? for the calculation method). The resulting scores65

across different aspects for each method are presented in Table 1.66

metrics accuracy sparsity groundability factuality meaningful fidelity
Ours 0.8373 0.7465 0.8533 0.7900 0.7842 0.7829
Label-free CBM 0.7036 0.6370 0.5000 0.5617 0.4929 0.4896
Labo 0.8126 0.0174 0.5133 0.5154 0.5813 0.5829

Table 1: Complete results of human evaluation.
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chequered

skate boarding

Sample From DTD

Sample From UCF101

Figure 4: Two samples used for human evaluation.

E Ablation Study67

E.1 Number of CDVs68

In order to compare the model performance of various methods under different number of concepts,69

we divided the concept quantity into five levels, namely [3, 5, 7, 10, 20], and the corresponding70

specific concept quantity is its product with the number of categories. We conducted experiments71

on different number of concepts. Table 2 shows the accuracy on dev for each model when using72

different number of concepts, and shows it in the form of line chart(see Figure 5). As the number of73

concepts increases, the performance of the model generally shows an upward trend. However, unlike74

other methods, our method still performs well when there are fewer concepts, and its performance75

does not significantly decrease when compared to a large number of concepts. This indicates that our76

method does not rely on a large number of concepts and can grasp key concepts when interpreting,77
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Table 2: Accuracy on dev under different concept quantities

Dataset Type Natural Semantic Fine-grained Specialized

Dataset Name CIFAR100 DTD UCF101 CUB Aircraft EuroSAT HAM10000 DR Kera

Label Free CBM

3 36.64% 59.22% 84.25% 54.15% 30.90% 63.41% 68.00% 53.31% 51.15%
5 45.09% 63.21% 86.56% 57.05% 34.26% 75.85% 69.60% 53.93% 49.51%
7 49.33% 65.25% 87.20% 58.30% 35.43% 84.11% 69.10% 53.24% 50.49%

10 52.33% 67.99% 89.46% 59.60% 36.42% 87.78% 71.50% 52.69% 48.52%
20 54.50% 67.73% 89.88% 60.20% 37.26% 90.78% 72.30% 56.62% 51.80%

LaBo

3 78.85% 72.61% 96.47% 79.90% 57.55% 89.85% 71.30% 45.23% 52.65%
5 79.10% 75.27% 96.68% 80.65% 58.96% 93.15% 73.90% 47.10% 52.46%
7 79.71% 74.91% 97.10% 80.45% 60.34% 94.19% 75.40% 49.93% 53.79%

10 79.77% 75.35% 97.21% 81.00% 60.85% 94.74% 76.10% 50.55% 51.33%
20 80.03% 76.68% 97.42% 81.10% 61.45% 95.63% 79.60% 49.72% 53.41%

Ours

3 78.37% 75.94% 92.05% 80.11% 59.53% 96.80% 83.12% 57.79% 70.69%
5 81.25% 79.02% 97.98% 82.62% 61.45% 96.79% 83.60% 57.90% 70.23%
7 81.68% 79.47% 98.12% 83.69% 62.18% 96.96% 83.58% 58.52% 71.15%

10 81.99% 79.43% 98.19% 83.97% 62.39% 96.99% 83.78% 58.54% 71.48%
20 82.17% 79.79% 98.36% 84.26% 62.68% 96.96% 83.72% 58.58% 71.61%

Figure 5: The impact of concept quantity on model performance. The horizontal axis represents the
number of concepts. We have selected five levels [3, 5, 7, 10, 20], and their product with the number
of categories is the total number of concepts selected in the corresponding dataset. The vertical axis
represents the accuracy of the model.

providing more sparse explanations. It should be noted that when the number of concepts on the78

UCF101 dataset is three times the number of categories, the performance of the model is significantly79

decrease because of the need for a more detailed description of the action recognition task. Other80

methods obtain concepts with high-level semantic information from LLM, but we start from the most81

original concepts. When the number of concepts is extremely small, it is difficult to identify actions82

with a sparse linear layer.83

initialization and discriminator: Our initial strategy is as follows Given training image dataset84

with labels D = (xi, yi). we calculate mean µX and variance σX of image features. Let C be85
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Method Dataset
CIFAR100 DTD UCF101 CUB Aifcraft EuroSAT HAM10000 DR Keratitis

linear probe 75.62% 77.89% 86.59% 77.50% 52.31% 96.04% 80.64% 53.22% 68.01%
DCBM(w/o Φ) 75.62% 77.62% 86.10% 77.24% 51.88% 96.04% 81.03% 52.90% 67.23%
DCBM(random) 75.76% 78.36% 86.30% 78.28% 52.51% 95.97% 79.98% 53.19% 67.47%

DCBM(w) 75.37% 77.39% 85.60% 77.36% 50.25% 95.44% 80.74% 52.21% 67.77%

the number of CDVs and randomly assign a category ai ∼ C(p̄) to each CDV., where C is a86

categorical distribution with equal probability p̄. The weight wi is initialized as wi ∼ U(0, 1),87

where U is a uniform distribution. The first three terms of quintuple are initialized as E =88

(ei, ai, wi)|ei∼N (µX , σX ), ai ∼ C(p̄), wi ∼ U(0, 1). Then we get concept matrix E, and sparse89

weight matrix W with wi as elements on the one-hot embedding of ai.90

E.2 Discriminator and CDV initialization91

The discriminator Φ is applied to ensure the visual semantics of the learned concept vector. Techni-92

cally, adversarial training is efficient to minimize the distance between two distributions With Φ and93

adversarial training, CDVs are ensured to be the real semantics in the training sets.94

The initialization of CDV (ei) may influent the performance and interpretation of CDV. We conducted95

the ablation results to investigate the absence of initiation (DCBM random) and the absence of96

discriminator (DCBM w.o Φ) in the following table. The ablation study is conducted on ViT-B-1697

and ViT-L-14 on all mentioned datasets. We can find that the performance of (DCBM w.o Φ) and98

(DCBM random) are generally higher than the full model, and even slightly higher than linear probe,99

which might be the benefit of added parameters.100

We also directly visualize their impact on the interpretation of CDV via t-SNE and visualization101

in Figure 2 and 3 of the one-page pdf. the technique details of modality converter (θ) and reverse102

modality converter (θ−1). The modality converter (θ) is actually a part of the pre-trained VLMs. In103

CLIP, it is a frozen 1-layer fully connected neuron network to align image features to text embeddings.104

The reverse modality converter (θ−1) is proposed in this work, which aims to predict the concept105

embedding in the intermediate layer. θ−1 is a small 3-layer MLP taking 512-dim vectors as input and106

output 768-dim vectors, trained with the loss of Eq (10). For the ablation study of Eq (10), we sort107

the test samples for each concept embedding and compare the sequence rank consistency with the108

Spearman coefficient. The results are shown below.109

F Related work110

Concept-based explanations for image classification. The concept-based explanation is a form111

of explaining deep learning models that use high-level human-understandable concepts rather than112

low-level pixels or heatmaps. The important concepts for classification are presented by image113

segments or readable texts.114

post-hoc methods. Post-hoc methods try to explain a well-trained black-box model. TCAV? proposes115

concept activation vectors, which inspires us that concepts can be represented by vectors, but a similar116

approach to construct concept vectors requires a large number of annotations. ACE? obtains concepts117

by clustering, and we exploit the evaluation metrics of concept semantics in it.118

ante-hoc methods. Ante-hoc provides reasoned decision processes and is therefore popular for119

high-risk decisions, but there is a trade-off in interpretation and performance. Concept Bottleneck120

Models (CBM)?? is a representative class of models, but requires a large amount of annotation.121

Recent work??? using VLM and LLM has reduced the amount of annotation and also increased122

effectiveness. For our method, the decision process is ante-hoc and the cross-modality interpretation123

is post-hoc with CSD. Just as different people have different mental mappings of the same person, we124

believe that recognizing abstract concepts has a certain uncertainty, so the post-hoc interpretation is125

represented by the distribution.126

Visual Language Models and Large Language Models. Visual Language Models (VLMs) are a127

series of models that can understand and generate both images and text, including CLIP?, BLIP?,128

BLIP2?, and GLIP?, etc.129
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Prompt engineering of VLMs. CLIP? shows selecting a better prompt for VLM can significantly130

improve performance in many situations. Prompt design is a rapidly evolving research area and has131

garnered substantial recent attention and activity??????. Prompt engineering demonstrates strong132

classification performance in the few-shot case; however, the process of converting prompts into133

representations for learning poses challenges in explaining the model’s behavior during classification.134

In contrast, our approach excels in this aspect and provides a detailed understanding of the model’s135

behavior when completing classification tasks.136

Adapters for VLMs and LLMs. Adapters are a type of method that add layers and parameters to137

acquire fresh knowledge from new data domains without altering the original model parameters???.138

Although our approach and the adapter method share the use of variable model parameters, our139

approach emphasizes elucidating the model’s behavior while preserving its original capabilities,140

whereas the adapter method is solely focused on performance enhancement for a specific task.141

Risks and biases in VLMs and LLMs. There are several works about the risks and biases of visual142

language models and large language models. A modality gap in VLM is reported by ?, which can be143

explained with the concept-sample distribution proposed in this paper. A concept association bias is144

also reported by ?, causing false answers in VQA tasks when two concepts appear in the image at the145

same time. Our work decomposed the concept in the image, we will examine if this decomposed146

concept can be used to avoid such association bias in future works. As for LLM, the ChatGPT147

reported that there are concerning patterns where specific entities (e.g., certain races) are targeted148

more than others ?. These biases are accumulated step by step in LLM-VLM-CBM workflows. Our149

work is aim to relieve the bias by directly use primitive visual concepts for classification.150

Concept compositionality and concepts in visual-language models Concept compositionality is151

one of the shared perspectives between psychologists and neural scientists. It suggests human minds152

might employ a language-like system for combining and recombining simple concepts to form more153

complex thoughts ?. The compositionality is also regarded as one of the sources of the human brain’s154

few-shot learning and generalization ability ? which emerges in visual language models (VLMs) ?.155

Recent research tests the compositionality of pre-trained VLMs and emphasizes the acquisition of156

primitive concepts is necessary for interpretation ?. In this paper, the necessity is admitted but we157

further claim the primitive concepts for interpretation should come from images rather than languages158

to increase interpretability.159

G Adversarial Training160

We first initialize the CDVs by randomly assigning a category ai ∼ C(p̄) to each CDV, where C is161

a categorical distribution with equal probability p̄, and set the weight of CDVs to follow a uniform162

distribution. Then we get concept matrix E, and sparse weight matrix W with wi as elements on the163

one-hot embedding of ai. As we hope that the CDV itself represents a visual concept, we constrain164

the distribution of CDVs to be consistent with the visual concepts that appeared in the training set. To165

achieve this, we apply adversarial training to learn CDVs.166

Algorithm 1 Adversarial Training of Concept Decomposition Vector (CDV)
Input: Real image representation distribution Xz , CDVs E, discriminator D, number of training iterations T ,
batch size m, learning rate α
Output: Learned CDV E.
1: Initialize CDVs E and discriminator D.
2: for t = 1 to T do
3: // Train discriminator
4: Sample m real image representations z1, z2, . . . , zm from Xz

5: Sample m CDV representations e1, e2, . . . , em from CDV E
6: Compute discriminator loss: LD

7: Update discriminator parameters: θD ← θD − α · ∇θDLD

8: // Train CDVs
9: Compute CDVs loss: LCDV

10: Update CDVs parameters: E ← E − α · ∇θELCDV

ϵ ∼ N (0, I) is a random noise and R(E) =
〈
E,E⊤〉− I is a regularizer.
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G.1 The prompt and example corpus167

The original CLIP paper mentions that applying prompts to the text can influence the process of168

image-text matching. Applying category information to the text prompts can alter the distribution of169

textual features and thus affect the matching between the text and image. In our method, we also170

apply prompts for VLM. When using category-independent words as textual descriptors, prompts171

are necessary as the vocabulary does not contain information about the image type. For each word172

attribute, we use prompts in the form of "A photo of {category_name} with a {attribute} of {attribute173

value}." For example, "A photo of skin disease with a color of red." Using these prompts can174

effectively improve the model’s accuracy in recognizing attributes.175

H Proof of proposition 1176

Image text matching (ITM) is the common training objective of VLMs that maps image representation177

into a language concept embedding space. It is important to understand how it works. However,178

there are a few explanations for why the representation works so well. Here, following the notion179

of proposed concept-sample distribution (CSD), we propose a proposition to explain the training180

objective is to maintain the similarities relationship between samples in different modalities:181

Proposition 1 The pretraining task of VLMs ?, contrastive image-text matching, is to minimize two182

concept-sample distributions with a shared concept ei between different modalities sample set I and183

T given image-text pair (xi, ti).184

Main steps of the proof. The proof is done in three steps: In the first step, we formalize the training185

objective of contrastive image-text matching with the notion of cross entropy at the dataset level. In186

the second step, we dive into the sample-level perspective and transform the formulation into the187

subtraction of information entropy and KL divergence. Then we will find the minimized objective is188

just a KL divergence. In the third step, take the place of embedding of image and text in each pair189

with the shared concept of the pair190

Formalization. Let x ∈ X denote an image x in an image set X , and t ∈ T represents a text t191

in a text set T . {(xi, ti)|i = 1, . . . , N} denotes N image-text pairs, the match relationship can be192

represented with an identical matrix Y, where Yij =

{
1, if i = j

0, otherwise
. In general, a VLM consists193

of an image encoder I(·), which maps the input image x into a d-dimensional embedding space Rd,194

and a text encoder T (·) which maps the input text t into Rd. We can get an image embedding matrix195

I = [I(x1), . . . , I(xN )] and a text embedding matrix T = [T (t1), . . . , T (tN )], where I,T ∈ RN×d.196

The model is trained to maximize the similarity between the embeddings of matching image and text197

pairs.198

min
I,T

[
H(σ(

I ·T⊤

τ
),Y) +H(σ(

T · I⊤

τ
),Y)

]
(1)

where σ is the softmax operation applied in each row , H(·, ·) is the cross-entropy function H(p, q) =199

−
∑

i p(i) log q(i), and τ is a learnable temperature coefficient.200

Transform cross-entropy to KL divergence. Consider each sample pair i, Yi is actually an one-201

hot embedding, which can be viewed as parameters of a categorical distribution, where Yij is the202

probability of the j-th sample pair. Then the objective can be transformed as:203
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min
I,T

[
H(σ(

I ·T⊤

τ
),Y) +H(σ(

T · I⊤

τ
),Y)

]
(2)

= min
I,T

− 1

N

N∑
i

N∑
j

Yij

[
log

(
σ(

I ·T⊤

τ
)ij

)
+ log

(
σ(

T · I⊤

τ
)ij

)] (3)

= min
I,T

− 1

N

N∑
i

N∑
j

Yij
logYij

logYij

[
log

(
σ(

I ·T⊤

τ
)ij

)
+ log

(
σ(

T · I⊤

τ
)ij

)] (4)

= min
I,T

− 1

N

N∑
i

N∑
j

Yij

[
log

(
σ(

I ·T⊤

τ
)ij

)
+ log

(
σ(

T · I⊤

τ
)ij

)] (5)

= min
I,T

 1

N

N∑
i

N∑
j

Yij

[
log

Yij

σ( I·T
⊤

τ )ij

]
+

1

N

N∑
i

N∑
j

Yij

[
log

Yij

σ(T·I⊤
τ )ij

]
− 2H(y)

 (6)

= min
I,T

 1

N

N∑
i

KL(Yi∥σ(
I ·T⊤

τ
)i) +

N∑
j

KL(Yi∥σ(
T · I⊤

τ
)i)− 2H(y)

 (7)

In the above equation, −2H(Yi) is the information entropy, which is a constant for any Yi. We will204

omit it in the next step.205

Take place embedding with concepts Intuitively, the image and text in an image-text pair express
the same concept, which is the reason why CLIP uses language embedding as supervision. We denote
the concept as a vector ei = Ti/τ , take the place of embedding (either image or text) as follows:

σ(
T · I⊤

τ
)i = σ(ei · I⊤).

Recall the definition of concept-sample distribution.206

Definition 2 (Concept-sample distribution). Given a sample set Z = {z1, z2, . . . , zn} and a concept207

embedding e ∈ Rd, the concept-sample distribution (CSD) is defined as a categorical distribution208

over the sample set Z with following probability density function:209

δ(k; e,Z) = exp(e·zk)∑
z∈Z exp(e·z) = σ(e · f(Z)⊤)i, (8)

where Z can either be a text set or an image set. For convenience, we denoted CSD as δ(e,Z).210

Formally, Eq 1 is equivalent to the following objective:211

min
I,T

∑N
i [KL(Yi∥δ(ei, T )) + KL(Yi∥δ(ei,X ))]. (9)

Note that, we have assumed the ei = Ti/τ = Ii/τ from the intuition of image-text matching to212

explain the training objective is to maintain the similarity across different modalities. The similarity213

relationship between image representations is trained to be similar to that between text representations214

so that the semantics of text can be adapted to images. However, the hypothesis is not guaranteed for215

unknown samples, which means ∥Ti/τ − Ii/τ∥ > ϵ, leading to a shift between modality similarities.216

That is one of the reasons why we can not use concepts from text to build a VLM-based concept217

bottleneck models. Next, we will visualize the shift through CUB datasets.218

I Concept-sample Distribution shift219

As mentioned in the introduction of the main text, using textual concepts can introduce many220

biases due to the modality gap. In Figure 6, we visualize the distribution of features and concepts221

using t-SNE to demonstrate the biases that may exist in the concepts. We used 60 common image222
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Figure 6: T-SNE visualization of latent features of CUB image, CUB related text, and CDV, with
general image embeddings from NICOPP as background distribution.

categories(Including rabbits, birds and many other common object types) from the NICOPP dataset as223

the background distribution and then displayed the sample image feature distribution, textual concept224

feature distribution, and CDVs distribution for the CUB dataset. The results show that the distribution225

of textual features is completely different from that of image features, indicating a significant bias226

between textual concepts and image samples. In contrast, CDVs’ distribution is similar to that of the227

image features, thus using CDV as concepts can effectively reduce biases in CBM and improve the228

model’s classification performance.229

(a) Full model （b）DCBM (w/o discriminator) （c）DCBM (using random initialization)
Figure 7: Investigating the influence of discriminator Φ(·) and initialization via t-SNE visualization. The
text embedding of CUB-related corpus (the green dots), the image embedding of CUBs (the blue dots), and
learned CDVs of CUB birds (the red dots) are shown simultaneously with image embedding from other 60
classes from NICO datasets as background (the gray dots). (a) In the full model, we observe that (1) image
embeddings have a significant gap with texts. (2) the distribution of learned CDV highly overlaps within CUB
image embeddings, indicating they are successfully constrained to express the visual semantics of birds. (b)
without the discriminator, the learned CDV is far from both the image and text embeddings of CUB and lost
their visual semantics. (c) using random initialization, there are only a few CDV aligned with image embeddings
when the model has the best classification performance.

Assign(𝒂):black footed albatross                Weight(𝒘): 0.025

Part:    [neck:       22.34%, chest:   19.08%, head:      13.75%]
Color: [beige:      21.89%, yellow: 14.80%, red:         13.07%]
Shape: [spindly:   27.89%, slim: 26.79%, plump:    18.00%]

𝕀

𝕋 𝛿
𝛿
𝛿

Assign(𝒂):brown thrasher                          Weight(𝒘): 0.117

Part:    [head:       35.00%, beak:   23.56%, eye:         13.82%]
Color: [brown:     46.49%, marron: 26.44%, beige:       6.40%]
Shape: [slim:        36.10%, spindly: 17.45%, flat:         17.31%]

𝕀

𝕋 𝛿
𝛿
𝛿

Assign(𝒂): Pine Warbler Weight(𝒘): 0.662

Part:    [tail:           39.68%, head:   24.23%, leg:         9.44%]
Color: [yellow:    69.90%, beige: 9.51%, orange:  7.22%]

𝕀

𝕋 𝛿
𝛿

（a）Full model （c）DCBM (using random initialization)（b）DCBM (w/o discriminator)

Figure 8: Influence of discriminator Φ(·) and initialization via concept-level interpretation. We randomly
selected the interpreted concepts. Compared to the full model (a), the CDV learned without Φ(·) (b) shows
inconsistent visualization results, and its interpreted probabilities of texts are nearly uniform, which indicates a
meaningless embedding but accounts for better classification performance. (c) with the random initialization, the
discriminator constrains the embedding, the visualization shows inconsistency while the text probabilities are
slightly better than (b), which indicates the initialization strategy also has an impact on interpretability.
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