
A Additional Algorithm Details

A.1 The Derivation of Approximate Von Neumann Entropy on Temporal Network

In the following, We commence by summarizing the approximation of the undirected graph von
Neumann entropy presented by [27]. First, we introduce the von Neumann entropy can be computed
from the normalized Laplacian spectrum as follows:

SVN(G) = −Tr(P logP) = −
|V |∑
i=1

λi

|V |
log

λi

|V |
, (19)

where λ1,, λ|V | are the eigenvalues combinatorial Laplacian matrix. Scaling the normalized

Laplacian matrix by the reciprocal of its trace, we obtain a density matrix L̂
|V | , The eigenvalues

of the density matrix is
(

λ̂1

|V | ,
λ̂2

|V | , . . . ,
λ̂|V |
|V |

)
and thus the von Neumann entropy of density matrix

associated with the normalized Laplacian matrix of the graph is defined as

SVN(G) = −
|V |∑
j=1

λ̂j

|V |
ln

λ̂j

|V |
. (20)

The von Neumann entropy above relies on the computation of the normalized Laplacian spectrum,
therefore its computational complexity is cubic in the number of nodes. The Taylor expansion for
ln λi

|V | is (
λ̂j

|V |
− 1

)
− 1

2

(
λ̂j

|V |
− 1

)2

+
1

3

(
λ̂j

|V |
− 1

)3

− 1

4

(
λ̂j

|V |
− 1

)4

+ · · · . (21)

If we keep the first item of the expansion and discard the remaining that contribute to a small amount,
ln λ̂i

|V | is approximated using
(

λ̂j

|V | − 1
)

. Then the entropy SVN(G) can be replaced by the quadratic

entropy
∑

j
λ̂j

|V |

(
1− λ̂j

|V |

)
, then we obtain

SVN(G) = −
∑
j

λ̂j

|V |
ln

λ̂j

|V |
≃
∑
j

λ̂j

|V |

(
1− λ̂j

|V |

)

=
1

|V |
∑
j

λj −
1

|V |2
∑
j

λ2
j .

(22)

Using the fact that Tr
[
L̂k
]
=
∑

j λ̂
k
j , the quadratic entropy can be rewritten as

SVN(G) =
Tr[L̂]

|V |
−

Tr
[
L̂2
]

|V |2
. (23)

The normalized Laplacian matrix L̂ has unit diagonal elements, therefore for the trace of the normal-
ized Laplacian matrix we have

Tr
[
L̂
]
= |V |. (24)

Similarly, for the trace of the square of the normalized Laplacian, we have

Tr
[
L̂2
]
=
∑
u∈V

∑
v∈V

L̂uvL̂uv =
∑
u∈V

∑
v∈V

(
L̂uv

)2
=

∑
u,v∈V u=v

(
L̂uv

)2
+
∑

u,v∈V
u ̸=v

(
L̂uv

)2
= |V |+

∑
(u,v)∈e

1

dudv
.

(25)

1

Table 3: Performance of AP(%) for link prediction. The best results in each column are highlighted
in bold font and the second-best results are underlined.

Task Methods MathOverflow Bitcoinalpha Bitcoinotc Wikipedia

Transductive

JODIE 84.95 ±0.43 90.32 ±0.19 91.50 ±0.19 92.95 ±2.27
DyRep 80.97 ±0.25 79.42 ±2.23 78.95 ±2.76 94.63 ±0.20
TGN 81.51 ±1.73 86.47 ±0.42 88.76 ±1.70 98.52 ±0.09

TGAT 74.35 ±0.29 79.18 ±0.54 79.53 ±0.84 93.18 ±0.13
CAW 61.40 ±0.28 71.27 ±0.87 79.29 ±0.76 98.82 ±0.12
TDLG 82.87 ±0.16 91.19 ±0.24 92.24 ±0.25 87.25 ±0.15

NeurTWs 93.07 ±0.54 94.14 ±0.24 96.17 ±0.08 96.01 ±0.52
Ours 98.60 ±0.26 99.06 ±0.20 98.83 ±0.47 99.04 ±0.26

Inductive

JODIE 68.58 ±0.49 75.02 ±0.20 77.44 ±0.14 89.33 ±5.04
DyRep 65.65 ±0.44 66.54 ±1.04 65.94 ±0.86 91.94 ±0.27
TGN 67.04 ±1.42 70.52 ±1.06 79.74 ±1.21 97.83 ±0.16

TGAT 62.77 ±0.64 67.09 ±0.88 68.32 ±1.84 94.18 ±0.43
CAW 64.79 ±0.31 70.70 ±0.93 78.21 ±0.29 99.11 ±0.13
TDLG 70.18 ±2.16 79.53 ±3.19 80.95 ±6.88 53.47 ±2.41

NeurTWs 92.68 ±0.40 94.16 ±0.27 96.44 ±0.34 96.12 ±0.22
Ours 98.41 ±0.17 97.91 ±0.69 98.55 ±0.33 98.83 ±0.10

Substituting Eq.24 and Eq.25 into Eq.23, the entropy becomes

SVN(G) =
Tr[L̂]

|V |
−

Tr
[
L̂2
]

|V |2
=

|V |
|V |

− |V |
|V |2

−
∑

(u,v)∈e

1

|V |2dudv
= 1− 1

|V |
− 1

|V |2
∑

(u,v)∈e

1

dudv
.

(26)
We project the temporal network to the time-independent 2-D plane as an edge-weighted graph,
resulting in a simplified depiction of the underlying network structure at a given time. As a result,
The expression of the approximate entropy is quadratic in the number of nodes.

B Additional Experimental Results

B.1 Performances in Average Precision

Table 3 reports the detailed transductive and inductive link prediction results of AP.

B.2 Time Comparison

Fig. 6 compares the training times of ESSEN against the second-strongest baseline NTW. For fairness,
we use the same batch size for both models and experiment in the same environment. Note that the
running time of ESSEN is down quickly because the approximate thermodynamic quantities have
been computed at the first epoch and use cache after that.

C Experimental Setting

C.1 Datasets

We introduce the datasets used in this paper as follows. In Fig. 7, we report the degree distribution
on the 30th Day and 270th Day in datasets BitcoinOTC and MathOverflow. In order to align the
timestamps, we shift the time so that they begin with zero. Additionally, we renumber the nodes to
optimize space usage. Further details regarding the preprocessing steps undertaken to prepare these
datasets for our method are discussed below.

2

1 2 3 4 5
Epochs

5

10

15

20

25

30

35

40

45

50

R
un

ni
ng

 T
im

e(
m

in
)

NTW
ESSEN

Figure 6: Time Comparison

0 5 10 15 20 25 30 35 40
Node Degree

0

50

100

150

200

250

300

Co
un

t

(a) MathOverflow: 30th Day

0 5 10 15 20 25 30 35 40
Node Degree

0

250

500

750

1000

1250

1500

1750

2000

Co
un

t

(b) MathOverflow: 270th Day

0 5 10 15 20 25 30 35 40
Node Degree

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
un

t

(c) BitcoinOTC: 30th Day

0 5 10 15 20 25 30 35 40
Node Degree

0

100

200

300

400

500

600

700

Co
un

t

(d) BitcoinOTC: 270th Day

Figure 7: Degree distribution at the 30th Day and 270th Day in different networks.

• MathOverflow dataset.1 It is a temporal network of interactions on the stack exchange
website Math Overflow. The nodes represent users, and the edges represent the answers
to questions. For example, a directed edge (u, v, t) represents user u answered user v’s
question at time t. Since edge features and node features are not provided, we use the
all-zero vectors instead.

• BitcoinOTC dataset.2 It is a who-trusts-whom network of people trade using Bitcoin on
the BitcoinOTC platform. Each line records a trade from rater to rate and the rating ranges
from -10 to +10 in step 1.

• Bitcoin Alpha dataset.3 It is a similar network to the Bitcoin Alpha platform. Both of the
datasets have no edge features or node features, so we initialize them as all-zero vectors.

• Wikipedia dataset.4 It is a dataset of edited records from Wiki pages over a month. We use
the top-edited pages and active users as nodes, and each row in our data represents a user
editing a page. This dataset records user editing of pages over the course of a month. The

1https://snap.stanford.edu/data/sx-mathoverflow.html
2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
4http://snap.stanford.edu/jodie/wikipedia.csv

3

timestamp indicates the time when the user edited the page. As with the Reddit dataset, the
features of these nodes were processed through LIWC. The user labels indicate if users are
temporarily banned from editing.

C.2 Baselines

The introduction of baselines and their setting details are shown as follows. Baselines not specially
mentioned use the default settings of the cited paper.

• JODIE uses two recurrent neural networks (RNNs) to learn trajectories of users and items,
and updates the embedding when the interaction occurs. we set the number of epochs to 50
and the dimensions of node and time embedding to 100.

• DyRep is a temporal point process model capturing both topological evolution and nodes’
activities. we set the number of epochs to 50 and the patience for early stopping to 5.

• TGAT utilizes a self-attention mechanism and presents a novel encoding method to learn
graph embedding inductively. The batch size is 200 and the number of epochs is 50. We
set the dimensions of node and time embedding to 100 and 20 neighbors are sampled in
aggregation.

• TGN is a generic and efficient framework for deep learning on dynamic graphs for discrete
representation. We set the number of runs to 10 in our experiments. The max number of
sampling neighbors is set to 10 and two heads are used in the attention layer. The dropout
probability is 0.1 and the learning rate is 0.0001.

• CAW utilizes a new anonymization strategy to represent a temporal network inductively.
We set the dimension of the positional embedding to 108, batch size to 64, and bias to 1e-5.
The maximum number of neighbors when sampling is 64.

• TDLG constructs line graphs to model edges directly instead of computing from node
embedding. We discard the attributes of the Wikipedia dataset because the original module
could not process data with attributes.

• NeurTWs improves the causal anonymous walks strategy in CAW and considers structural
and tree traversal properties in the process of walking. The dimension of position embedding
is 108 and 32 neighbors are sampled for each node. The temporal bias, spatial bias, and ee
bias are set to 1e-5, 1, and 0 respectively.

4

	Additional Algorithm Details
	The Derivation of Approximate Von Neumann Entropy on Temporal Network

	Additional Experimental Results
	Performances in Average Precision
	Time Comparison

	Experimental Setting
	Datasets
	Baselines

